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Multi‑level optimal energy 
management strategy for a grid 
tied microgrid considering 
uncertainty in weather conditions 
and load
H. E. Keshta 1, E. G. Hassaballah 2,3*, A. A. Ali 2 & K. M. Abdel‑Latif 2

Microgrids require efficient energy management systems to optimize the operation of microgrid 
sources and achieve economic efficiency. Bi-level energy management model is proposed in this paper 
to minimize the operational cost of a grid-tied microgrid under load variations and uncertainties 
in renewable sources while satisfying the various technical constraints. The first level is day ahead 
scheduling of generation units based on day ahead forecasting of renewable energy sources and 
load demand. In this paper, a recent meta-heuristic algorithm called Coronavirus Herd Immunity 
Optimizer (CHIO) is used to solve the problem of day-ahead scheduling of batteries, which is a 
complex constrained non-linear optimization problem, while the Lagrange multiplier method is 
used to determine the set-point of the Diesel Generator (DG). The second level of the proposed EMS 
is rescheduling and updating the set-points of sources in real-time according to the actual solar 
irradiance, wind speed, load, and grid tariff. In this paper, a novel real-time strategy is proposed to 
keep the economic operation during real-time under uncertainties. The obtained results show that the 
CHIO-based bi-level EMS demonstrates an optimal economic operation for a grid-connected microgrid 
in real-time when there are uncertainties in weather, utility tariffs, and load forecasts.

Microgrid (MG) is a small-scale electrical grid that consist of Distributed Energy Resources (DERs) such as 
Photovoltaics (PVs), Wind Turbines (WTs), and Diesel Generators (DGs), energy storage devices like batter-
ies and super capacitors, and loads1. The operation of the MG is divided into two modes: islanded mode and 
grid-connected mode2. In grid connected mode, the MG keeps power balance between supply and demand by 
exchanging power with the main grid, buying power from or selling power to the main grid. MGs are more 
efficient than conventional centralized thermal power plants because they can reduce power loss and voltage 
drop associated with long-distance transmission, and carbon emissions resulting from conventional power 
plants. Furthermore, the MG can achieve high energy independence because it can be operated independently 
of existing power systems3.

An effective energy management strategy (EMS) is necessary for a microgrid system to operate economically4. 
It should schedule DERs, storage devices, power exchange with the main grid, and controllable loads optimally 
based on historical and current data while meeting various technical constraints5. The EMS manages the flow 
of power within the MG through providing reference profiles for the MG’s controllers based on predetermined 
objectives6. The presented paper introduces an efficient strategy for energy management and minimize the daily 
operating cost of a grid-connected MG based on two levels: optimal day-ahead scheduling based on day ahead 
forecasting and real-time scheduling.

Day-ahead Predictions of load, market prices of electricity, and renewable energy sources (RESs) are used in 
energy management systems to schedule the output power of each generation unit in the next day optimally7. 
However, the inaccurate predictions of RESs, loads, and market prices may lead to high uncertainties in sources 
scheduling during real-time. For accurate predictions, day-ahead energy management methods that take into 
account statistical data are typically used8,9. Support vector machine regression based load forecasting model was 
applied in10. In11, short term load demand forecasting based on five families of regression models was discussed 
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using MATLAB Regression Toolbox. In this paper, artificial neural network (ANN) based day-ahead forecast-
ing is proposed to accurately predict future variables such as solar irradiance, wind speed and load demand. 
It is compared with the forecasting techniques that are based on support vector machine and conventional 
regression to verify its performance. The real-time EMS is required to deal with various uncertainties caused by 
prediction errors of renewable generation, load, and market price. The real-time scheduling is used not only to 
reduce overall operating costs but also to guarantee the stability of the microgrid12. However, a large number of 
earlier studies on microgrid energy management neglect to account for real-time economic dispatch. In5, day-
ahead scheduling of microgrid units using Mixed-Integer Linear Programming (MILP) was presented, ignor-
ing forecasts of load, weather, and grid tariff uncertainties. Day ahead scheduling of AC/DC hybrid microgrid 
was presented in13 taking into account only grid tariff uncertainties while neglecting real-time scheduling. The 
economic rescheduling of battery set-points during the real-time operation of networked multi-microgrids was 
not taken into consideration in14. Furthermore, it was neglected in15–17 to modify the operating points of MG 
sources in order to maintain economic operation in the face of weather-related and load-demand disturbances. A 
day-ahead scheduling approach based on a stochastic optimization model was presented in18,19, but it was unable 
to achieve real-time economic operation since the MG sources’ set-points were not updated in accordance with 
the actual system conditions during real-time operation. In20, a day-ahead scheduling using an enhanced grey 
wolf optimizer for a grid-connected microgrid was proposed; however, real-time operation uncertainties were 
not taken into account. The online EMS was used in21 for grid-tied microgrids establishes the optimal operating 
points for sources at each hour independently of the other hours of the day. As a result, it might not offer the 
best operation when taking into account the overall cost of daily operation. Furthermore, the set-points of the 
sources in a grid-connected MG were calculated at daily intervals22. Although some research has been conducted 
on the energy management of microgrids, there is still a research gap for the energy management of microgrids 
during real-time operation. This paper presents a novel real-time energy management approach based on ANN to 
update the operating points of the batteries and DG in the MG during real-time operation using actual weather, 
grid tariff, and load demand in order to achieve the economic operation under uncertainties.

