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Accelerating material property 
prediction using generically 
complete isometry invariants
Jonathan Balasingham *, Viktor Zamaraev  & Vitaliy Kurlin 

Periodic material or crystal property prediction using machine learning has grown popular in recent 
years as it provides a computationally efficient replacement for classical simulation methods. A 
crucial first step for any of these algorithms is the representation used for a periodic crystal. While 
similar objects like molecules and proteins have a finite number of atoms and their representation 
can be built based upon a finite point cloud interpretation, periodic crystals are unbounded in size, 
making their representation more challenging. In the present work, we adapt the Pointwise Distance 
Distribution (PDD), a continuous and generically complete isometry invariant for periodic point sets, 
as a representation for our learning algorithm. The PDD distinguished all (more than 660 thousand) 
periodic crystals in the Cambridge Structural Database as purely periodic sets of points without atomic 
types. We develop a transformer model with a modified self-attention mechanism that combines PDD 
with compositional information via a spatial encoding method. This model is tested on the crystals of 
the Materials Project and Jarvis-DFT databases and shown to produce accuracy on par with state-of-
the-art methods while being several times faster in both training and prediction time.

A solid crystalline material is made up of a periodically repeated unit cell containing a motif of atoms (ions or 
molecules). Crystals can distinguish themselves by atomic types (chemical elements and possibly charges of ions) 
and by the geometry of atomic centers. Both of these aspects can determine the various properties of a crystal. 
Knowledge of these properties is pertinent for determining whether a crystal can be experimentally synthesized 
or is useful for a particular application.

Determination of property values can be done using ab initio calculations with techniques like density func-
tional theory (DFT)1. These techniques are often computationally  expensive2. Further, they require extensive 
domain knowledge to be applied correctly, making them inaccessible. Recently, machine learning has become 
very popular as a substitute and has experienced success in decreasing computational costs while producing 
accurate predictions.

Any learning algorithm requires an input representation that adequately describes the object of interest. 
Objects similar to crystals, like molecules, are often treated as finite point clouds. This makes their representation 
more easily constructible than a representation for crystals, which are not bounded in size.

While a crystal can be described in several ways, descriptors that are easily human-interpretable, such as unit 
cell parameters or atomic coordinates are not useful for machine learning algorithms. Atomic coordinates do 
not retain invariance under rigid motion. Unit cell based descriptors are also ambiguous as there are infinitely 
many valid unit cells for a single structure. Such ambiguities can result in different model outputs for the same 
structure. Techniques such as data  augmentation3 and parameter  sharing4 can mitigate these effects but still do 
not guarantee the aforementioned consistency.

The structure-property relationship5 dictates that changes in the structure of a material result in changes in 
its properties. Distinction between crystals then allows for distinction between their respective property values. 
A machine learning algorithm (for a regression task) is a map from a crystal representation to value. If a repre-
sentation cannot distinguish periodic crystals then two different crystals can incorrectly be perceived to be the 
same and so will the output property values. Similarly, if the same crystal can be represented in different ways, 
consistent mapping cannot be guaranteed.

The fundamental model of a crystal is a periodic set of points at all atomic centers (even without atomic types), 
see details in Definition 2.1. Since crystal structures are determined in a rigid form, their strongest practical 
equivalence is rigid motion, which is a composition of translations and rotations in Rn . We consider a slightly 
weaker isometry, which is a composition of rigid motion and mirror reflections. Two periodic point sets S and 
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Q are isometric if they are related by an isometry f : Rn → R
n , so f (S) = Q . This work exclusively applies these 

concepts to dimension n = 3.
An isometry invariant I is a property (descriptor or function) that is preserved under any isometry. The values 

of I should be simpler than the initial periodic set, for example, a scalar, vector, or matrix. Not all invariants can 
be considered equally useful, however. Space groups, for example, reflect the symmetry of a given material but 
tiny perturbations of atomic coordinates can change the material’s space group. Hence the important question is 
to quantify how different crystals are. Figure 1 illustrates the relationship between geometric descriptors based 
on their properties. A practically useful invariant should satisfy the following conditions introduced  by6

Problem 1 Find a function I on all periodic point sets in Rn subject to the following conditions: 

