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Mandibular and dental 
measurements for sex 
determination using machine 
learning
Erika Calvano Küchler 1*, Christian Kirschneck 1, Guido Artemio Marañón‑Vásquez 2, 
Ângela Graciela Deliga Schroder 3,4, Flares Baratto‑Filho 4,5, Fábio Lourenço Romano 2, 
Maria Bernadete Sasso Stuani 2, Mírian Aiko Nakane Matsumoto 2 & 
Cristiano Miranda de Araujo 3,4

The present study tested the combination of mandibular and dental dimensions for sex determination 
using machine learning. Lateral cephalograms and dental casts were used to obtain mandibular and 
mesio‑distal permanent teeth dimensions, respectively. Univariate statistics was used for variables 
selection for the supervised machine learning model (alpha = 0.05). The following algorithms 
were trained: logistic regression, gradient boosting classifier, k‑nearest neighbors, support vector 
machine, multilayer perceptron classifier, decision tree, and random forest classifier. A threefold 
cross‑validation approach was adopted to validate each model. The areas under the curve (AUC) were 
computed, and ROC curves were constructed. Three mandibular‑related measurements and eight 
dental size‑related dimensions were used to train the machine learning models using data from 108 
individuals. The mandibular ramus height and the lower first molar mesio‑distal size exhibited the 
greatest predictive capability in most of the evaluated models. The accuracy of the models varied 
from 0.64 to 0.74 in the cross‑validation stage, and from 0.58 to 0.79 when testing the data. The 
logistic regression model exhibited the highest performance (AUC = 0.84). Despite the limitations of 
this study, the results seem to show that the integration of mandibular and dental dimensions for sex 
prediction would be a promising approach, emphasizing the potential of machine learning techniques 
as valuable tools for this purpose.

Keywords Sex determination, Artificial intelligence, Deep learning

Human sexual dimorphism is a widely studied field and explores many psychological and biological characteris-
tics. Although the face is a well-known biological billboard of human identity and it is the dimorphic trait most 
extensively  investigated1, humans also exhibit significant sexual dimorphism in other traits of the craniofacial 
complex. Several studies in different populations attempted to identify the distinction between sexes by evaluating 
craniofacial  structures2–5, such as teeth  dimensions6–8 and mandible size and  characteristics9–11.

Mandible is considered in the literature as one of the strongest craniofacial bones for gender  identification11. 
Its relatively indestructible and morphological variation contain safe parts to be used in sex determination. A 
previous systematic review evaluated several mandibular parameters explored for sex dimorphism, showing that 
some mandibular measurements present sexual  dimorphism9.

Teeth are well-known as the most indestructible structure of the human body and are vital key evidence in 
several investigations. Teeth are preserved in the closed cavities of the mouth and are generally resistant to envi-
ronmental  threats12. Morphological and, especially, metric parameters of permanent teeth also present sexual 
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 dimorphism13–18. Permanent teeth dimensions, such as the mesio-distal size, are the most frequently assessed 
odontometric variables for sex  determination8,13. Males have larger teeth crowns than females in contemporary 
human populations, however this dimorphism varies depending on the  population19.

In the past years, data science techniques, such as machine learning, have been used for sex  determination20–22. 
Machine learning is a subset of artificial intelligence that has the capability to make predictions without being 
explicitly programmed to do, using mathematical models generated from a sample, which is a ‘training’  data23. 
Some studies used machine learning to explore craniofacial structures (including mandibular parameters and 
teeth dimension) for sex  determination7,20,21,24,25. These previous studies demonstrated that mandibular meas-
urements and dental size are parameters suitable for sex determination, presenting a good overall accuracy of 
their  models7,20,21,24,25, however none of them evaluated teeth and craniofacial measurements in the same study. 
The combination of mandibular measurements and dental size in the same model could increase the accuracy 
of the model. Therefore, the present study aimed to test the integration of mandibular and dental dimensions to 
improve sex determination using machine learning.

Results
A total of 108 individuals were included in the study (51% females and 49% males); age ranging from 9 to 40 years 
old (15.7 ± 7.9 years).

The univariate analysis showed that two variables (Go–Pg, mandibular body length; and SNB) were not sig-
nificantly different between males and females (p > 0.05); therefore, these were not integrated into the prediction 
model. The mean values of the mandibular and dental measurements evaluated are available in Table 1.