Many optimization algorithms are presented in the literature to improve optimal control approaches for 
battery energy. In recent times, a number of advanced nature-inspired meta-heuristic algorithms have been 
proposed to effectively handle and solve complicated micro-grid optimization problems, exceeding the capa-
bilities of traditional deterministic methods. The dolphin echolocation algorithm (DEA) was applied in23 for 
the scheduling of RESs in the micro-grid. In24, an optimal scheduling of the power generation in the micro-
grid including some RESs, was provided based on the memory based genetic algorithm (MGA). The modified 
particle swarm optimization algorithm was applied in25 for scheduling renewable generation in a micro-grid 
under load uncertainty. A multi-objective scheduling problem of MGs was solved utilizing the teaching learning 
based optimization algorithm26. Coronavirus herd immunity optimizer (CHIO) is a state-of-the-art optimiza-
tion algorithm that is superior to other metaheuristic techniques in finding the global minimum value of 24 
standard benchmark functions27. In this paper, the optimization problem of the day-ahead scheduling problem 
is solved by using CHIO.

The major contributions of the paper are: (i) Introducing an efficient bi-level EMS that includes day-ahead 
scheduling and real-time scheduling, (ii) Proposing an artificial intelligence based forecasting model to predict 
the load, solar irradiance and wind speed of the next day. The performance of the proposed artificial intelligence 
based approach is also compared with forecasting techniques that are based on support vector machine and the 
regression based approach (a traditional technique) to evaluate its effectiveness, (iii) presenting an ANN based 
real-time EMS that reschedules and updates the optimal set-setpoints of sources and batteries within the MG to 
attain the economic operation under the real-time uncertainty of weather conditions, load demand and electricity 
tariff, (iv) Applying an advanced meta-heuristic technique, CHIO, to solve the day-ahead scheduling problem.

The rest of the paper is ordered as: In the subsequent section, the system under investigation is described, 
and the modeling of its components is presented. The suggested bi-level EMS and the used recent optimization 
algorithm (CHIO) are introduced in “Bi-level energy management strategy” section. “Simulation results” sec-
tion provides an analysis and discussion of the simulation results obtained. Finally, the last section presents the 
conclusion derived from the results.

The proposed microgrid structure
As shown in Fig. 1, the grid-tied microgrid system under consideration consists of a 2000 kW solar power plant, 
a 5000 kW wind farm, a 2000 kW DG, and 4000 kWh lithium-ion batteries. The solar power plant has four 
thousand 500 W PV modules, and the wind farm has ten 500 kW wind turbines. An inverter connects the DC 
output of PV to an AC bus. The WT is connected to the AC bus through an AC/AC converter, while the BESS is 
connected through a bidirectional converter. Each MG unit operates in its own manner. The battery, for example, 
has two operating modes: charging and discharging, whereas the WT or PV source can operate in either limiting 
power or maximum power point tracking mode. As a result, each source in the microgrid has a local controller. 
The central controller is responsible for executing the EMS of the MG, where it communicates with the various 
sources and loads within the MG and makes decisions that result in the most economical operation possible. 
The input variables of the central controller are solar irradiance, wind speed, grid tariff, and load in real time, 
as well as the operating state of sources and load connected to the MG. The central controller sends commands 
directly to the local controller, which in turn controls the converter interfaced source to maintain its power at a 
predetermined level. The proposed EMS in this paper will be discussed in greater detail in the following section. 
The system parameters are listed in the appendix.
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An important first step in energy management is precise modelling, because the optimization algorithm uses 
it in order to determine the optimal dispatch decisions. Distributed energy sources in the MG and their related 
constraints are modelled in the following subsections.

PV model
The generated power by photovoltaic array at time t is a function of the incident solar radiation (Gin), and the 
cell temperature (TC) at time t as shown in Eq. (1)28.

where: AP is the area of PV modules (m2), NPV is the number of PV modules in the PV array, ηm represents Mod-
ule efficiency and ηconvS represents the DC/AC converter efficiency of solar, and Tr is the reference temperature 
(Tr = 25 ℃).

WT model
The output power of a wind farm, which consists of Nw wind turbines at any given time t (PWT(t)), is proportional 
to the prevailing wind speed (Vt) and can be calculated, as shown in Eq. (2). The wind speed is measured over a 
24-h period, taking into account the minimum wind speed required to start the turbine (cut-in wind speed) and 
the maximum wind speed required to stop the turbine from running (cut-out wind speed)28:

where: Vr, Pnom, ηconvW , Vco and Vci refer to the rated wind speed, rated power of the WT, the AC/AC converter 
efficiency, cut-out wind speed and cut-in wind speed, respectively. a and b are wind coefficients and can be 
determined as shown in the following equations.