 1a. Invariance: If two periodic point sets, S and Q are isometric, then I(S) = I(Q).
 1b. Generic Completeness: If I(S) = I(Q) , then the two periodic sets are isometric.
 1c. Computability: the invariant I, the metric d, and the reconstruction of S can be computed in polynomial 

time with respect to the size of the motif of any periodic point set S.
 1d. Reconstructability: any periodic set S can be fully reconstructed from its invariant I(S).
 1e. Metric: There exists a distance function d on the codomain I that satisfies the following: 1) d(I(S), I(Q)) = 0 

iff I(S) = I(Q) . 2) d(I(S), I(Q)) = d(I(Q), I(S)) . 3) For any three periodic sets S,  Q,   and T, 
d(I(S), I(Q))+ d(I(Q), I(T)) ≥ d(I(S), I(T))

 1f. Lipschitz continuity: If a periodic set Q is obtained by shifting points within periodic set S by at most ǫ , 
then the distance between the two periodic sets can be bound according to some distance function d such 
that d(I(S), I(Q)) ≤ Cǫ for some fixed constant C.

In the present work, an isometry invariant called the Pointwise Distance Distribution (PDD), defined formally 
in Definition 2.2, which has properties 1a and 1c (see Theorem 5.1  of6), and satisfies 1b and 1d for any periodic 
set in the general  position6 along with sufficiently large k, and inclusion of the lattice (see theorem 4.4  of6). Con-
ditions 1e and 1f (see Theorem 4.3  of6) are satisfied under the Earth Mover’s Distance (EMD) between PDDs.

The contribution of this work is a Transformer  model7 which utilizes the PDD to make predictions on the 
properties of materials in a highly efficient manner compared to state-of-the-art models. In doing this, the gap 
between unambiguous crystal descriptors and machine learning models is bridged. Use of such a representation 
produces results on par or better than graph-based models, despite the additional structuring of data that comes 
with edges and edge embeddings. This model is faster in both prediction and training speed compared to two 
state-of-the-art models. To prove the method’s robustness, the model is applied to the crystals of the Materials 

Figure 1.  Classification of geometric descriptors for periodic crystals based on the properties possessed. Cell 
parameters consist of the unit cell lengths and angles, but this is ambiguous as there are an infinite number of 
unit cells. Space group is a label defined by the symmetry relations the crystal exhibits, but is sensitive to atomic 
perturbations. Equivariant GNNs cannot be used to distinguish periodic structures. PDF needs additional 
smoothing to retain continuity, introducing more parameters. The PDD is invariant, generically complete, and 
continuous under the EMD.
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 Project8 and Jarvis-DFT9. Further experimentation on material classification, hyper-parameter sensitivity test-
ing, and prediction of crystal properties without compositional information is included in the Supplemental 
Materials.

Related work
Early works in crystal property prediction used more classical statistical methods like kernel  regression10 
before eventually moving towards deep  learning11. More recent works have shifted to Graph Neural Networks 
(GNN)12–21 due to their ability to make use of structured data. Several of these focus on predicting the properties 
of the crystals contained within the Materials  Project8 using a multigraph representation where vertices represent 
atoms and edges are embedded with the pairwise distances to an atom’s nearest neighbors. Some state-of-the-art 
models use line graphs to incorporate more geometric information like angles and  dihedrals13,22. The derived 
line graphs can contain significantly more vertices and edges, incurring a higher computational cost. Other 
 method23 take a physics principled approach and substitute the interatomic distances for interatomic potentials 
and capture a crystal’s periodicity using the infinite sum of these potentials.

While effective in modeling crystal structures, graphs are discontinuous under  perturbations24. Small move-
ments in the atomic positioning can cause significant changes to the graph’s topology. Some graphs are not unit 
cell invariant. Due to an infinite number of possible unit cells, the graph is then reliant on the data or the cell 
reduction technique used.

SE(3)-equivariant models such as Tensor Flow  Networks25, SE(3)-Transformers26, and SE(3)-GNNs27 impose 
constraints on the set of learnable functions of the network such that the output is equivariant with respect to the 
input points. While effective on finite point clouds, they offer no promise of completeness with periodic point 
sets which is necessary for distinguishing between structures. These architectures can also be beneficial when 
predicting properties that are equivariant with respect to rigid motion, but the crystal properties examined here 
are invariant to such symmetries, and thus invariance of the model output through either the input or model 
architecture is required.

