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Automatic brain‑tumor diagnosis 
using cascaded deep convolutional 
neural networks with symmetric 
U‑Net and asymmetric 
residual‑blocks
Mahmoud Khaled Abd‑Ellah 1*, Ali Ismail Awad 2,3,5*, Ashraf A. M. Khalaf 4,5 & 
Amira Mofreh Ibraheem 1,5

The use of various kinds of magnetic resonance imaging (MRI) techniques for examining brain tissue 
has increased significantly in recent years, and manual investigation of each of the resulting images 
can be a time‑consuming task. This paper presents an automatic brain‑tumor diagnosis system that 
uses a CNN for detection, classification, and segmentation of glioblastomas; the latter stage seeks to 
segment tumors inside glioma MRI images. The structure of the developed multi‑unit system consists 
of two stages. The first stage is responsible for tumor detection and classification by categorizing brain 
MRI images into normal, high‑grade glioma (glioblastoma), and low‑grade glioma. The uniqueness 
of the proposed network lies in its use of different levels of features, including local and global paths. 
The second stage is responsible for tumor segmentation, and skip connections and residual units are 
used during this step. Using 1800 images extracted from the BraTS 2017 dataset, the detection and 
classification stage was found to achieve a maximum accuracy of 99%. The segmentation stage was 
then evaluated using the Dice score, specificity, and sensitivity. The results showed that the suggested 
deep‑learning‑based system ranks highest among a variety of different strategies reported in the 
literature.

A brain tumor is an abnormal growth of tissues that appears in the brain and can affect its function. The number 
of new brain-tumor cases in the United States in 2019 was 23,820, and there were an estimated 17,760 deaths from 
the condition in that year, according to the American Cancer Society’s Cancer Statistics  Center1,2. Furthermore, 
the National Brain Tumor Foundation has announced that the number of individuals in advanced nations who 
die because of a cerebral tumor in recent decades has increased by 300%3. Gliomas are the best-known kind 
of brain tumor, and these can be divided into high- and low-grade gliomas (HGGs and LGGs); HGGs tend 
to result in a 2-year life expectancy, whereas people with LGGs can have a life expectancy of several years or 
more. The most common brain-tumor treatment methods that are applied to reduce tumor growth are surgery, 
chemotherapy, and  radiotherapy4.

Magnetic resonance imaging (MRI) is a high-quality imaging technique that can provide substantial infor-
mation about brain tissue; as such, it has been widely used for automatic tumor  diagnosis5. MRI can provide 
highly detailed images of the features of brain tumors and, as a result, can result in additional therapeutic options 
becoming available to a patient. The technique can also give information about the physiology, metabolism, and 
hemodynamics of certain tumors. MRI scans are ideal for soft-tissue imaging. Because of the prevalence of brain 
tumors, a large amount of brain-tumor MRI data is generated; developing an automated brain-tumor diagnostic 
system with acceptable performance is thus  critical6. The use of a computer-aided diagnosis (CADx) system is 
essential for detecting brain tumors quickly and without the need for human interaction. The treatment for a 
brain tumor will vary according on the type of tumor and its size and location. Brain-tumor classification and 
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segmentation are thus crucial tasks for diagnosing tumors, determining treatment decisions, and increasing the 
likelihood of  recovery7,8.

Automatic brain-tumor detection using MRI scans can significantly improve diagnosis, therapy, and growth-
rate prediction. Automatic tumor diagnosis includes a pipeline of three processes: detection, segmentation, and 
classification. Detection aims to classify MRI images with respect to the presence or absence of a tumor into 
abnormal and normal images,  respectively9. Segmentation aims to recognize the tumor zone and delineate the 
boundaries of its regions: necrotic tissue, active tumor tissue, and edema (growth near the tumor). Classification 
aims to categorize MRI images of gliomas into HGGs and  LGGs10.

Segmentation is realizable by identifying regions that appear different when compared to ordinary tissues. 
While some tumors—for example, meningiomas—are easily segmented, others—such as gliomas—are funda-
mentally harder to segment. These tumors tend to have edema and extended limb-like structures, are very often 
diffused, and provide limited image contrast, which makes the division procedure difficult. Their boundaries 
are frequently hazy and difficult to distinguish from healthy tissues. Moreover, they can appear in any region of 
the brain and can have a range of different shapes and  sizes11. As a result, the problem of brain-tumor diagnosis 
can be seen as a difficult image-classification task.

In general, machine learning, and particularly deep-learning algorithms, can greatly assist with the detection, 
segmentation, classification, and registration of brain tumors. Recently, deep-learning techniques have gained 
greater research  attention12,13. Deep-learning methods can be trained in their convolution layers using either 
unsupervised or supervised training  methods14. The findings of recent studies have shown that deep-learning 
approaches outperform traditional learning methods in brain-tumor  diagnosis15, and several systems have been 
designed for brain-tumor detection, classification, and segmentation based on deep learning.

