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Deep‑learning based 3D 
birefringence image generation 
using 2D multi‑view holographic 
images
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Refractive index stands as an inherent characteristic of a material, allowing non-invasive exploration 
of the three-dimensional (3D) interior of the material. Certain materials with different refractive 
indices produce a birefringence phenomenon in which incident light is split into two polarization 
components when it passes through the materials. Representative birefringent materials appear 
in calcite crystals, liquid crystals (LCs), biological tissues, silk fibers, polymer films, etc. If the 
internal 3D shape of these materials can be visually expressed through a non-invasive method, it 
can greatly contribute to the semiconductor, display industry, optical components and devices, and 
biomedical diagnosis. This paper introduces a novel approach employing deep learning to generate 3D 
birefringence images using multi-viewed holographic interference images. First, we acquired a set of 
multi-viewed holographic interference pattern images and a 3D volume image of birefringence directly 
from a polarizing DTT (dielectric tensor tomography)-based microscope system about each LC droplet 
sample. The proposed model was trained to generate the 3D volume images of birefringence using 
the two-dimensional (2D) interference pattern image set. Performance evaluations were conducted 
against the ground truth images obtained directly from the DTT microscopy. Visualization techniques 
were applied to describe the refractive index distribution in the generated 3D images of birefringence. 
The results show the proposed method’s efficiency in generating the 3D refractive index distribution 
from multi-viewed holographic interference images, presenting a novel data-driven alternative to 
traditional methods from the DTT devices.

The 3D holographic microscope, also known as Optical Diffraction Tomography (ODT), makes significant 
contributions to cell observation by visualizing internal cell structures without the need for staining, unlike 
conventional techniques such as bright-field and electron microscopy. The traditional staining process not only 
consumes time and effort but can also cause damage or deformation to cells. ODT operates by measuring the 
refractive index of the sample, allowing imaging without causing harmful effects on the sample.

Recently, a dielectric tensor tomography (DTT) technique that can visualize birefringence properties was 
proposed1,2. DTT further has developed imaging technology by expressing both the internal shape of the sam-
ple and birefringence information according to the polarization direction. DTT involves the conversion of 2D 
holographic interference pattern images into 3D birefringence images through a combination of microscope 
hardware and formula-based programs.

In this study, a deep learning model is proposed for the generation of 3D birefringence images. The method 
begins with acquiring a set of multi-viewed 2D holographic interference pattern images along with ground truth 
3D birefringence images using the DTT microscopy observing LC droplets. Subsequently, the designed model is 
trained using this data. The performance of the trained model is evaluated by comparing the ground truth (3D 
birefringence images) from the microscope with the estimation result from the proposed model. This evaluation 
includes both evaluating the quantitative and qualitative results. Finally, the study analyzes and discusses the 
results obtained from the experiments.
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Our proposed method contributes in two main aspects when compared to existing formula-based methods. 
Firstly, it represents the initial attempt to generate 3D birefringence using a deep learning-based approach with 
2D multi-view holographic images. Secondly, the time needed to generate birefringence is significantly reduced 
compared to existing formula-based methods.

Related work
3D image processing
Generative models are being used in the field of 3D image processing3. A study proposes the use of a model 
known as 3DGAN to generate 3D objects4, and another study extends this 3DGAN to propose a method for more 
detailed 3D object reconstruction5. To perform inpainting on damaged 3D objects, a study has been proposed that 
combines Generative Adversarial Network (GAN) and Recurrent Neural Network (RNN) models6. Additionally, 
there is research that presents a GAN model for restoring full 3D objects using a single depth view where some 
parts of the 3D object are damaged7. In an attempt to enhance the restoration quality, methods employing new 
activation functions and rendering techniques have been explored8.

GANs are not limited to image generation; they are also employed for object detection9 or segmentation10 of 
existing images, contrary to their original purpose. These applications, particularly in the context of autonomous 
driving, are crucial technologies. For example, there are studies11,12 that detect cars, pedestrians, and other objects 
in images using depth maps representing the distance of objects from the camera. Additionally, to address the 
disparity between image-based object detection and LiDAR-based object detection, there are studies13–16 that 
assume the importance of the representation of 3D scenes. This research focuses on methods for transforming 
between these two representation approaches and exploring the relationship between 2D image coordinates 
and 3D point clouds.