(1)PPV(t) = AP ×NPV × Gin(t)× (1− α(TC(t)− Tr))× ηm × ηconvS

(2)PWT(t) = NW × ηconvW ×







0 Vco < Vt < Vci

a ∗ (Vt)
3 − b ∗ Pnom Vci < Vt < Vr

Pnom Vr < Vt < Vco

(3)a =
Pnom

(Vr)
3 − (Vci)

3

(4)b =
(Vci)

3

(Vr)
3 − (Vci)

3

Figure 1.   The scheme of the system under study.
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DG model
The operational cost of DG at time t (CDG (t)) can be expressed as a quadratic function of its output power as 
follows29:

where α DG, β DG, and γDG are the fuel cost coefficients of DG.
The power delivered by the DG at time t (PDG(t)) shall be limited between minimum PDG,min and maximum 

PDG,max , as shown in the following equation:

Battery energy storage system (BESS) model
The provided power by battery at time t (PBESS(t)) shall be bounded between its minimum and maximum limits as:

The stored energy in the battery at time t (E(t)) and the corresponding state of charge (SOC(t)) can be com-
puted as follows30:

where: ηch and ηdis represent the battery efficiency during charging and discharging mode, respectively. �T is 
sampling time (1 h) and Bcapacity represents the battery capacity in kWh.

The inequality in Eq. (10) ensures that the SOC of the battery is within the minimum and maximum limits 
of the SOC.

The operating cost of BESS at time t (CBESS(t)), considering the degradation cost due to fast charging and 
discharging, can be calculated as follows31:

where PBESS (t) is the net power produced by the battery (PBESS,dis – PBESS,ch), CCbat is the capital cost of the battery, 
Ncycle is the number of battery life cycles and Cdeg is a factor to penalize the high stress during the charging and 
discharging process that causes the batteries to deteriorate.

Main grid model
The tie-line exchange power must remain within the allowable limits ( Pmin

grid and Pmax
grid  ) as follows:

When Pgrid is positive or negative, it indicates that the MG is importing or exporting active power to or from 
the main grid.

The total active power balance equation in the MG is calculated as follows:

where PL is the predicted load at time t.

Bi‑level energy management strategy
The proposed EMS aims to achieve the optimal power sharing between DG, BESS and the grid to meet the system 
load demand and achieve MG economic dispatch. The objective function of the suggested EMS is to minimize 
the microgrid’s daily operating cost (COP_MG), and it is formulated as follows:

where CMG-buy and CMG-sell are the MG purchase and sale prices ($) of electricity from and to the main electrical 
grid, respectively, and can be computed as follows:

(5)CDG(t) =
(

αDG + βDG × PDG(t)+ γDG × P2DG(t)
)

(6)Pmin
DG ≤ PDG(t) ≤ Pmax

DG

(7)−Pmax
BESS ≤ PBESS(t) ≤ Pmax

BESS

(8)E(t) =

{

E(t− 1)− �TXPBESS(t)
ηdis

, PBESS(t) > 0

E(t− 1)−�T×ηch × PBESS(t), PBESS(t) ≤ 0

(9)SOC(t) =
E(t)

BCapacity

(10)SOCmin ≤ SOC(t) ≤ SOCmax

(11)CBESS(t) =
CCbatxηchx�TxPBESS,ch(t)

2×Ncycle
+

CCbat ×�TxPBESS,dis(t)

ηdisx2×Ncycle
+ Cdeg × PBESS(t)

(12)Pmin
grid ≤ Pgrid(t) ≤ Pmax

grid

(13)Pgrid(t) = PL(t)−PPV(t)−PWT(t)− PBESS(t) − PDG(t)

(14)Min COP_MG =

24
∑

t=1

(CMG-buy + CMG-sell + CBESS + CDG)

(15)CMG-buy = Cgrid-buy(t)× Pgrid(t), Pgrid(t) > 0
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The buying and selling energy tariffs,Cgrid-buy and Cgrid-sell, are illustrated in Table 1.
The proposed bi-level EMS operates on two levels (day-ahead scheduling and real-time scheduling), with 

the aim of meeting the load demand of MG at the lowest possible operating cost based on predicted data for the 
next 24 h and real data. The flow chart of the proposed EMS is shown in Fig. 2.

Level I: Day‑ahead scheduling
This level of EMS is divided into two stages; the first stage is day-ahead forecasting of solar irradiance, wind 
speed, and load demand, while the other stage is day-ahead unit commitment.

Day‑ahead forecasting (stage I)
Forecasting is a technique that makes predictions about the future based on past performance and current pat-
terns from a number of inputs. Short term forecasting, day ahead forecasting, for the load and renewable energy 
sources is applied in this paper. Accurate prediction of renewable energy sources and load helps in providing an 
optimum energy management system. Artificial neural network (ANN) is applied in this paper for forecasting 
the load, solar irradiance and wind speed in the next day based on historical data. Also, a comparative perfor-
mance study between three different forecasting models, the proposed ANN based forecasting, support vector 
machine based forecasting and the traditional technique known as regression-based forecasting, is investigated 
in this paper.