In addition to the properties mentioned earlier, the invariant needs to be able to be adapted for a learning 
algorithm. Further, it needs a way to incorporate compositional information as invariants typically only con-
sider structure. Some invariants have been adapted for use in machine learning algorithms such as symmetry 
 functions28,29 and Voronoi  cells30. Both of these, however, still lack continuity. The Partial Radial Distribution 
Function is invariant and continuous but is not complete for homometric crystals. Smooth Overlapped Atomic 
 Positions31 has been incorporated into models for property prediction, but is an invariant for atomic environ-
ments, not entire structures. Coulomb matrices use electrostatic interactions between atoms instead of Euclidean 
distances and are invariant and complete for molecules but have not been proven to retain these properties for 
the periodic  case32. Average Minimum Distance (AMD)33 is invariant and continuous and has been used to 
predict lattice energies via Gaussian Process  Regression34, but is incomplete and does not currently have a way 
to incorporate compositional information. The PDD has been used to derive a graph  representation35, but this 
graph does not retain continuity.

Methods
A periodic crystal can be represented as a periodic point  set36 with points located at the atomic centers of the 
structure. They do not differentiate between the types of atoms and instead treat every point as unlabeled. A 
periodic point set (periodic set) can defined like so:

Definition 2.1 (Periodic Point Set) For a set of n basis vectors v1 . . . vn ∈ R
n , the lattice L is formed by 

the integer linear combinations of these basis vectors {
∑n

i=1 civi|ci ∈ Z} . The unit cell is the parallelepiped 
U = {

∑n
i=1 tivi|ti ∈ [0, 1)} . For a unit cell U, the motif M is a finite subset of U. Then, a periodic point set S of 

lattice L and motif M is defined by {�+ p : � ∈ L, p ∈ M}.

The PDD of a periodic set is the m× (k + 1) matrix where m is the number of atoms in the motif M and k 
is a positive integer indicating the number of nearest neighbors to use. Each row corresponds to a point in the 
motif and the entries within the row consist of the Euclidean distance to each of this point’s k-nearest neighbors 
within the entire periodic set S. The first entry of the row is assigned to be a weight equal to 1m (the distances 
follow). Once the matrix is formed, rows that are the same are collapsed into a single row and their respective 
weights are added. Due to very small differences between rows caused by floating point arithmetic or atomic 
perturbations, it is common to use a tolerance, henceforth called the collapse tolerance, that allows rows with small 
non-zero differences (e.g. with respect to L∞ distance) to be treated as the same. By collapsing rows in the PDD, 
the resulting matrix representation is always the same for a given crystal, regardless of the unit cell. Formally,

Definition 2.2 (Pointwise Distance Distribution) For a periodic set S = L+M with a set of motif points 
M = {p1, . . . , pm} within a unit cell U of lattice L, the uncollapsed PDD matrix for a parameter k ∈ N

+ is a 
m× (k + 1) matrix where the ith row consists of the row weight wi = 1

m followed by the euclidean distances 
d1 . . . dk from the point pi to its k-nearest neighbors such that d1 ≤ d2 . . . ≤ dk . If a group of rows is found to be 
identical (or close enough using a valid distance measure within some tolerance) then the matrix rows are col-
lapsed and the weights of the involved rows are summed. The resulting matrix will then have less than m rows.

This matrix is referred to as PDD(S; k) for a periodic set S and positive integer k.
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Periodic set transformer
In our model, rather than being considered a matrix of values, the PDD will be considered a set of grouped atoms. 
A single group of atoms corresponds to the k-nearest neighbor distances in a given row within the PDD matrix. 
Each member of the set will carry the weight provided by the row in the PDD. Any set A can trivially be turned 
into a weighted set by weighing each element by 1

|A| . When the PDD is not collapsed, then there can be more 
than a single occurrence of any given element, making the uncollapsed PDD a multiset. Now, let A be a multiset 
of the form A = {a(j)i : i ∈ [1, . . . , n], j ∈ [1, . . . , ni]} where ni is the multiplicity of element ai and a(j)i  is the jth 
occurrence of element ai . This multiset can be turned into a weighted set by assigning each element ai with the 
weight nin  . We can recover the influence of multiplicity by the use of weights in our model.