Huang et al.17 introduced a 3D-CNN designed for the segmentation of voxels within 3D images. This method 
offers the advantage of efficiently handling substantial data volumes. Subsequently, a novel approach emerged, 
merging reinforcement learning and RNN techniques with the 3D-CNN, enabling object localization, segmenta-
tion, and classification18. Moreover, another technique was proposed to represent 3D space at a high resolution, 
ensuring efficient memory utilization while preserving resolution integrity19. What unites these prior studies 
and the proposed method is their utilization of deep learning methodologies to process 3D images. However, 
while the aforementioned studies use a standard RGB color system, compatible with general-purpose image deep 
learning models, this study uses birefringence images that do not conform to an RGB color system. As a result, 
these images necessitate a preprocessing step to be incorporated into the model.

Holographic tomogram
Cryo-electron microscopy (Cryo-EM) analyzes the three-dimensional structure of biological samples at low 
temperatures by freezing them, leveraging the principles of ice formation20. X-ray crystallography utilizes X-ray 
diffraction to determine the three-dimensional structure of proteins or biological molecules21.

Lee et al.22 introduced a non-invasive method for diagnosing pathology by observing living cell structures. 
This phase microscopy technique employs 2D digital holography technology, necessitating constant internal 
sample conditions. To overcome this limitation, X-ray Computer Tomography (X-Ray CT) was proposed23–25. 
The Helmholtz equation used in X-ray CT represents the wave equation for a single wavelength, allowing its 
principles to extend to light sources like laser light, akin to visible light26. Holographic tomographic microscopy 
operates with visible-range laser light27. While X-ray CT primarily gauges the X-ray absorption distribution of 
the target, holographic tomographic microscopy measures the target’s refractive index.

Joo et al.28 presented a method to extract quantitative phase information from spectral interference signals 
obtained in Optical Coherence Tomography (OCT) setups. They laid the groundwork for converting interfer-
ence patterns into quantitative phase data and understanding the correlation between interference patterns and 
refractive index distribution.

Various methods have been proposed using RNN29–31 to represent cellular changes over time and techniques 
employing 3D holographic tomographic microscopy to reconstruct label-free images from 3D refractive index 
images32,33. These studies align with this research by focusing on restoring refractive index images. However, 
earlier studies captured interference patterns using holographic tomographic devices and generated refractive 
index images through formula-based specialized programs1,2. In contrast, this study employs a data-driven 
approach using a deep learning model, taking interference patterns as input and generating refractive index 
images as output.

Results
The input data we used for the proposed models’ training, with a size of 512× 512 , and the output data, with 
a size of 332× 332× 80 , is considered significantly large for standard model’s training dataset. We performed 
machine learning tasks using the ASUS ESC8000-G4 series equipped with Nvidia Titan RTX × 8. Following the 
learning process, we proceeded with quantitative and qualitative comparison experiments using reference data. 
Figure 1 illustrates the trend of loss values throughout the training phase.

We observed the loss trend during 50 epochs and confirmed that both extraordinary ray (ne) and ordinary 
ray (no) converged to an Mean Squared Error (MSE) of approximately 0.045. The loss consistently decreased 
until the 45th epoch, but after the 50th epoch, the loss stabilized around the same value. As there’s no established 
benchmark for birefringent volume generation, conducting precise quantitative comparisons with other studies 
remains limited. We compared it with the Peak Signal-to-noise ratio (PSNR)34 of Kim et al.35, a study that gener-
ated a single refractive index volume, and the results are presented in Table 1. The PSNR is defined as
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which is defined via the MSE and s (maximal signal value of a target), equal to 255 for the RGB color system. 
We calculated the PSNR after normalizing the model’s output which is real values refractive index to 0 255. 
Furthermore, we calculated the Structural Similarity Index (SSIM)36 to assess the structural similarity between 
the ground truth and the results generated by the model. SSIM is defined as

where µy as the average of ground truth(y); µy′ the average of the estimated depth map(y’); σ 2
y  the variance of 

the ground truth(y); σ 2
y′ the variance of the estimated depth map(y’); σyy′ the covariance of ground truth(y) and 

estimated depth map(y’); and c1 , c2 are two variables for stabilizing the division with a weak denominator, which 
is defined as

where L is the dynamic range of the voxel values (normally 2bitpervoxel-1); and K1 and K2 are defined as default 
values of 0.01 and 0.03, respectively.