Regression based approach.  Regression is one of the most widely used statistical techniques for finding a rela-
tionship between two or more variables32.

The model of load forecasting based on regression can be summarized in the following steps:

Step 1:	�  Input data: There are three types of datasets. The first dataset is historical load demand data such as 
D-1 load (the load of the previous day at the same hour), D-7 load (the load of the previous week at 
the same day and the same hour), and H-1 Load (the load of the previous hour). The second dataset 
is historical meteorological data, such as temperature (dry bulb temperature and dew point tempera-
ture). The third dataset is time indicators. Time must be taken into account because its impact on the 

(16)CMG-sell = Cgrid-sell(t)× Pgrid(t), Pgrid(t) < 0

Table 1.   Purchasing and selling electricity tariffs6.

Type Time Value

Off-peak purchasing tariff From 12 to 7 a.m. 0.06 $/kWh

Mid-peak purchasing tariff From 7 a.m. to 4 p.m. 0.144 $/kWh

Peak purchasing tariff From 4 to 8 p.m. 0.252 $/kWh

Mid-peak purchasing tariff From 8 p.m. to 12 a.m. 0.144 $/kWh

Fixed selling tariff All day 0.0582 $/kWh

Figure 2.   The proposed energy management strategy.
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customer’s load demand is greatest. Several time markers were used in this study, including the hour, 
the day, and the holiday indicator (1 for a working day and 0 for a holiday).

Step 2:	�  The regression models will be trained: A model is initially trained using a training dataset, and the 
results are then examined by changing the model’s parameters until the most effective parameters are 
found.

Step 3:	�  The regression models will be tested: The trained model is then tested using testing datasets, and the 
performance is assessed using a variety of statistical error indices and evaluation plots after the results 
are satisfied. The load forecasting model’s control parameters are optimized using testing data, which 
is hidden from the trained model and used to assess and improve the performance of the developed 
model.

Step 4:	�  The forecast load is compared to the actual measured load, and statistical error matrices are used to 
measure how accurate the forecast is.

Support vector machine (SVM).  Support Vector Machines (SVM) are a type of machine learning technique 
that was developed to address non-linear classification problems. Support vector regression (SVR), the most 
popular type of SVM, is specifically made to address regression issues. The main objective of SVR is to create 
a model that uses known inputs to predict unknown outputs33. The input data for Support Vector Machines 
(SVM) of load forecasting is 7 variables: the hour, the day, the holiday indicator (1 for a working day and 0 for a 
holiday), temperature (dry bulb temperature & dew point temperature), the load of the previous day at the same 
hour, the load of the previous week at the same day and the same hour and the load of the previous hour. The 
data is divided into sets for training and validation, and then the SVM regression technique is used to train the 
model. To maximize the accuracy and minimize the mean error, various kernel models are trained using a range 
of cost, gamma, and Mean Square Error (MSE) values. The test data set is used to evaluate the trained model, and 
then the trained model is tested with random data to evaluate its performance.

Artificial intelligence‑based techniques (artificial neural networks (ANN)).  ANN, a type of machine learning, 
is non-linear mathematical processing network that mimics the human brain34. The used neural network for 
load forecasting model consists of an input layer that has 7 neurons, one hidden layer has 100 neurons, and an 
output layer has one neuron. The input data for the neural network of load forecasting is 7 variables: the hour, the 
day, the holiday indicator (1 for a working day and 0 for a holiday), temperature (dry bulb temperature and dew 
point temperature), D-1 load (the load of the previous day at the same hour), D-7 load (the load of the previous 
week at the same day and the same hour) and H-1 Load (the load of the previous hour) as is clear from Fig. 3a. 
The output from the neural network is the predicted load in the next day. The input data for ANN based solar 
irradiance forecasting model is 6 variables: time (hour), date, temperature, relative humidity, D-1 solar irradi-
ance (the solar irradiance of the previous day at the same hour) and D-365 solar irradiance (the solar irradiance 
of the previous year at the same date and hour) as is clear from Fig. 3b. The output from the neural network is 
the predicted solar irradiance in the next day. Also, the input data for ANN based wind speed forecasting model 
is 6 variables: time (hour), date, temperature, relative humidity, D-1 wind speed (the wind speed of the previous 
day at the same hour and D-365 wind speed (the wind speed of the previous year at the same date and hour) as 
is clear from Fig. 3c. The output from the neural network is the predicted wind speed in the next day. The neural 
network is trained by minimizing the cost function, which is typically a quadratic function of output error.

To verify the performance of ANN based forecasting model, it is compared with the forecasting techniques 
that are based on support vector machine (SVM) and conventional regression.