Because of the high incidence of brain tumors, a vast amount of MRI data has been collected. Gliomas, with 
their irregular shapes and ambiguous boundaries, are the most challenging tumors to identify. The detection 
and classification of brain tumors are critical steps that are dependent on a diagnosing physician’s expertise 
and knowledge. Although various studies have focused on the use of deep-learning approaches to brain-tumor 
diagnosis, no comprehensive system for automatic tumor detection, classification, and segmentation is currently 
available, and a complete technique for automatic brain-tumor diagnosis has not yet been published in the lit-
erature. Furthermore, accurately integrating tumor segmentation, classification, and detection inside a single 
system is still an open problem. The presence of the brain-tumor detection and classification phases before tumor 
segmentation in a single system will result in normal images being excluded from the segmentation phase. This 
allows for real-time deployment of automatic tumor-diagnosis systems, saving time and computing power that 
would otherwise be used in attempting to identify tumors in normal images. An intelligent strategy for detecting 
and classifying brain tumors is essential for supporting clinicians, and it could be a beneficial tool in hospital 
emergency rooms when examining the MRI scans of patients, since it would allow for speedier diagnosis. For 
example, such a system could help doctors by examining MRI images before processing to identify whether they 
are normal or contain an HGG or LGG. Once an image has been automatically identified as abnormal, a physician 
can easily detect and segment the brain tumor to estimate its size using the segmentation stage.

In this study, the aforementioned challenges have been addressed by developing an automatic CADx system 
for brain-tumor detection, classification, and segmentation. In the first stage, we introduce a convolutional 
neural network (CNN) architecture for detection and classification. In the second stage, a CNN architecture 
for segmentation is introduced. These systems use state-of-the-art CNN architecture and training procedures, 
including the U-Net, residual units, batch normalization (BN), dropout regularization, the parametric rectified 
linear unit (PReLU), and skip connections. Additionally, both the contexts and local shapes of tumors are taken 
into consideration. The proposed technique overcomes the issue of performing pixel arrangement without con-
sidering the local dependencies of labels.

The proposed system’s accuracy was assessed using MRI images derived from a brain-tumor segmentation 
database. In addition to improving the overall structure of the system, the major research contributions can be 
summarized as follows. 

1. A new and fully automatic brain-tumor diagnosis structure has been built by combining the detection and 
classification phases prior to segmentation, saving time and computing power. This can support clinicians 
and be a beneficial tool for real-time deployment in hospital emergency rooms.

2. A new detection and classification CNN has been constructed by combining two parallel paths, using residual 
units, and selecting the best values of convolutional-layer filters to help extract more features.

3. The proposed segmentation model has been designed using two asymmetric parallel paths with two U-Net 
architectures in series and a residual encoder and decoder for brain-tumor segmentation.

4. Both local and global features are considered, including local details of the brain, to improve the detection, 
classification, and segmentation performances.

5. The use of feature fusion further enhances the extraction of multi-scale features.
6. The proposed brain-tumor diagnosis system was optimized in several respects, including in terms of the 

accuracy and speed of diagnosis.
7. Comparisons were made among the results of different experiments to obtain a model with the highest 

accuracy and Dice score, resulting in a model for brain-tumor detection, classification, and segmentation 
that is superior to any previously published.

The remainder of this paper is structured as follows. The next section Related work is dedicated to exploring works 
related to the detection, classification, and segmentation of brain tumors. The structures of the proposed system 
are then presented in Materials and Methods. Subsequently, the implementation and performance-evaluation 
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processes are described in Simulations and Evaluation Criteria. A discussion of the outcomes and research find-
ings is then given in Results and Discussion. Finally, the conclusions of the research are presented in Conclusions 
and Future Work.

Related work
Over recent decades, the diagnosis of brain tumors has gained considerable research interest, and many diagnosis 
techniques have been introduced. The performance of tumor diagnosis has been improved by applying several 
different automatic brain-tumor detection techniques. In these approaches, machine learning is crucial for the 
identification, classification, and segmentation of brain tumors, and several machine-learning algorithms have 
recently been developed to this end as shown in Table 1.

El-Dahshan et al.16 used the discrete wavelet transform (DWT) as a feature extractor, principal component 
analysis (PCA) for feature minimization and selection, and a three-layer artificial neural network (ANN) for the 
actual tumor detection. Abd-Ellah et al.3 combined morphological filters, the DWT, PCA, and a kernel support 
vector machine (KSVM) for brain-tumor detection from MRI images. Using a twofold classifier, researchers 
were able to categorize a picture as benign (noncancerous) or malignant (cancerous)17. Using the DWT as a 
feature extractor, Zhang et al.18 were able to discover brain tumors in MRI images. The features were reduced 
from 65,536 to 1024 using a three-level decomposition with Haar wavelets. The reduced characteristics were 
then sent into a back-propagation neural-network classifier. Devasena et al.19 demonstrated a CADx system for 
MRI-based tumor diagnosis that employs a hybrid abnormal detection algorithm.

Patil et al.20 applied a probabilistic neural network (PNN) for extracting features to detect brain tumors; they 
applied the k-nearest neighbors (k-NN) algorithm, an ANN, and an SVM to detect and recognize various types 
of  tumor21. Goswami et al.22 also proposed a brain-tumor classification system using MRI images. Noise filtering, 
edge detection, and histogram equalization are used in the preprocessing stage of their system; then, independent 
component analysis is applied for feature extraction, and classification is performed using a self-organized map. 
Deepa and  Devi23 used a combination of feature extraction, segmentation, and tumor classification to diagnose 
brain tumors. In their approach, optimal texture characteristics are extracted using statistical features, and a 
radial basis function neural network and a back-propagation neural network are used in the segmentation and 
classification stages, respectively.