We confirmed that the proposed method achieved a higher PSNR despite handling a larger volume resolution 
than Kim et al.35’s method, and the proposed method generated a birefringence volume, whereas Kim et al.35’s 
method generated a single refractive index volume. SSIM was also measured as a satisfactory level. Of course, 
it cannot be certain because there are no benchmark papers using a deep learning-based method to generate a 
birefringence volume and measure SSIM, but at least the luminance, contrast, and structure between the ground 
truth and model results are approximately 91% similar through the measured SSIM. Additionally, we qualitatively 
compared the results of the proposed model with the ground truth to confirm that the proposed method actually 
generates the birefringence volume well, and the results are shown in Fig. 2.

To show that the proposed deep learning-based method is superior to the existing formula-based method1,2 
in terms of time, we conducted a birefringence generation experiment using both methods on the same sample 
in the same environment (ASUS ESC8000-G4 series with 4 Nvidia’s Titan RTX). Table 2 shows the experiment 
result. The generation of 3D birefringence from 2D multi-view holograms using the formula-based method1,2 
takes approximately 35 minutes and 15 seconds, while the proposed method accomplishes the same task in 
approximately 5 minutes and 10 seconds. We conducted measurements on 10 samples, repeating each measure-
ment 5 times using both the formula-based method1,2 and the proposed method, and then calculated the average 
after subtracting the maximum and minimum values.

(1)PSNR = 10log
s2

MSE

(2)SSIM =
(2µyµy′ + c1)(2σyy′ + c2)

(2µ2
y + µ2

y′ + c1)(σ 2
y + σ 2

y′ + c2)

(3)c1 = (k1L)
2
, c2 = (k2L)

2

Figure 1.   Trend of the training loss MSE for (a) extraordinary ray and (b) ordinary ray.

Table 1.   Quantitative comparison of the proposed model and single refractive index volume generation model 
(higher values for both metrics indicate better performance.).

Direction of polarization PSNR (dB) SSIM

Proposed method
Extraordinary ray 28.07 0.9108

Ordinary ray 28.31 0.9186

Kim el al.35 Single ray 10.17 ×
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Discussion and conclusions
We acquired training data consisting of 2D interference pattern images and 3D birefringence images using 
a holographic microscope and then trained a proposed model that uses the generated training data as input 

Figure 2.   Visualization result for qualitative comparison between proposed method’s results and ground truth. 
(a) Liquid crystal droplet with representation of internal directional information according to xy, zy, zx slices. 
red lines indicate the direction of each particle. (b) 3D visualization for Liquid crystal droplet with each particle’s 
directional information. The 360-degree rotation for (b) can be found as Supplementary Videos  S1–S6 online..
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and output data. Through the proposed model, we visualized the model’s output that represents the internal 
view of the target and the direction information of particles of the target. The method begins with acquiring a 
set of multi-view 2D interference pattern images together with 3D birefringence images using a holographic 
microscope. To efficiently train the proposed model, 3D birefringence images obtained through a microscope 
system were quantified. Afterward, we trained the proposed model until 50 epochs, when the loss was no longer 
reduced. The generation results of the ground truth and the proposed model were compared quantitatively and 
qualitatively. Through comparison with another previous study35 that estimated a single refractive index, we 
confirmed that the proposed model achieved a higher PSNR and that luminance, contrast, and structure were 
more than 91% similar to the ground truth. The visualization results for xy, zy, and zx slices and 3D visualiza-
tion results were presented. These two visualization results include a representation of the direction of particles 
inside the liquid crystal.

The contributions of this study are as follows. First, the proposed method is the first attempt to generate 3D 
birefringence information from 2D hologram information through a data-based approach. Second, the time 
needed to generate birefringence is significantly reduced compared to existing formula-based methods. By 
acquiring data, training deep learning models, quantitative testing, and visualization, it contributes to the activa-
tion of datasets and benchmarks in the birefringence domain. Third, the proposed data-driven method is useful 
as a replacement or supplement to the formula-driven DTT methods by quickly generating the birefringence 
volume of the object from the 2D interference pattern images.