When a periodic crystal has its unit cell modified, the proportion of each atom is expanded or reduced. The 
use of weights captures this behavior in the form of a concentration or frequency.

We use an attention mechanism to find the interactions between members of the set. The rows of the PDD 
contain the pairwise distance information, but they do not indicate which atoms these distances correspond to. 
Application of the attention mechanism can help the model learn these interactions.

Let R ∈ R
m×k be the PDD matrix containing m rows without the associated weight column. Let w ∈ R

m×1 
be the column vector containing the weights from the PDD matrix. The initial embedding is X(0) = RWd where 
Wd ∈ R

k×d is the initial trainable weight matrix. The embedding is updated according to:

where Q = X(0)WQ , K = X
(0)
i WK and V = X(0)WV and d is the embedding dimension of the weight matrices 

for the query, key, and value WQ ,WK , and WV respectively as described  in7. The function σ is the softmax func-
tion with the PDD weights integrated into it; σ is applied to each row z of the input matrix, and i and j are used 
to index entries in z and w . The ith entry of the output vector is defined by:

The result is passed through a single-layer perceptron SLP. The layer normalization order described  by37 is used 
for increased stability during training. Equation (2) describes the case for a single attention head. When multiple 
attention heads are used, the PDD weights are applied to each individually and the result is concatenated before 
being passed to the SLP like so:

where h is the number of attention heads, ⊕ is the concatenation operator and Qi ,K i and V i are the query, key 
and value for the ith head. This process is repeated l times; this determines the depth of the model. The embed-
dings are finally pooled into a single vector by reincorporating the PDD weights into a weighted sum of the row 
vectors xi of the final embedding X(l).

This final embedding can be passed to a perceptron layer to predict the property value.
This version of self-attention can be applied to a weighted set or distribution. The weights are applied in such 

a way that the output of the PST is invariant to an arbitrary splitting of rows within the PDD. We provide a formal 
proof of this in Supplementary Material. An overview of the Periodic Set Transformer (PST) architecture with 
PDD encoding (described in the next section) can be seen in Fig. 2.

PDD encoding
While structure is a powerful indicator of a crystal’s properties, there may be datasets in which it is not the pri-
mary differentiator of a set of crystals. In such cases, the composition of the atoms contained within the material 
has a heavy influence. The previously described transformer does a good job of utilizing the structural informa-
tion within the PDD but does not provide an obvious way to include atomic composition.

Transformers for natural language processing tasks use positional encoding to allow the model to distinguish 
the position of words within a given  sentence38. A recent transformer model, Uni-Mol39, which performed prop-
erty prediction for molecules (among other tasks), used 3D spatial encoding first proposed  by40 to give the model 
an understanding of each atom’s position in space, relative to one another. This encoding is done at the pair level, 
using the Euclidean distance between atoms and a pair-type aware Gaussian  kernel41. A transformer model for 
finite 3D points clouds is provided  by42 via vector attention. The case for crystals is more difficult because they 
are not bounded in size and can exhibit many symmetries. Fortunately, by using the rows of the PDD we can 
distinguish each atom with structural information. We refer to this as PDD encoding.

When rows are grouped together, they are done so by having the same k-nearest neighbor distances. Though 
rare, it is possible for rows corresponding to different atom types to be collapsed. If this occurs, the selection of 
either atom type will result in information loss. To prevent this, we add the condition that the groups must be 
formed on the basis of having the same k-nearest neighbor distances and the same atomic species. In this case, 
the periodic point set has points that are labeled according to atomic type.
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For a periodic set S, let PDD(S; k) be the resulting PDD matrix with parameter k. Let R be PDD(S; k) without 
the initial weight column and T be the matrix whose rows correspond to the vector of atomic properties used 
to describe the type of atom associated with each row of PDD(S; k). The initial set of embeddings for the atten-
tion mechanism is defined as X(0) = RW s + TW c where W s and W c are initial embedding weights. By starting 
with a linear embedding, the PDD row can be transformed to match the dimension of composition embedding. 
The parameter k used can then be changed as needed to include distance information from further neighbors.

Results and discussion
Prediction of materials project properties
The model will be applied to the data within the Materials Project. To make fair comparisons to other models we 
report the performance according to Matbench43, which contains data for various crystal properties. The error 
rates are reported using five-fold cross-validation with standardized training and testing sets for each fold. Fur-
ther, tuning is done according to the models’ authors and thus our model can be compared to others more fairly.