Sarith et al.24 presented a technique for detecting brain tumors from MRI images that uses wavelet entropy-
based spiderweb plots for feature extraction and a PNN for tumor identification. Yang et al.25 suggested a tech-
nique using 2D-DWT and Haar-wavelet feature extraction for early brain-tumor detection from MRI images with 
a KSVM as a classifier. Kalbkhani et al.26 also used 2D-DWT and modeled the sub-bands of detail coefficients 
using a generalized autoregressive conditional heteroscedasticity model. Linear discriminant analysis was used to 
extract 61,440 features, which were then reduced to 24 using PCA; the k-NN and SVM methods were employed 
for the actual tumor detection. Mudda et al.’s27 main goal was to detect whether a brain has a tumor or is healthy. 
Gray-level run-length matrix (GLRLM) texture characteristics were employed to extract the features for efficient 

Table 1.  Comparison between different classification and segmentation literature.

Type References Year Used Technique Dataset AC/Dice

Classification

Pan et al.74 2015 CNN BraTS 2014 73.33

Abd-Ellah et al.3 2016 DWT, PCA, and KSVM Collected Data 66.96

Ye et al.75 2017 3D CNN BraTS 2015 82.1

Ge et al.76 2018 3D CNN BraTS 2017 89.47

Heba et al.29 2018 DNN Collected Data 96.97

Sultan et al.77 2019 CNN Collected Data 95.81

Anaraki et al.78 2019 DNN Collected Data 96.50

Abd-Ellah et al.79 2019 PDCNN BraTS 2017 97.44

Tazin et al.30 2021 CNN Collected Data 92.00

Mudda et al.27 2022 GLRLM, CSLBP, and ANN Collected Data 94.00

Alsaif et al.31 2022 CNN Kaggle 96.00

Asiri et al.28 2023 RF, NB, and SVM Kaggle 90.7

Segmentation

Zhao et al.71 2016 FCN and CRF BraTS 2013 0.87

Pereira et al.61 2016 CNN BraTS 2013 0.84

Pereira et al.62 2017 FCN BraTS 2013 0.85

Mohamad et al.4 2017 DNN BraTS 2013 0.88

Kamnitsas et al.64 2017 3D CNNs BraTS 2015 0.85

Zhao et al.63 2018 FCNs and CRFs BraTS 2016 0.88

Abd-Ellah et al.2 2019 TPUAR-Net BraTS 2017 0.89

Zhang et al.67 2021 CMFT and CMFF BraTS 2018 0.90

Wang et al.66 2021 3D U-Net BraTS 2020 0.89

Remya et al.68 2022 Otsu and FCM BraTS 2015 0.72
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brain-tumor diagnosis using neural-network methods. In 2023, Asiri et al.28 employed six machine-learning 
methods for brain-tumor detection: SVM, neural networks, random forest (RF), CN2 rule induction (CN2), 
naive Bayes (NB), and decision trees. Achieving 95.3% accuracy, it was found that SVM surpassed other methods.

Abd-Ellah et al.5 created a deep-learning technique for detecting and classifying brain tumors from MRI 
images. As a feature extractor, they employed the AlexNet CNN, and at the classification step, an error-correcting 
output codes SVM was applied. For feature extraction and selection, Heba et al.29 used the DWT was used with 
PCA. A seven-layer deep neural network (DNN) was used to classify the retrieved characteristics. Tazin et al.30 
employed a CNN and a transfer-learning technique to determine whether or not a brain tumor was present in 
X-ray images; VGG19, InceptionV3, and MobileNetV2 were used for deep feature extraction. MobileNetV2 was 
found to be 92% accurate, InceptionV3 was 91% accurate, and VGG19 was 88% accurate. Alsaif et al.31 applied 
multiple CNN models based on data augmentation to identify brain tumors using MRI images. VGG16, VGG19, 
ResNet-50, ResNet-101, Inception-V3, and DenseNet121 were applied to distinguish between normal samples 
and those containing a tumor. The best accuracy, found with VGG16, was established as 96%.

Techniques for semi-automatic and automated brain-tumor segmentation can be broadly split into dis-
criminative and generative  models32. Brain-tumor segmentation approaches based on generative models require 
previous knowledge of the shape, size, and appearance of both tumor and normal tissues, which may be obtained 
in probabilistic picture  atlases33,34, in which the tumor segmentation is modeled as a detection problem with a 
probabilistic image. The generative framework of tumor segmentation using outlier detection through MRI is 
represented in Ref.35. Based on a probabilistic technique, Prastawa et al.36 initialized active contours on a brain 
atlas and iterated until the probability was below a specific threshold. Different methods based on active contours 
have been  presented37,38. Because aligning a large brain tumor onto a model is a challenging task, some techniques 
apply registration alongside tumor segmentation, as in Ref.39.

Brain-tumor segmentation methods based on discriminative models use the extraction of image features to 
classify image voxels as normal or tumor tissues. The performance of a discriminative model depends on the 
extracted features and classification techniques. Different image features have been considered in brain-tumor-
segmentation techniques, including image  textures40,41, local  histograms42, alignment-based features such as sym-
metry analysis, region-shape differences, inter-image gradients, tensor  eigenvalues43, raw-input pixel  values44,45, 
and discriminative-learning techniques such as decision  forests42,43 and  SVMs46,47.

Techniques based on deep learning have arisen as an effective alternative to traditional machine learning, 
as they have impressive capacity to learn discriminative features, outperforming models using pre-defined and 
hand-crafted features. More recently, deep-learning techniques have achieved success in general image-analysis 
studies, including object  detection48, image  classification49, and semantic  segmentation50–52, and this success has 
led the approach to be applied to brain-tumor segmentation.