In this paper, two performance indices, mean absolute percentage error (MAPE) and root mean square error 
(RMSE), are used to evaluate the forecasting accuracy and can be calculated as:

(17)MAPE =

(

|Forecast value− true value|

true value

)

× 100

Figure 3.   ANN based forecasting models.
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Lower values for MAPE and RMSE indicate more accurate predictions. The true value of solar irradiance 
is very small or zero at night, and thus the MAPE for solar irradiance will be infinity or close to infinity35. As a 
result, the MAPE isn’t calculated for the solar irradiance forecast. The microgrid proposed by this study is located 
in the Ras Gharib, Egypt. The historical data is used to train and test the forecasting models. The historical data 
of weather conditions such as temperature, solar irradiance and wind speed is taken from36, while the historical 
data of load is taken from37.

Day‑ahead unit commitment (stage II)
The power references of sources in the MG are scheduled for the next day based on the day-ahead forecasting 
of load and output power from PV and WT. The optimal set-points of batteries in the microgrid are obtained by 
utilizing an advanced meta-heuristic algorithm called CHIO, while the optimal set-point of the DG is determined 
by using Lagrange multiplier.

CHIO is a nature-inspired human-based optimization algorithm. The inspiration of CHIO is based on the 
idea of herd immunity and was developed to combat the COVID-19 coronavirus pandemic. The degree to which 
infected people come into direct contact with other members of society determines how quickly the infection 
spreads. Social distance is advised by health professionals as a way to safeguard other members of society from 
the disease. When the majority of the population is immune, a population is said to have reached a state of 
herd immunity, which prevents the spread of disease. These ideas are modelled using ideas from optimization. 
CHIO imitates both the ideas of social distance and herd immunity. CHIO has two control parameters and four 
algorithmic parameters. The two main control parameters are the basic reproduction rate (BRr), which regulates 
the rate at which the virus pandemic spreads from person to person, and the maximum age (Max_age) at which 
a patient can be infected are the control parameters. The main advantages of the CHIO algorithm are having 
few parameters to be set and its ability to cover the entire search space and escape from local optima by utilizing 
stochastic-based components, while considering the exploration–exploitation trade-off.

The mathematical model of the CHIO can be summarized in the following steps27:

Step 1:	� Set the parameters for both the optimization problem and the algorithm for optimization.
Step 2:	� create the initial herd immunity population.
Step 3:	�  According to the percentage of BRr, coronavirus herd immunity has evolved as follows:

	� If r ≥ BRr (where r produces a number generator between 0 and 1)

	� The gene stays the same and doesn’t change.

where random is a number between 0 and 1 and k is the iteration number.

	� else if r < 1
3BRr   (infected)

	� The gene is updated using the following equation:

where gci  is picked at random from any infected situation.

	� else if r < 2
3BRr  (susceptible)

where gmi  is chosen at random from any susceptible situation.

	� else (immune)

where gVi  is the best immune case to date.

	� end
Step 4:	�  If the generated case has a higher fitness value than the existing one, the herd immunity population 

matrix (HIM) is updated by replacing it.
Step 5:	�  The infected case would die if its immunity could not increase for a set number of rounds, as indicated 

by the parameter Max_age.
Step 6:	�  If the termination condition is met, stop after examining the stopping criterion; otherwise, move on 

to step 3.

(18)RMSE =

√

∑24
1 (Forecast value− true value)2

24

(19)g
j
i (k+ 1) = g

j
i (k)

(20)g
j
i (k+ 1) = g

j
i (k)+ rand × (g

j
i (k)− gci (k))

(21)g
j
i (k + 1) = g(k)+ rand × (g

j
i (k)− gmi (k))

(22)g
j
i(k+ 1) = g

j
i(k)+ r × (g

j
i(k)− gVi (k))
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The flowchart that describes the concise summary of the key CHIO steps is depicted in Fig. 4.

Level II: Real‑time scheduling
There is always a percentage error and uncertainty in forecasting of weather conditions and load. The uncertainty 
of wind speed, solar irradiance, and electricity tariff in this paper is not more than 10%. The microgrid load is 
dependent on user behavior, whereby electrical devices are operated randomly and unplanned throughout the 
day. As a result, there may be a significant error between the forecasted and actual demand load, with an actual 
demand load uncertainty of up to 20%. A real-time EMS that reschedules the optimal operating points of sources 
during real-time operation is suggested to keep the system balance and cope with the uncertainties of renewable 
sources, electricity tariff, and load demand in order to achieve the economic operation in real-time.

ANN is utilized in this stage to find the new optimal set-points of batteries in the microgrid, while the 
Lagrange multiplier method is used to determine the new set-point of the DG.

The new set-point of diesel generator ( PnewDG  ) is calculated by using the Lagrange multiplier method as shown 
in Eq. (23).

∆P is the mismatch of power balance can be calculated as shown in Eq. (24), if it is power balance, the operat-
ing points of batteries and grid are kept constant.