The crystals in the Materials Project are highly diverse in composition. For all predictions, we include the 
composition of the crystal with PDD encoding. To incorporate this compositional information the mat2vec 
atomic embeddings supplied  by44 are used. The embeddings have empirically been found to produce better 
performance than the one-hot encoded method used by  CGCNN45. They also have the added convenience of 
not missing any atomic property information for certain elements.

In Table 1 we report the average mean-absolute-error (MAE) across the five test sets. We include the reported 
accuracies of other models to allow for comparison. The selection of models aims to present a high diversity 
in approaches while also coming from relatively recent publications. CrabNet45 is the only other Transformer 
model listed on Matbench. This model, in terms of architecture, is the most similar to the PST. Additionally, 

Figure 2.  Overview of the architecture of the Periodic Set Transformer. PDD encoding is used to combine the 
structural information in the PDD with atomic types. The weights of the PDD are incorporated in the attention 
mechanism and during the pooling of the embeddings to define the multiplicity of the input set.

Table 1.  Five-fold cross-validation prediction MAE and standard deviation of MAE for properties of the 
crystals in the Materials Project. Bold values indicate the best (lowest) error rate while underlined values 
indicate the second-best error rate. PST performance is reported using PDD Encoding with a tolerance of 10−4 
and k = 15.

Property Units PST CrabNet coGN CrystalTwins

Formation energy eV/atom 0.032 ± 0.0003 0.086 ± 0.001 0.021 ± 0.0003 0.037 ± 0.001

Band gap energy eV  0.210 ± 0.002 0.266 ± 0.003 0.156 ± 0.002 0.264 ± 0.011

Shear modulus log10(GPa) 0.074 ± 0.001 0.101 ± 0.002 0.069 ± 0.001 0.086 ± 0.004

Bulk modulus log10(GPa) 0.056 ± 0.003 0.076 ± 0.003 0.053 ± 0.003 0.067 ± 0.003

Refractive index n/a 0.290 ± 0.078 0.323 ± 0.071 0.309 ± 0.086 0.417 ± 0.080

Phonon peak 1/cm 29.40 ± 1.40 57.76 ± 5.73 29.71 ± 1.99 48.86 ± 7.69

Exfoliation energy meV/atom 31.15 ± 9.566 45.61 ± 12.24 37.16 ± 13.68 46.79 ± 19.92

Perovskites FE eV/cell 0.030 ± 0.001 0.406 ± 0.007 0.027 ± 0.001 0.042 ± 0.001
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the atomic embeddings used to describe each chemical element are the same as those used in our model. The 
majority of models used in crystal property prediction use GNNs. Matbench features several of these, but the 
model that provides the best results on several properties is coGN. coGN is a GNN that includes angular and 
dihedral information through the use of line graphs. As such, the amount of information used is significantly 
more than the PST, which uses the distribution of pairwise distances. Crystal Twins (CT)46 is a model based on 
the convolutional layer developed by  CGCNN12 (also used by several other  models16,18,47) that uses self-supervised 
learning to create embeddings based on maximizing the similarity between augmented instances of a crystal.

The PST and CrabNet share similarities in their construction. Both use mat2vec atomic embeddings and 
utilize a Transformer architecture with self-attention. While CrabNet uses fractional encoding to embed the 
multiplicity of each element type, we opt for the PDD-weighted attention mechanism and pooling described by 
Eqs. (2) and (4). The PST also uses PDD encoding to add structural information. This could also be done for 
CrabNet, but the combination of both fractional and PDD encoding is not guaranteed to aid in performance 
and simple summation of the encodings can cause ambiguities in the final embeddings, reducing performance. 
Across all properties the PST outperforms CrabNet, further indicating the usefulness of PDD encoding.

The performance disparity between the PST and coGN on formation and band gap energy can be difficult 
to discern. GNNs allow embeddings at the vertex and edge level. These embeddings can not only carry different 
information but allow for simultaneous updates to each of these embeddings, adding richness to the learned 
representation. CoGN takes this further and updates the original edges with message-passing from the derived 
line graph, allowing the inclusion of angular information. The edges of the line graph are further updated by 
its line graph, incorporating dihedral angles. These updates allow the model to learn a better representation 
of a crystal in latent space, which can be necessary for these larger datasets. This points to a current limitation 
for the PST. By using PDD encoding, we effectively limit opportunities for such updates to a single embedding 
representing both the atom’s properties and its structural behavior.