Specifically, CNNs were used in the BraTS 2014 challenge as a promising approach to segmenting brain 
 tumors53–55. Additional brain-tumor-segmentation techniques using deep learning were introduced for 
BraTS 2015, and various deep-learning methods were presented, such as stacked denoising autoencoders, con-
volutional restricted Boltzmann machines, and  CNNs56–60. Deep-learning brain-tumor segmentation methods 
that build upon CNNs have been found to achieve the best performance. In particular, both 2D-CNNs4,53,54,58–63 
and 3D-CNNs55,64,65 have been adopted to develop brain-tumor-segmentation techniques.

Wang et al.66 presented a modality-pairing learning approach for segmenting brain tumors. Two parallel 
branches were created to leverage the properties of various modalities, and several layer interconnections were 
used to capture complicated interactions and extract a wealth of information. To reduce the prediction variation 
between the branches, they applied a consistency loss. Furthermore, a learning-rate warmup technique was used 
to deal with the problem of training instability. The authors of Ref.67 introduced a cross-modality deep-feature-
learning approach for segmenting brain tumors. This system was made up of two procedures: cross-modality 
feature fusion (CMFF) and cross-modality feature transition (CMFT); they used the BraTS 2017 and 2018 
datasets. Remya et al.68 demonstrated tumor segmentation based on a fuzzy c-means (FCM) technique and an 
improved noise-filtering computation. They updated the noise-filtering computation to obtain the right tumor 
region, and the execution was improved by upgrading the threshold function. Following filtering, segmentation 
was performed using Otsu’s method and the FCM approach. The Jaccard and Dice coefficients were 0.5304 and 
0.6893, respectively, according to the findings.

Most of these methods were trained using small image patches to classify images into various classes. The 
classified patches are used to label centers for achieving segmentation. However, most of the methods used 
assume that a voxel label is distinct, and they do not consider spatial consistency and appearance. Havaei et al.4 
constructed a cascaded two-pathway architecture, and they provided the probabilities of pixel-wise segmenta-
tion results acquired from the first CNN architecture as an extra input to the second CNN to take into account 
the local dependencies of labels. Additionally, the spatial consistency and appearance can be taken into consid-
eration, as in Ref.64, and conditional random fields (CRFs) and Markov random fields can be combined with 
CNN segmentation methods as a post-processing step or created as neural networks according to Refs.51,52. 
 Myronenko69 proposed a semantic segmentation network to segment tumor subregions from 3D MRI images 
using an encoder–decoder architecture. In this system, the autoencoder branch reconstructs the input image 
and the decoder regularizes and imposes additional constraints on its layers. This approach won first place in 
the BraTS 2018 challenge.

Fritscher et al. presented a network architecture based on 3D input patches to three convolutional pathways 
in the coronal, sagittal, and axial views, which are merged by fully connected  layers70. Pereira et al.61 proposed a 
tumor-segmentation technique that applies intensity normalization in the preprocessing stage. Later, they pre-
sented a hierarchical study based on a fully convolutional network (FCN) and histograms using MRI  images62. 
Zhao et al.71 combined CRFs and an FCN to segment brain tumors in three training stages. Dong et al.72 used 
a U-Net approach with comprehensive data augmentation to propose a fully automatic 2D method, and a 3D 
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U-Net network was applied for tumor segmentation, providing shortcut connections between the upsampling 
and downsampling paths. Various additional approaches for detecting, segmenting, and classifying brain tumors 
are outlined in Ref.73.

Materials and methods
As outlined in the previous section, deep-learning methods have attracted considerable research interest because 
they provide the ability to process a huge number of MRI images with great  efficiency5. The proposed diagnosis 
system has two stages. The first stage focuses on tumor detection and classification by categorizing images into 
normal, HGG, and LGG. The second stage converts tumor segmentation into a classification problem. Figure 1 
shows a flowchart of the developed system. MRI images are provided to the architecture’s input, and preproc-
essing is applied. Then, a CNN is used to extract and classify the features of each MRI image to determine if it 
is normal or abnormal. To achieve accurate results, the parallel architecture of the CNN is first trained, and a 
second CNN is applied in the second-stage segmentation. The system was evaluated using the Reference Image 
Database to Evaluate Therapy Response (RIDER) and the BraTS 2017 dataset as standard reference MRI datasets.

Preprocessing stage
Image preprocessing is vital in diagnostic tasks, as it enhances the quality of images and prepares them for pre-
cise and efficient diagnosis. The BraTS 2017 database has 3D MRI volumes with various spacings in the three 
dimensions. In the present work, detection, classification, and segmentation were applied to slices with various 
image modalities (FLAIR, T2, T1, and T1C). In the preprocessing stage of the proposed approach, each volume is 
cropped to remove the unwanted background, which saves computational power. Then, each slice is normalized, 
excluding the ground truth, by subtracting the mean and dividing by the standard deviation. After that, the top 
and bottom pixel intensity are clipped by one percent. All normal slices are ignored in the segmentation stage. 
The axes are swapped to represent the modalities in axis 0 and the slice in axis 1. All slices are randomly shuffled.

In the first stage, the slices are resized to 256× 256 due to the variation in MRI slice size. Therefore, in 
the segmentation stage, patches of 128× 128 size are generated. Patches are randomly shuffled and randomly 
selected. By rescaling or resizing the images to a standardized format, we can ensure consistent performance of 
the diagnosis algorithm across different images. Moreover, resizing can also reduce computational complexity. 
Data augmentation can play a vital role in diagnostic tasks by generating additional training samples through 
the application of various transformations to an existing dataset. By introducing variations in the training data, 
data augmentation enhances a model’s resilience and ability to handle a wide range of scenarios. Samples of 
enhanced images are shown in Fig. 2.