The limitations of the proposed method are the background noise and slight distortion near the border 
between the object and the background. background noise can be solved by adding a denoising block. To over-
come distortion near the border between the object and the background, it is expected that an approach increases 
the difference between the background and the object by performing normalization on the layers within the 
model. In addition to solving the above two limitations, we are planning future research on a super-resolution 
to increase the resolution of the 3D birefringence volume. High-resolution 3D birefringence imaging technol-
ogy can visualize the internal 3D shape of materials such as liquid crystals, biological tissues, and silk fibers in 
high quality in a non-invasive manner. It is expected to be useful in the semiconductor, display industry, optical 
component devices, and biomedical diagnosis. Our intended scope for this study was to utilize liquid crystal 
droplets. However, in a follow-up study, we plan to extend the current proposed model to tasks that involve 
reconstructing both the internal and external shapes of blood cells.

Methods
We utilized a formula-based approach1,2 solely to generate the ground truth for model training. Subsequently, 
the training and testing of the proposed model were performed using a deep learning-based method, which is 
a data-driven approach.

Data acquisition
To acquire training data for the birefringence images, interference patterns need to be captured from two dif-
ferent polarization directions. Figure 3 shows a holographic tomogram device that we directly constructed for 
capturing interference patterns. For each sample, 37 images were captured in the extraordinary ray polarization 
direction and 37 images in the ordinary ray polarization direction, resulting in a total of 74 interference pattern 
images. This process was applied to a total of 750 samples. The 3D birefringence images were obtained using 
formula-based microscopy-specific software1,2 after acquiring the interference pattern images.

A model for generating birefringence images differs from general image models because birefringence images 
follow the refractive index representation rather than the standard RGB representation. In this study, voxel values 
in birefringence images are constrained to a specific range of real numbers. When measuring the samples of 
liquid crystal (LC) droplets we used in the study, their 3D birefringence index values were generated within a 
specific range between 1.54 and 1.57 in the initial data acquisition process for the ground truth. This range was 
designated because it represents the optimal range for observing the samples1,2. Although the 3D birefringence 
image acquired from the microscope visually represents 3D birefringence information, without quantifying the 
values of each voxel, the model cannot be effectively trained. Therefore, we converted birefringence images into 
3D numpy arrays to obtain quantitative values for each voxel, designing the model to learn from these numpy 
arrays. Consequently, for a total of 750 samples, we obtained a dataset comprising 74 interference patterns of 
size 512× 512 per sample and 3D birefringence values of size 332× 332× 80.

Proposed model
The proposed model consists of four components, such as Encoder-3DGRU-Attention-Decoder, as shown in 
Fig. 4. Initially, before the input data enters the encoder, interference pattern images are grouped into sequences. 
Through mean operations, the information is condensed into the sequences. The number of images in a sequence 

Table 2.   Comparison of time to generating 3D birefringence.

3D birefringence generation Visualization

Formula-based1,2 (min’ s”) 35’ 15” 3’ 28”

Deep learning-based (min’ s”)
(proposed method) 5’ 10” 3’ 28”
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is determined by the window length, sequence length, and the number of input images. Here, the window length 
represents the number of interference pattern images grouped in one sequence, and the sequence length is the 
total number of sequences. The final sequence length remains the same if the sequence length is even. However, 
if the original sequence length is odd, the final sequence length is sequence length-1.

As shown in Fig. 5, the encoder is consist of five down-residual blocks, sequentially outputting feature maps. 
The layers of the down-residual block consist of a batch normalization layer, ReLU activation, a 3D convolution 
layer, and an Add layer. In the Add layer within the block, the process involves adding the generated vector, 
which has passed through two sets of Batch normalization-ReLU-3D convolution layers, with the feature map 
generated through the Conv3D layer. This step ensures a smooth integration of the original information into 
the extracted information. As the block is sequentially passed through, the height and width of the feature maps 
decrease, while the channel count increases. Passing through the convolution layer within the block enables the 
learning of spatial features of beads sampled within the interference pattern, resulting in multiple feature maps. 
As a result, six feature maps of size 1× 16× 16× 192 are generated. The feature map produced by the encoder 
is then used as the input for the 3DGRU structure.