(23)

(

1

1− dPlosses
dPDG

)

dCDG−OP

dPDG
=

d(CMG−buy(t)+ CMG−sell(t))

dPgrid(t)

(24)�P(t) = PactualL (t)− PnewDG (t)− PactualPV (t)− PactualWT (t)− PBESS(t)− Pgrid(t)

Figure 4.   Flowchart of CHIO.
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If ∆P is positive, it means the power demand is greater than the power output, so the set-point of the battery 
shall be increased in case of discharging or decreased in case of charging. Else if ∆P is negative, power demand 
is less than power output, so the set-point of the battery shall be decreased in case of discharging or increased in 
case of charging. The artificial neural network (ANN) is used to find ∆PBESS(t) which is determined by the input 
data of the ANN, the ANN for operation is not as complicated as the conventional EMS. The input data for the 
neural network is 7 variables: ∆PPV, ∆PWT, ∆Pgrid, ∆PDG, ∆PL, �Cgrid-buy and ∆E as shown in Fig. 5.

The ∆PPV (t), ∆PWT (t), ∆PDG (t), ∆Pgrid(t), ∆PL (t), ∆Cgrid-buy (t), and ∆E (t) can be calculated as follows:

where: PactualPV  , PactualWT  , PnewDG , Pnewgrid , PactualL  , Cactual
grid−buy and Enew are the actual output power of the PV, actual output 

power of the WT, new setpoint of DG, new setpoint of main grid, actual load demand, actual purchased electricity 
cost, and the new energy stored in the battery, respectively.

The value of ∆PBESS(t) must be subject to the following constraints:

where, Emin and Emax are the allowable minimum and maximum stored energy in the battery, respectively.
The new set-point of battery ( PnewBESS (t)) is calculated as shown in Eq. (34).

The new total active power balance equation in the MG is calculated as follows:

(25)�PPV(t) = PactualPV (t)− PPV(t)

(26)�PWT(t) = PactualWT (t)− PWT(t)

(27)�PDG(t) = PnewDG (t)− PDG(t)

(28)�Pgrid(t) = Pnewgrid(t)− Pgrid(t)

(29)�PL(t) = PactualL (t)− PL(t)

(30)�Cgrid-buy (t) = Cactual
grid-buy(t)− Cgrid-buy (t)

(31)�E (t) = Enew(t+ 1)− E(t)

(32)−PBESS,max ≤ (PBESS(t)+�PBESS(t)) ≤ PBESS,max

(33)Emin < (E(t+ 1) + (�T ×�PBESS(t))) < Emax

(34)PnewBESS(t) = PBESS(t) + �PBESS(t)

(35)Pnewgrid(t) = PactualL (t)− PnewDG (t)− PactualPV (t)− PactualWT (t)− PnewBESS(t)

Figure 5.   Structure of a neural network for real-time energy management system.
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The flow chart of the proposed real-time energy management system for economic dispatch during real-time 
can be summarized in Fig. 6.

Simulation results
In this section, the performance of the proposed bi-level EMS is investigated and evaluated.

Day‑ahead scheduling (Level I) results
The day-ahead scheduling of the MG’s generation units is determined by the day-ahead forecasting of weather 
and load demand.

Day‑ahead forecasting (stage I)
For the regression based forecasting, the MAPE of load and wind speed forecasting is 3.26% and 3.086%, respec-
tively. While for the SVM based forecasting, the MAPE is 1.302% and 2.868% for load and wind speed forecast-
ing, respectively. But for the ANN based forecasting, the MAPE is 1.08% and 1.025% for load and wind speed 
forecasting, respectively. The RMSE of solar irradiance is 13.66 W/m2, 8.77 W/m2 and 3.9 W/m2 for regression, 
SVM and ANN based forecasting, respectively. ANN provides less forecasting error of load, wind speed and 
solar irradiance as compared to the forecasting techniques that are based on Support Vector Machine (SVM) 
and traditional technique, regression method, as shown in Fig. 7a–c, respectively.

It can be concluded that, ANN based short term forecasting is more accurate than regression based approach 
and SVM based approach as far as MAPE and RMSE are considered as shown in Table 2.

Day‑ahead unit commitment (stage II)
At 12 midnight, the initial SOC of the batteries is assumed to be 50%. The optimal set-points of MG sources 
obtained by CHIO for the day ahead are shown in Fig. 8a. Figure 8b depicts the optimal day-ahead set-points of 
batteries and their SOC as determined by CHIO. The power exchanged with the main grid to maintain system 
balance is shown in Fig. 8c, where a positive indicates that the MG imports power from the main grid and a 
negative indicates that the MG exports power to the main grid.

At 2 a.m., the load at MG (2955.8 kW) requires more power than can be generated by PV (0 kW), WT (1433.2 
kW), and DG (400 kW), so the battery is expected to operate in discharging mode and provide power to cover 
the rest load for the economic dispatch at 2 a.m. However, for CHIO-based day-ahead scheduling, the battery 
will be operated in idle mode, as shown in Fig. 8b. Although it may be optimum to discharge the battery to cover 
the excess load at 2 a.m., the optimization algorithm prevents battery discharging and imports more power from 
the main grid, as battery discharging is not the optimal option when considering the daily operating cost. At 12 
p.m., the electricity generated by PV (1858.8 Kw), WT (582.5 Kw), and DG (400 Kw) is less than the load at MG 
(3514 Kw). While the battery is in discharging mode, it will produce roughly 590.4 kW, or 59.04% of its rated 

Figure 6.   Flow chart of the proposed real-time energy management system.
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Figure 7.   Forecast error of load, wind speed and solar irradiance.