The main CNN architectures
Convolutional layers
The convolutional layers are the fundamental building blocks of the CNN architecture; they provide feature maps 
from input maps, except for the first convolutional layer, for which the input is taken directly from an input 
image. The feature computation Ms is calculated as in Eq. (1):

where Wsr denotes the input channel sub-kernel, Xr is the rth input channel, and bs is a bias term. The convolu-
tional layers can separately learn the biases and weights of the feature map, extending the data-driven, custom-
ized, and task-specific dense feature extractors. As a result, a nonlinear activation function is applied.

Rectified linear unit (ReLU) and parametric ReLU (PReLU) layers
ReLU activation functions are frequently used for the hidden layers. When the input is greater than 0, the output 
y is the same as the input x; otherwise, the output is neglected as in Eq. (2):

PReLU offers a small number of parameters α , which increases  accuracy80 as in Eq. (3):

Max‑pooling layers
Max-pooling minimizes the input dimension by down-sampling; the number of learned parameters is thus 
decreased, reducing cost, improving performance, and overcoming the problem of overfitting. A non-overlapping 
max filter is employed to subregions, taking N × N regions and providing a single  value5.

Residual blocks
Residual blocks have skip connections that enable information to be transmitted both forward and backward 
directly between layers as in Eqs. (4)–(5):

(1)Ms = bs +
∑

r

Wsr ∗ Xr

(2)fy = max(x, 0)

(3)fy = max(x, 0)+ αmin(x, 0)

(4)yi =h(mi)+ f (mi ,Wi)
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Figure 1.  Flowchart depicting the two phases and illustrating the two distinct types of CNN employed. The 
two-pathway with residual-based deep convolutional neural network (TRDCNN) architecture is used in the 
detection and classification phases, and two parallel cascaded U-Nets with an asymmetric residual (TPCUAR-
Net) is employed in the segmentation phase.
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where mi is the ith input and mi+1 is the ith output, Wi is the set of weights, h(mi) = mi is known as attaching an 
identity skip connection, and mi+1 = yi when f is an  identity81.

There is a stack of various layers in residual blocks: a convolutional layer, PReLU, and BN, which is used to 
normalize the input. Further, PReLU is again attached and followed by a convolution layer, and these layers are 
repeated. The input and the output are summed, generating a direct connection. The residual decoding block 
includes a convolution layer in the direct route, as shown in the bottom left of Fig. 5.

Regularization and loss function
The cross-entropy loss is applied to test the performance of the classification stage. This is developed as the 
predicted label probability as in Eq. (6):

where H is the desired output, Lce(H , Ĥ) is the cross-entropy error, and Ĥ is the predicted  output82.
BN is used for regularizing the provided values and eliminating nonlinearities as in Eq. (7):

where S, Ŝ , Var[S] , and E[S] are the input layer, the normalized activations, the unbiased variance estimate, and 
the expectation value,  respectively83. BN allows the CNN to be trained with stable gradients, smoothing the opti-
mization plane, making weight initialization easier, and reaching optimal values more rapidly with more viable 
activation functions. The weighted loss and regularization function reduces the problem of becoming stuck in 
local minima and enhances the performance of the model. Another regularization technique is dropout, which 
randomly ignores selected neurons during training and stops weights from  updating62.

Softmax layer
Softmax is a widely used layer in CNNs for multi-class classification tasks. It is normally positioned at the end of 
the network and generates a probability distribution over the classes. The softmax layer normalizes the outputs 
of the preceding layer to indicate the probability of each class. The softmax function calculates the probability of 
each class by multiplying the input scores and dividing them by the sum of all exponentiated values as in Eq. (8):

where Yj(x) is the probability of the input instance in class j, and xj is the jth element of the vector xi.

The first stage: the proposed brain glioma detection and classification architecture
In this work, we examined different architectures by applying feature-map concatenation between different 
numbers of layers when composing CNNs. This operation produced various architecture designs with different 
computational routes. We now present the best architecture that was found during this exploration process.

Two‑pathway with residual‑based deep convolutional neural network architecture (TRDCNN)
Detection and classification of glioblastomas are conducted using the proposed TRDCNN. A schematic of the 
proposed structure is provided in Fig. 3. The input is MRI images; as noted, these are subjected to preprocess-
ing to decrease the calculation complexity and to speed up processing. The proposed structure comprises four 

(5)mi+1 =f (yi)

(6)Lce(H , Ĥ) = H log

(

H

Ĥ

)

+ (1−H) log

(

1−H

1− Ĥ

)

,

(7)Ŝ = S − E[S]√
Var[S]

(8)Yj(x) =
exp xj

∑

i exp xi

Figure 2.  Samples of preprocessed images.



8

Vol:.(1234567890)

Scientific Reports |         (2024) 14:9501  | https://doi.org/10.1038/s41598-024-59566-7

www.nature.com/scientificreports/

paths: the global, local, merged, and output paths. The local and global paths have their own responsibilities in 
feature extraction; they have one of each of a convolutional (CONV), ReLU, and max-pooling layer, followed by 
six stages of residual blocks with max-pooling. The first CONV layer uses a small filter of 5× 5 pixels in the local 
path and a large filter of 12× 12 pixels in the global path. The global and local paths are connected in parallel, 
and they are then combined into a merged path that includes BN, ReLU, and fully connected layers, followed by 
a dropout layer. The final path is the output path, which contains a classification layer with a softmax function; 
this classifies features into normal and glioblastoma (HGG or LGG) images.