The 3DGRU​33 presented in Fig. 6 is a model that considers spatial patterns for 3D sequences and accounts for 
temporal dynamics. Since we capture interference pattern images of liquid crystal bead samples at different time 
points with a constant time lag from a specific polarization direction, the 3DGRU is well-suited for processing the 
3D sequence feature information. Therefore, we have included the 3DGRU in the proposed model to effectively 
handle the spatio-temporal characteristics of the liquid crystal bead samples. 3DGRU follows the structure of 
the general recurrent neural network Gated Recurrent Unit (GRU) and consists of Reset gate and Update gate. 
In the Reset gate, operations are performed based on the current input and information from the previous time 
step, controlling how much of the current information should be used through the sigmoid function. The Update 

Figure 3.   (a) A schematic of the DTT measurement microscope where the object beam diffracted from a 
birefringence 3D sample is measured using a polarizing-sensitive interferometer. (b) The microscope used for 
dataset acquisition (2D-interference pattern images and 3D-birefringence image).

Figure 4.   The process of generating 3D birefringence through the proposed model using 2D interference 
patterns.
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gate controls how much information from the previous time step ht−1 should be output. In the Hidden state, after 
passing through the two gate structures, it considers the output of the update gate and the initial information from 
time step ht−1 to calculate and output a new feature map of size 1× 16× 16× 512 corresponding to the new ht.

In Fig. 7, the attention module takes the feature maps obtained for each image, feeds them into the GRU, and 
adjusts their importance by considering the spatial features within the images. Weights are calculated for each 
position of the feature information that has gone through the GRU structure. This process allows the model to 
focus on specific locations. As a result, more attention is given to important areas, enabling the model to grasp 
the essential parts of the feature map. The feature map generated through 3DGRU is transformed into a set of 
16× 16× 512-sized feature maps, with the same number as the sequence length. Each 1× 16× 16× 512 fea-
ture map undergoes a reshaping process, being squeezed into a one-dimensional vector, which is then used as 
input for a dense layer. The vector output from the dense layer is used to produce an attention map through the 
application of Hyperbolic tangent and Softmax. The final vector is then generated through the multiplication 
operation between the attention map and the latent vector.

In Fig. 8, a 3D volume corresponding to the final output is generated from the feature maps produced by 
the preceding structures. Particularly, the model that pays attention to important areas through the Attention 
mechanism incorporates this information into the generated volume. This ensures that the generated volume 
accurately reflects the refractive index information for crucial regions in the input interference pattern images. 
In the decoder, multiple decoder blocks are sequentially applied to gradually increase the feature map size. The 
size of the feature map input to the decoder is 1× 16× 16× 512 , where each dimension represents the layer, 

Figure 5.   Encoder: Extract feature of input data using 5 down residual blocks.

Figure 6.   3DGRU (3D Gated Recurrent Unit): Learning spatial patterns through 3D convolution.
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width, height, and channel. In the Up-residual block, the feature map passes through batch normalization and 
ReLU sequentially. Transpose convolution layers are then used to upsample the layer, width, and height dimen-
sions of the feature map to a larger spatial size. Following this, the 3D convolution layer and skip connection 
structure help the output better represent information from the previous layer. Finally, the decoder generates a 
3D refractive index volume of size 332× 332× 80 through a total of 3 residual blocks. To ensure that the model’s 
training/test processes are under the same conditions as the data acquisition process, the output values at the final 
layer were constrained to the range of 1.54 to 1.5737–39. By designing the proposed model to have output values 
within the same constrained range during the data acquisition process, we discovered that the model maintained 
consistency, improved stability, and provided easier interpretation of the results.

Learning parameters
During the training process of the 3D refractive index volume estimation model using 2D interference pattern 
images, Mean Squared Error (MSE) was employed as the loss function. MSE allows for an efficient comparison 
between the actual values and the model’s predictions for refractive indices at each coordinate. As the refractive 
index values for bead samples range between 1.54 and 1.57 as real numbers, MSE is suitable for quantitatively 
comparing the disparities between actual and predicted values. We utilized the Adam optimizer with a learning 
rate of 0.0001. Throughout the model training, a batch size of 2 was applied to the dataset, and the training was 
conducted for a total of 50 epochs based on the experimental conditions.

Data availability
The datasets prepared for the current study are not publicly available since they are under license permitted only 
within the current study, but they could be available from the corresponding author upon reasonable request.
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