Table 2.   Comparison of performance short term forecasting methods.

Regression based approach Support vector machine (SVM)
Artificial neural networks 
(ANN)

MAPE of load (%) 3.26 1.302 1.08

RMSE (kW) of load 117.87 48.57 43.97

RMSE (W/m2) of solar irradiance 13.66 8.77 3.9

MAPE of wind speed (%) 3.086 2.868 1.025

RMSE (m/s) of wind speed 0.318 0.228 0.098

Figure 8.   Results obtained by CHIO.
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power. According to CHIO, as shown in Fig. 8c, the MG imports roughly 82.3 kW from the main grid to cover 
the remaining MG load. At 9 p.m., the electricity generated by PV (0 Kw), WT (198.4 Kw), and DG (1212.7 Kw) 
is less than the load at MG (3549.5 Kw). While the battery is in charging mode and draws about 35.4 kW which 
represents 3.54% of its rated power and its SOC reaches about 43.2% after 1 h as shown in Fig. 8b, the MG imports 
roughly 2173.8 kW from the main grid to cover the remaining MG load. For the CHIO, the battery will run for 
approximately 11 h in charging mode, 5 h in discharging mode, and 8 h in idle mode. The battery SOC is reset 
by the algorithm to 50% at midnight on the last day in order to maintain the initial SOC and allow for charging 
or discharging at the start of the day. Figure 8d displays the energy consumption cost of the MG due to CHIO 
for each hour of the next day. The total cost of MG operation in the next 24-h obtained by CHIO will be $ 4137.

Real‑time scheduling (level II) results
This scenario involves some deviations from the expected values of solar irradiance, wind speed, grid tariff, and 
load in order to assess how well the suggested energy management strategy performs in real-time under uncertain 
conditions to achieve economic operation while maintaining system balance. The solar irradiance, wind speed, 
load, and grid tariff uncertainties and actual data are shown in Fig. 9a–d. The solar irradiance, wind speed, and 
load forecasted are generated from the day-ahead forecasting stage based on ANN models, but the forecasted 
grid tariff is from Table 1. The actual data is generated by adding bounded uncertainties that may occur dur-
ing real time on the forecasted data. Figure 10 displays the results of the real-time conventional and economic 
operations. Figure 10a displays the optimal set-points of MG sources for real time conventional operation while 
Fig. 10b displays the updated optimal set-points for the sources for real time economic operation. Figure 10c 
displays the optimal set-points for batteries along with their SOC in real-time conventional operation while 
Fig. 10d displays the new optimal set-points for batteries along with their SOC in real-time economic opera-
tion. Figure 10e displays the power exchanged with the main grid during real-time. Figure 10f displays the MG 
operating cost for each hour of the day. In conventional real-time operation, the grid maintains system balance 
and does not update the set-points of batteries and DG in real-time. On the other hand, to achieve real-time 
economic operation, the DG and battery set-points will be rescheduled in real-time.

At 3 a.m., the output power from WT is increased by 121.4 kW about the prescheduled value, while the 
actual load demand is kept constant. For real-time economic operation, the operating points of batteries and 
grid are updated to -23.4 kW(charging mode) and 705.4 kW, respectively, to cover the load with less cost during 
real-time operation, while for real-time conventional operation, the set-points of DG and batteries are kept at 
the values obtained from day-ahead scheduling and the power drawn from the main grid decreased to 682 kW, 
as shown in Table 3. At 11 a.m, the actual wind speed is 6 m/s (4.45% less than the expected value), the actual 
solar irradiance is 940 W/m2 (0.78% less than the expected value), and the actual load demand is 3195.6 kW 
(about 9.92% less than the expected value). As a result, the power generated from WT has decreased from 667.4 
to 576.3 kW, and the power provided by PV has decreased from 1782.5 to 1730.8 kW. For real-time economic 
operation, the operating points of batteries and grid are updated to 45.6 kW (Discharging mode) and 442.9 kW, 
respectively, to achieve economic operation under uncertainties in solar irradiance, wind speed, and load. But 
for real-time conventional operation, the power drawn from the main grid is decreased to 17 kW to keep the 
system balanced, as shown in Table 3.

Figure 9.   The forecasted and actual data of solar irradiance, wind speed, load demand and grid tariff.
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Figure 10.   Results obtained by real-time conventional and economic operations.

Table 3.   Optimal set-points of sources, SOC of battery and exchanged power with the grid at 3 a.m., 11 a.m., 
5 p.m. and 11 p.m.