The second stage: brain‑tumor segmentation architectures
A CNN usually has a huge number of parameters; patch-based training can be applied to train a DCNN with 
enough  samples58. As such, the segmentation problem can be handled as a classification problem. Image patches 
are selected regions that describe a central pixel, and they are labeled with the label of their center pixel. Millions 
of image patches can be generated to train a CNN. In the testing process, all the extracted patches are classified 
by the trained network, which then makes up a segmented image. However, CNN techniques segment images 
slice by  slice4. Furthermore, the locations of training patches and the number for each class are controlled by 
changing the patch-selection scheme.

Two parallel cascaded U‑Nets with an asymmetric residual (TPCUAR‑Net)
Figure 5 shows the TPCUAR-Net architecture. The input to this structure is an MRI image resulting from merg-
ing five different MRI modalities (Fig. 4). The noise is reduced and image quality is improved by preprocessing. 
There are four paths: the structure, upper, lower, merged, and output paths. The upper and lower paths each 
comprise two series U-Nets with various depths, which are used in feature extraction to elicit the local and global 
features. These have up- and down-sampling processes, and two different residual blocks called Residual Enc., 
and Residual Dec., as in Fig. 5. The convolutional layer has a two-step stride in the down-sampling path and a 
one-step stride in the up-sampling path. The merged path combines the upper and lower paths in parallel form; 
it comprises concatenation, BN, PReLU, and convolutional layers. The concatenation layer receives a group of 
inputs with the same shape and combines them, providing one path. The output path produces an image seg-
mented with a softmax function.

Figure 3.  Proposed TRDCNN structure for tumor detection and classification.
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Simulations and evaluation criteria
This section describes simulations conducted to evaluate the proposed system using several different metrics. 
The approach was developed using Jupyter Notebook, and the Keras and TensorFlow toolkits were used to code 
the suggested architecture. The computer used for this task has a 3.2 GHz Intel Core i7 processor, 24 GB of RAM, 
and was running Windows 7 64-bit as its operating system.

Imaging data
The images used in this manuscript were extracted from the BraTS 2017 dataset. This provides images from 285 
glioma patients, 210 with HGG and 75 with LGG. The data were scanned using different clinical protocols and 
scanners from different institutions, including Heidelberg University, the University of Alabama, the University 
of Bern, the National Institutes of Health, the University of Debrecen, and The Center for Biomedical Image 
Computing and Analytics. Multimodal scans are available for each patient, including T1, T1ce, T2, and FLAIR 
 volumes32.

The data used during BraTS 2014, 2015, and 2016 (from The Cancer Imaging Archive) were discarded, as 
their ground-truth labels were generated from the highest-ranking methods during BraTS 2012 and 2013. How-
ever, expert radiologists were included in BraTS 2017, which lead us to use these data instead of other BraTS 
datasets. The training and testing datasets are listed in Table 2, and Fig. 6 presents a sample of the MRI images 
used in the investigation.

Training and testing
The proposed model was trained using the image database for 100 epochs using the SGD optimizer and a 
learning rate of 0.08. The batch size was 16, and the error loss was calculated using the square of the mean. All 
details of training and testing parameters are listed in Table 3. Typically, a grid or random search is performed 
in hyperparameter space, followed by training the proposed models for a predetermined number of epochs for 

Figure 4.  Left to right: the four MRI modalities—T1, T2, T1-C, and FLAIR—and the ground truth. The latter 
shows regions as follows: enhancing tumor , necrosis , edema , and non-enhancing tumor . This is 
taken from the authors’ own work (Ref.2).

Figure 5.  TPCUAR-Net architecture for brain-tumor segmentation.
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each hyperparameter choice. The best hyperparameter is then determined by selecting the value with the highest 
validation accuracy. The parameters are chosen based on a trial-and-error method.

Evaluation metrics
Tumor detection and classification
The metrics used for evaluation were as follows: sensitivity (SV), which indicates the proportion of correctly 
classified positives; specificity (SP), which is the proportion of correctly classified negatives; and accuracy (AC), 
which represents the proportion of both true negatives and true positives. These are calculated as in Eqs. (9)–(11), 
 respectively5:

(9)Sensitivity(SV) = σ

σ +�

Figure 6.  Sample images used for the experimental work. From top to bottom, the rows show normal, HGG, 
and LGG brain images.

Table 2.  Training and testing dataset distributions.

Training set Testing set

Classification

Normal 450 150

HGG 450 150

LGG 450 150

Total images 1350 450

Segmentation

Type LG HG LG HG

No. of patients 40 60 20 50

3D volume 160 240 80 200

2D slice 24800 37200 12400 31000

Total images 62,000 43,400
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where σ is the number of true positives, � is the number of false negatives, η is the number of true negatives, and 
� is the number of false positives. The intersection over Union (IoU) is a popular metric to measure localization 
accuracy for binary classification; it is calculated as in Eq. (12)84:

Tumor segmentation
The system’s performance on the test set was determined by contrasting the prediction output with the ground 
truth supplied by knowledgeable radiologists. There are three distinct types into which tumor structure are 
categorized; the primary reason for this is practical clinical applications. These are: a full tumor (which includes 
all types), a core tumor (which includes all types save edema, and an augmenting tumor (which includes enhanc-
ing). The Dice coefficient, sensitivity, and specificity were computed for each tumor location as in Eqs. (13)–(15):

where O is positive segmented regions, O0 is negative segmented regions, G is the actual ground truth, and G0 
is falsely identified regions. The intersection point between O and G is |O ∩ G|4. Another popular performance 
metric for determining the separation between two point sets is the average Hausdorff  distance85 as in Eq. (16):