In Table 2 the time taken to train and test the PST and coGN are listed. Our model was trained for only 250 
epochs while coGN is trained for 800 epochs. While this accounts for a large portion of the disparity, the time 
taken to train each model per epoch is also faster for our model in all properties except the refractive index. A 
batch size of 32 is used for datasets containing less than 5, 000 samples. For exfoliation energy and phonon peak, 
PST takes 68.1% and 92.6% of the time of coGN per epoch. The larger batch size of coGN allows it to have greater 
GPU utilization and thus, better training efficiency. For properties with greater than 5, 000 samples, the batch 
size for both models is the same. For these properties, the training time per epoch is between 65− 70% of coGN.

The prediction time disparity is more pronounced. For band gap and formation energy, the PST makes predic-
tions approximately five times faster than coGN. Using nested line graphs introduces significant computational 
cost, but coGN is able to shrink the size of the graph by using the atoms in the asymmetric unit. The unit cell 
based approach was initially proposed by  CGCNN12 and used in several follow-up  works13,16,18,46, but the unit 
cell is inherently ambiguous and unnecessarily large in terms of the number of atoms needed to fully describe a 
crystal’s symmetry. The PDD at a collapse tolerance of exactly zero will have a number of rows less than or equal 
to the number of atoms in the asymmetric unit. At higher tolerances, this number will be reduced until reaching 
the number of unique chemical elements in the crystal.

Ablation study
In Table 3 we list the results for each “component” within the Periodic Set Transformer. In the row indicating 
PDD as the component, we train and test the model using only the structural information within the PDD. In the 
“Composition” component we pass the atomic encoding for the elements in the crystal and their concentration 
in the form of the PDD weights to the model without the PDD encoding. The model is run using k = 15 and a 
collapse tolerance of exactly zero.

By separating out each component of the model, we can interpret the importance of each to a particular 
property. Properties that experience a more significant decrease in performance when the PDD encoding is not 
used, can be ascribed to be more dependent on structural information. In all cases, the combination of both the 

Table 2.  Single-fold prediction (measured in seconds) and training time (measured in minutes) for the PST 
(using k = 15 and a collapse tolerance of 10−4 ) and  coGN22 on  Matbench43 Training and prediction was done 
using an Nvidia RTX 3090. Time does not include evaluation of the models on the validation sets or data pre-
processing times.

Property Samples

Training time (min.) Prediction time (s.)

PST coGN PST coGN

Formation Energy 132,752 159.1 772.1 2.79 15.25

Band Gap 106,113 126.6 602.1 2.38 11.88

Perovskites FE 18,928 13.41 62.37 0.31 2.93

Bulk Modulus 10,987 8.47 42.24 0.23 1.99

Shear Modulus 10,987 8.38 41.23 0.22 2.05

Refractive Index 4764 6.89 20.23 0.12 1.29

Phonon Peak 1265 1.81 6.25 0.04 0.87

Exfoliation Energy 636 0.89 4.18 0.02 0.79
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composition and PDD encoding results in significantly lower error rates. We can conclude that this encoding 
method is effective in combining the structural and compositional information of a crystal structure.

In Table 4 the effect of including the PDD weight in the attention mechanism described in Eq. (2) and in 
the pooling layer described by Eq. (4) is listed. A collapse tolerance of zero is used to remove any regularization 
effect (further described in the Supplemental Material).

The exclusion of weights from both the attention mechanism and pooling decreases accuracy significantly. 
Doing this removes all indications of multiplicity making discernment of crystals more difficult. The inclusion 
of the weights in the pooling layer is more impactful than when applied in the attention mechanism. The use of 
the weights in the pooling layer alone allows the model to perform better when the number of samples in the 
dataset is low. Datasets with fewer samples likely have less diversity amongst their crystals, making the need for 
recognizing the multiplicity of atoms less necessary.

Prediction of Jarvis-DFT properties
The Jarvis-DFT  dataset9 is a commonly used set of materials with  VASP48 calculated properties. The list of 
properties computed for the materials within the dataset is more extensive than that of the Materials Project. Its 
inclusion provides further evidence of the robustness of the model on an even wider variety of crystal properties.