EMS level Time (h) PPV (kW) PWT (kW) PDG (kW) PBESS (kW) Pgrid (kW) PL (kW) SOC Cost ($)

Day-ahead sched-
uling

3 a.m.:4 a.m. 0 1727.6 400 0 803.4 2931 0.5:0. 5

4137

11 a.m.:12 p.m. 1782.5 667.4 400 471.5 (discharging 
mode) 226.3 3547.7 0.98:0.849

5 p.m.:6 p.m. 775.5 1299 2000 − 129.4 (charging 
mode) 0 3945.1 0.95:0.98

11 p.m.:12 a.m. 0 1962.2 1212.7 − 294.8 (charging 
mode) 88.1 2968.2 0.433 :0.5

Real-time conven-
tional operation

3 a.m. :4 a.m. 0 1849 400 0 682 2931 0.5:0. 5

4266.2

11 a.m.:12 p.m. 1730.8 576.3 400 471.5 (discharging 
mode) 17 3195.6 0.98:0.849

5 p.m.: 6 p.m. 747.1 1319.9 2000 − 129.4 (charging 
mode) 212.4 4150 0.95:0.98

11 p.m.:12 a.m. 0 2122.4 1212.7 − 294.8 (charging 
mode) − 184.6 2855.7 0.433 :0.5

Real-time eco-
nomic operation

3 a.m.:4 a.m. 0 1849 400 − 23.4 (charging 
mode) 705.4 2931 0.832 :0.838

4118.7
11 a.m.:12 p.m. 1730.8 576.3 400 45.6 (discharging 

mode) 442.9 3195.6 0.98:0.967

5 p.m.:6 p.m. 747.1 1319.9 2000 65.6 (discharging 
mode) 17.4 4150 0.773:0.755

11 p.m.:12 a.m. 0 2122.4 1581.8 − 1000 (charging 
mode) 151.5 2855.7 0.275:0.5
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At 5 p.m., the output power from WT is increased by 20.9 kW about the prescheduled value, while the actual 
load demand is 4150 kW (about 5.19% more than the expected value). For real-time economic operation, the 
operating points of batteries and grid are updated to 65.6 kW (discharging mode) and 17.4 kW, respectively, 
to cover the load with less cost during real-time operation, while for real-time conventional operation, the set-
points of DG and batteries are kept at the values obtained from day-ahead scheduling and the imported power 
from the main grid is increased to 212.4 kW, as shown in Table 3.

At 11 p.m., the actual wind speed is 9.1 m/s (2.59% more than the expected value), the grid tariff is 0.158 
$/kWh (9.7% more than the expected value) and the actual load demand is 2855.7 kW (about 3.79% less than 
the expected value). As a result, the power generated from WT is increased from 1962.2 to 2122.4 kW. For real-
time economic operation, the operating points of DG, batteries and grid are updated to 1581.8 kW, − 1000 kW 
(Charging mode) and 151.5 kW, respectively, to cover the load with less cost during real-time operation, while 
for real-time conventional operation, the set-points of DG and batteries are kept at the values obtained from 
day-ahead scheduling and the export power to the main grid is increased to 184.6 kW to keep the system bal-
anced, as shown in Table 3. Real-time optimal scheduling minimizes the MG operating cost through the day 
from $ 4266.2 to $ 4118.7, saving about 3.46% of the total cost compared to real-time conventional operation.

Conclusion
An optimal energy management strategy based on two levels, day-ahead scheduling and real-time scheduling, 
for a grid tied microgrid with the aim of minimizing the operational cost while satisfying the different technical 
constraints is proposed. Also, the efficient day-ahead scheduling is based on two stages, day-ahead forecasting 
and day-ahead unit commitment, for optimal scheduling of the sources in the MG through the next 24-h.

The obtained simulation results show that the ANN based day-ahead forecasting more accurate predictions 
of the solar irradiance, wind speed and load for the next day as compared to the forecasting techniques that are 
based on support vector machine and traditional technique which is regression-based forecasting. The daily 
operating cost of MG is $4137 for the ideal day-ahead scheduling. The real-time scheduling, 2nd level of the 
proposed EMS, saves about 147.5 $ per day (about 3.46% of the total operating cost is reduced) by updating the 
set points of MG sources according to the actual data of solar irradiance, wind speed, load and grid tariff during 
real-time operation.

In conclusion, the suggested bi-level EMS is an effective approach for improving the microgrid performance 
and reducing the energy consumption costs.

Data availability
All data generated or analyzed during this study are included in this published article and its supplementary 
information files.

Appendix
System parameters6,38

Parameter Value Parameter Value

α 0.005 W/C SOCmin 20%

Tr 25 C SOCmax 98%

Pnom 5000 Kw Bcapacity 4000 kWh

Vci 2.5 m/s Cdeg 1.2× 10−9$/W

Vr 12 m/s Ncycle 4000

Vco 25 m/s CCbat 456 $/kWh

∆T 1 h ηch 90%

PDG,min 400 Kw ηdis 90%

PDG,max 2000 Kw αDG 38.16 ($/h)

∆T 1 h βDG 0.09799 $/kWh

SOCini 50% γDG 1.896 ∗ 10−5 ($/kWh)2
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