Results and discussion
Tumor detection accuracy analysis
Multiple tests were conducted to confirm the suggested network’s performance in achieving the tumor-detection 
goal. Table 4 shows a comparison with various methods reported in the literature. The empirical results demon-
strate that the suggested TRDCNN structure outperforms existing techniques in terms of accuracy, sensitivity, 
and specificity. Without taking network training time into account, the average testing duration per picture was 
0.28 s. Figure 7 shows the improvement TRDCNN achieves over the training and validation images.

Analysis of tumor‑segmentation accuracy
Table 5 presents the performance of TPCUAR-Net in comparison with different investigations found in the 
literature that used the U-net network. Reproduction tests have been directed to demonstrate the execution of 

(10)Specificity(SP) = η

η +�

(11)Accuracy(AC) = σ + η

σ + η +�+�

(12)IntersectionoverUnion(IoU) = σ

σ +�+�

(13)Dice = |O ∩ G|
(|O| + |G|)/2

(14)Sensitivity =|O ∩ G|
|G|

(15)Specificity =|O0 ∩ G0|
|G0|

(16)Hausdorff(x, y) =





1

x

�

x∈X
min
y∈Y

d(x, y)+ 1

y

�

y∈Y
min
x∈X

d(x, y)





Table 3.  Training parameters.

Type Classification Segmentation

Slice size 256× 256 128× 128

Pooling operations Max-pooling Max-pooling

Features after first conv. 290,400 524,288

Optimizer SGD SGD

Learning rate 0.001 0.08

Epochs 100 100

Patch size 128 32

Momentum 0.9 0.9

Decay 0.000005 0.000005
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Table 4.  Comparison of the proposed approach against some methods in the literature.

 Methods

 Evaluation metrics (%)

SV SP AC IoU

Pan et al.74 73.33 73.33 73.33 57.89

Abd-Ellah et al.3 83.43 25.00 66.96 51.28

Ye et al.75 88.90 57.00 82.10 69.44

Ge et al.76 – – 89.47 80.35

Heba et al.29 97.00 97.00 96.97 93.26

Sultan et al.77 94.40 95.10 95.81 91.56

Anaraki et al.78 98.30 95.70 96.50 90.40

Abd-Ellah et al.79 97.00 98.00 97.44 95.40

Tazin et al.30 94.04 90.00 92.00 86.81

Mudda et al.27 52.90 93.00 94.00 88.23

Alsaif et al.31 93.00 100.00 96.00 92.90

Asiri et al.28 90.70 90.70 90.70 86.39

Proposed TRDCNN 98.66 99.00 98.88 97.81

Figure 7.  Plots of accuracy and loss for the classification of the training and validation images, as obtained by 
TRDCNN.

Table 5.  Comparison of the proposed TPCUAR-Net against some methods based on U-Net in terms of Dice 
score.

 Methods

Dice score

Complete Core Enhancing

3D U-Net86 0.86 0.76 0.73

3D U-Net+TTA 86 0.87 0.78 0.75

U-Net+ZP72 0.86 0.86 0.65

U-Net+ET87 0.85 0.81 0.72

TPUAR-Net2 0.89 0.82 0.79

Proposed TPCUAR-Net 0.91 0.83 0.80
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the presented system in fulling the segmentation assignment. A comparison with other investigations in the lit-
erature is given in Table 6, and Fig. 9 presents the segmentation findings. Without taking network training time 
into account, the average testing duration per picture was 0.08 s. Figure 8 presents boxplots for the test dataset. 
In this figure, our proposed method ranks first among competing results for complete, core, and enhancing 
tumors, with fewer outliers than the other techniques.

Discussion
The detection and classification of brain tumors are important steps that rely on the expertise and knowledge 
of a physician, and an intelligent method for detecting and classifying brain tumors is vital for assisting clini-
cians. Gliomas, with their uneven shapes and uncertain boundaries, are the most difficult tumors to diagnose. 
Image segmentation presents substantial issues in terms of categorization, image processing, object detection, 
and explanation. For example, whenever an image-classification model is developed, it must be able to work 
with great precision even when subjected to occlusion, lighting variations, viewing angles, and other factors.

In this study, we designed a deep CNN diagnosis model based on parallel paths. This can provide various ben-
efits over and above those of a standard CNN, including increased model capacity and feature diversity, ensemble 
learning, multi-resolution analysis, efficient information flow, and regularization capabilities. These advantages 

Table 6.  Comparison of the proposed TPCUAR-Net against some state-of-the-art methods.