The prediction MAE produced by PST and Matformer for 12 different properties from the dataset are included 
in Table 5. For Matformer, we retrain the model to ensure the training and testing sets are the same. We use 
the default parameters for the model defined by the authors’ codebase. We make one alteration to the training 
procedure; the number of epochs trained is reduced to 250. The number of epochs is the same as for our model.

The PST outperforms Matformer in nine of the twelve properties tested. In particular, properties for which 
data is sparse yield results that favor the PST significantly (i.e. exfoliation energy, eij and dij ). Jarvis-DFT has two 
band gap values that are computed for its crystals, one which uses the optimized Becke88 functional (OPT)49 
and the other uses the Tran-Blaha modified Becke Johnson potential (MBJ)50. The latter is more accurate (when 
compared to experimentally observed values) but also more computationally expensive. For this reason, there 
are significantly fewer computed values in the database. Interestingly, the PST produces a smaller error for the 
more accurate band gap values compared to Matformer, but a larger error for the less accurate OPT calculated 
values. A possible reason for this is the smaller sample size for which the PST has shown to be more effective. The 

Table 3.  Effect of PDD encoding on prediction MAE of the Materials Project crystals. Results are separated 
by input components where “Composition” uses only the mat2vec atomic  embeddings44 and “PDD” uses 
only the PDD. Errors in bold indicate the best performance and underlined errors indicate the second-best 
performance (lower is better ↓).

Property (units)

Component MAE ↓

Composition PDD PST

Band gap eV 0.273 0.596 0.212

Formation eV/atom 0.088 0.421 0.032

Shear modulus log10(GPa) 0.107 0.132 0.075

Bulk modulus log10(GPa) 0.080 0.115 0.055

Refractive index 0.352 0.451 0.292

Phonon peak 1/cm 50.39 74.71 27.75

Exfoliation meV/atom 46.91 39.35 31.55

Perovskites FE eV/cell 0.621 0.393 0.030

Table 4.  Effect of including the PDD weights as defined by Eqs. (2) and (4) on prediction MAE of the 
Materials Project crystals. Results for “No weights” use mean pooling and a normal softmax function. Errors 
in bold indicate the best performance and underlined errors indicate the second-best performance (lower is 
better ↓).

Property (units)

PDD weight inclusion MAE ↓

No weights Attention only Pooling only PST

Band gap eV 0.278 0.244 0.219 0.212

Formation eV/atom 0.045 0.037 0.035 0.032

Shear modulus log10(GPa) 0.080 0.077 0.076 0.075

Bulk modulus log10(GPa) 0.059 0.059 0.056 0.055

Refractive index 0.314 0.284 0.288 0.292

Phonon peak 1/cm 31.02 28.84 27.96 27.75

Exfoliation meV/atom 35.59 32.52 31.83 31.55

Perovskites FE eV/cell 0.031 0.030 0.031 0.030
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disparity in performance for formation and total energy can be attributed to Matformer’s architecture which uses 
a GNN that updated both node and edge embeddings. This additional level of expression is helpful particularly 
when the size of the data grows larger, though it does come with added computational cost.

Matformer has been shown to produce even better results than the previous state-of-the-art model ALIGNN13 
while taking roughly a third of the time to do both training and prediction. In Table 6, the training and predic-
tion time for each of the properties in the Jarvis-DFT dataset is reported for the PST and Matformer. For the 
training time, the validation and pre-processing times are not included. The prediction time listed is the number 
of seconds taken to make predictions on the test set.

In the closest training time comparison, the PST is still more than six times faster than Matformer. The train-
ing times for all properties fall between six and twelve times faster for the PST compared to Matformer. The 
performance increase can be attributed to several factors. Primarily, Matformer relies on a line graph (similar 
to  coGN22) in order to update edge embeddings. While this increases the information used and leads to richer 
learned embeddings, the size of line graphs is considerably larger than the graph they are derived from. This, in 
turn, incurs a higher computational cost.

The difference in prediction times is more significant. Exfoliation energy is predicted over fifty times faster 
using the PST than with Matformer. This is the closest the two models perform to each other. Notably, exfolia-
tion energy also has the fewest samples. For the bulk of the other properties, the speedup ranges between eighty 
and ninety times faster for the PST.