Methods

Dice score Sensitivity Specificity Hausdorff

Comp Core Enha Comp Core Enha Comp Core Enha Comp Core Enha

Zhao et al.71 0.87 0.83 0.76 0.83 0.81 0.77 0.92 0.87 0.77 – – –

Pereira et al.62 0.85 0.76 0.74 0.92 0.79 0.78 0.80 0.78 0.74 – – –

Pereira et al.61 0.84 0.72 0.62 0.89 0.83 0.81 0.88 0.87 0.74 – – –

Mohamad et al.4 0.88 0.79 0.73 0.87 0.79 0.80 0.89 0.79 0.68 – – –

Kamnitsas et al.64 0.85 0.67 0.63 0.85 0.84 0.63 0.87 0.61 0.66 39.61 – –

Zhao et al.63 0.88 0.84 0.77 0.90 0.87 0.76 0.86 0.82 0.80 – – –

Abd-Ellah et al.2 0.89 0.82 0.79 0.89 0.84 0.81 0.99 0.99 0.99 5.47 7.48 9.94

Zhang et al.67 0.90 0.82 0.75 0.90 0.79 0.75 – – – 5.155 6.999 3.170

Remya et al.68 0.72 0.70 0.69 – – – – – – – – –

Wang et al.66 0.89 0.84 0.81 0.91 0.85 0.84 0.99 1 1 6.24 19.54 17.79

Myronenko69 0.88 0.81 0.76 – – – – – – 5.90 4.80 3.77

TPCUAR-Net 0.91 0.83 0.80 0.92 0.85 0.81 0.99 0.99 0.99 3.31 1.41 2.23

Figure 8.  Dice scores and sensitivity; the median is shown in red, and outliers are in blue.
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can boost the network’s performance, its capacity to learn complex patterns, and its generalization ability. We 
then incorporated residual blocks into our model to achieve improved performance, providing benefits such as 
increased model capacity, improved gradient flow, enhanced feature reuse, regularization for reduced overfitting, 
efficient training, and flexibility in network design. The addition of residual blocks can help to train deep models 
faster and more efficiently. Skip connections are used to provide faster convergence by giving direct access to 
lower-level capabilities. This minimizes the number of weight updates necessary for information propagation, 

Figure 9.  Visual results from TPCUAR-Net from the axial view. From first to third, the columns show the 
FLAIR modality of HG and LG tumors, the ground truth, and the predicted image.
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resulting in faster training overall. Efficiency in training is especially important when dealing with huge datasets 
and computationally expensive models. The proposed detection and classification model was found to achieve 
an accuracy of 98.88%, which is greater than the accuracy of other models reported in the literature. In the 
segmentation, our architecture achieved a Dice score of 0.91, which is greater than those of other comparable 
models reported in the literature. Therefore, increasing the depth of U-Net by using cascaded and parallel paths 
with the application of some useful preprocessing techniques for can improve the segmentation performance.

The processing time is another important factor for evaluating the proposed model. The training time was 
not considered, because the parameters were kept unchanged after training. The technique used for measur-
ing processing time involved transmitting all of the images into the proposed system, recording the associated 
calculation time for each stage for each individual image, and computing the average value to reflect the times 
used by different stages. The average testing duration per image was 0.41 s.

Our innovative complete CADx approach has the potential to play an important role in the early detection 
and diagnosis of brain tumors; it can be applied as a useful tool in hospital emergency units during the examina-
tion of patients with MRI scans because of the greater possible speed of diagnosis. Our method allows doctors to 
analyze MRI images before processing to determine whether they are normal or contain an HGG or LGG. Once 
an image is recognized as abnormal, clinicians can detect and segment the brain tumor to determine its size.

Conclusions and future work
Herein, we have described a deep-learning-based technique for detecting, classifying, and segmenting glioblas-
toma brain tumors using MRI images. The primary goal of this work was to merge the detection, classification, 
and segmentation processes into a single fully automated system. The first phase includes deep CNN architecture 
for brain-tumor identification and classification from MRI scans, which classifies the pictures as normal, HGG, 
or LGG using the TRDCNN architecture. This was assessed using the BraTS 2017 database, with 1350 and 450 
images used for training and testing, respectively. The TRDCNN architecture was found to produce encouraging 
results in terms of accuracy, sensitivity, and specificity, with values of 98.88%, 98.66%, and 99.60%, respectively.

For the second phase, a deep-CNN-based automatic brain-tumor segmentation approach from MRI images 
was described. Various structures with varying depths were studied and investigated. The second phase was 
assessed using a database derived from the BraTS 2017 dataset, with 62,000 and 43,400 images used for training 
and testing, respectively. The TPCUAR-Net was found to produce the best results for the total, core, and enhanc-
ing tumor areas, with a maximum Dice score of 0.91 and a testing duration of 0.45 s per image. The suggested 
method’s superiority stems from various advantages, including its ability to evaluate both local and global aspects 
to learn both high-level and low-level information at the same time. The use of a fully connected layer, residual 
blocks, and skip connections could help to solve the vanishing-gradient problem while also speeding up both 
training and testing. A cascaded network can efficiently train a CNN when the label distribution is imbalanced. 
In the two parallel networks, the proposed technique integrates both global and local features.

One factor contributing to this is the lack of defined procedures for evaluating CADx systems in a real setting. 
The image formats used to train the models were those of the AI research area (PNG) rather than those of the 
radiology field (DICOM, NIfTI), which is significant. Furthermore, the analysis requires authors with clinical 
backgrounds. As such, the engagement of doctors in the process may benefit the study project’s relevance and 
the acceptance of its findings. Our planned future work involves implementing complete CADx systems within 
clinical practice. The existing design will be improved in the future, with a possible expansion to a 3D CNN 
architecture, enabling 3D brain-tumor diagnosis from MRI and other scans.

Data availability
 Data are available from the corresponding author upon request. The BraTS 2017 dataset is publicly available at 
https:// www. med. upenn. edu/ sbia/ brats 2017/ data. html or https:// www. kaggle. com/ datas ets/ xxc025/ unet- datas 
ets? select= BRATS 2017. zip.
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