Table 5.  Prediction MAE on the properties of the Jarvis-DFT dataset using the PST and Matformer. Results 
for  Matformer14 are included for comparison. PST uses PDD encoding with k = 15 and a collapse tolerance 
of 10−4 . Bolded values indicate the best performance. The Mean-Absolute-Deviation (MAD) of the test set is 
included.

Property Units Samples Test MAD PST Matformer

Formation energy eV/atom 55,723 0.87 0.047 0.033

Band gap (OPT) eV 55,723 0.99 0.172 0.150

Total energy eV/atom 55,723 1.78 0.051 0.036

Ehull eV 55,371 1.14 0.052 0.072

Bulk modulus GPa 19,680 52.80 10.76 11.70

Shear modulus GPa 19,680 27.16 9.523 10.13

Band gap (MBJ) eV 18,172 1.79 0.289 0.304

Spillage – 11,377 0.52 0.367 0.373

SLME (%) – 9068 10.93 4.61 4.712

Max. piezo. stress coeff (eij) Cm−2 4799 0.26 0.127 0.243

Max. piezo. strain coeff (dij) CN−1 3347 24.57 13.09 18.03

Exfoliation energy meV/atom 813 62.63 30.91 55.04

Table 6.  Prediction (measured in seconds) and training time (measured in minutes) for the PST and 
 Matformer14 on Jarvis-DFT datasets. Training and prediction was done using an Nvidia RTX 3090. Time does 
not include evaluation of the models on the validation sets or data pre-processing times.

Property Samples

Training time (min.) Prediction time (s.)

PST Matformer PST Matformer

Formation energy 55,723 41.36 345.8 0.329 29.77

Band gap (OPT) 55,723 41.62 343.9 0.347 29.86

Total energy 55,723 41.65 349.1 0.349 29.79

Ehull 55,371 40.69 348.9 0.352 28.93

Bulk modulus 19,680 14.12 93.33 0.135 11.12

Shear modulus 19,680 14.45 93.70 0.123 10.69

Band gap (MBJ) 18,172 13.38 118.7 0.107 9.71

Spillage 11,377 5.74 70.8 0.066 6.01

SLME (%) 9068 4.62 58.75 0.055 4.82

Max. piezo. stress coeff (eij) 4799 3.52 23.15 0.029 2.57

Max. piezo. strain coeff (dij) 3347 2.44 15.38 0.026 1.79

Exfoliation energy 813 0.63 5.30 0.008 0.41
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Conclusion
The PDD is a generically complete and continuous invariant under isometry and permutations of points, hence 
independent of a unit cell. By using weights and creating a distribution, the PDD is able to represent an infinitely 
spanning object by its finite forms of behavior. Further, by collapsing rows in the PDD, the resulting representa-
tion can also be much smaller in comparison to the number of atoms within the unit cell, even when the cell is 
reduced.

The model is applied to the crystals of the Materials Project and Jarvis-DFT on a variety of material properties. 
Despite using less information in the model than more commonly employed graph-based models, the PST is able 
to produce results on par or even exceeding that of models like coGN and Matformer while taking significantly 
less time to train and make predictions.

Data availability
The data from the Materials Project is automatically downloaded through the code in the Github Repository. The 
Jarvis-DFT data can be downloaded through the Jarvis-Tools python package using the dft_3d_2021 
database. Examples are included in the documentation here: https:// pages. nist. gov/ jarvis/ datab ases/. The dataset 
for the crystals used in the lattice energy experiments is available at https:// eprin ts. soton. ac. uk/ 404749/.

Code availability
The code for the experiments is located at: https:// github. com/ jonat hanBa lasin gham/ Perio dic- set- trans former. 
The code contains what is necessary to re-run the experiments done in “Prediction of Jarvis-DFT properties” 
and “Prediction of materials project properties” sections. It also contains the source code necessary to recreate 
the Figures included in the Supplemental Material. Details of how these plots are created are included in the 
Supplementary Material. The individual predictions for the Materials Project data are contained in JSON format 
within the repository. Proofs for the properties of the PDD mentioned  in51, Problem 1.1 are included in the 
original  paper6. More details on the actual implementation of the model, data pre-processing, and training are 
contained in Supplementary Material.
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