Three mandibular-related measurements and eight dental size-related dimensions were used to train the 
machine learning models. Among the dental size-related variables, the mesio-distal size of the lower first molar 
demonstrated higher relevance in three out of the four evaluated models (Fig. 1). The mandibular ramus height 
(Co–Go) exhibited the greatest predictive capability in three out of the four analyzed models among mandibular-
related variables (Fig. 1). The performances of the tested predictive models, along with the hyperparameters 
considered optimal for each model, are detailed in Table 2.

Analysis of the models’ accuracy revealed a variation ranging from 0.64 to 0.74 during the cross-validation 
stage, while for the test data, this variation ranged from 0.58 to 0.79. The logistic regression model exhibited the 
highest average performance, with an area under the curve (AUC) of 0.84 (Fig. 2).

Discussion
Some methods that explore sexual dimorphism are based on the structures belonging to the craniofacial com-
plex, including  mandibular9 and teeth  measurements14. It is well known in the literature that the craniofacial 
complex exhibits significant sexual  dimorphism26,27 and that these traits can facilitate accurate sex determina-
tion. Although the use of craniofacial  landmarks8–11,13 and measurements from orthodontic  records7 have been 
used for sexual discrimination for decades, it is important to emphasize that our study brings new models once 
combined mandibular measurements, dental measurements, and artificial intelligence to explore this issue.

Sex determination is essential in various disciplines, including anthropology and forensic. In forensic it is a 
primary task when dealing with human skeletal remains. However, the understanding of the phenotypes that pre-
sent sexual dimorphism in humans also brings some clues in the etiological mechanisms involved in these traits. 
Characteristics with a remarkable sexual dimorphism are phenotypic expression of chromosomal, gonadal, and 
hormonal level. It is well known that sex chromosomes are involved in dental tissues  formation28,29. Studies with 
different designs concluded that tooth development is, in part, controlled by sex-related genes. Consequently, 
structures of human permanent dentition exhibit sex differences. Previous studies support that the maxillary 
and mandibular canine show the largest dimension variation of sexual  dimorphism8,13. In our study, although 
mesio-distal size of the canines presented a strong statistical difference among sexes, the lower first molar exhib-
ited greater predictive capability, demonstrating higher relevance in three out of the four evaluated models.

One important limitation that should be emphasized in our study is that different from dental measurements, 
in which mesio-distal sizes do not change according to the age, mandibular measurements vary according to the 
age. Sexual dimorphism reaches full expression after puberty, due to the influence of androgens and  estrogens30. 
The sample used here to create the model included mainly teenagers and adults. Although some variability in the 
mandible size according to the age might exist, this is reduced due the fact that young children were not included. 
The age range of our sample has a significant role in the generalizability and applicability of the developed model. 
Although the age variation could reduce the accuracy of the model due to the complexity added to the identi-
fication of the patterns of different ages, it is important to highlight that this inclusion reflects the reality of the 
target population, specially in the forensic practice. Therefore, although the age range might have impacted the 
model’s accuracy, it increased the external validity and reflects its capability in different unknown environments.

The determination of sex and identification of population affinity are two important aspects of forensic inves-
tigation. In our study, an orthodontic population from a southeast region of Brazil was investigated. Different 
from the pelvic bone, the main disadvantage of the skull is that sexual dimorphism of the craniofacial complex 
structures is population  specific31. Therefore, it is important to emphasize that this is a preliminary study that 
focused only on a specific Brazilian sample and that this study should be replicated in different populations. The 
fact that an orthodontic sample has been used should also be highlighted. Although other previous studies also 
used orthodontic sample to investigate sex  discrimination7, conventional two-dimensional lateral cephalometric 
analysis present limitation in finding accurate measurement point due to overlapping of some bony structures.

Several previous studies extensively studied permanent human dentition to estimate  sex8 with inconsistent 
 findings6. Therefore, in our study mandibular measurements were added to increase the estimation accuracy 
level. Like this study, previous results investigated the sexual dimorphism of some parameters such as mandibular 
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ramus length, ramus width, and gonial  angle11. In a previous  study32 the mandibular ramus, presented a large 
difference among sexes. Another  research33 tried to determine sex using the mandible and they concluded that 
although different tendencies exist between the mandible of males and females, the extent of these differences 
is not enough to predict the sex of a single individual.

It is also important to mention that models to evaluate sex, covers many metric and non-metric parameters. 
However, in our study only metric parameters were included to avoid subjectivity. An important aspect to empha-
size is the use of machine learning techniques to enhance the accuracy of our analyses. Machine learning is a 
subset of artificial intelligence that relies on algorithms to predict outcomes based on datasets. The primary goal 
of machine learning is to enable machines to learn from data and solve problems without human  intervention7,20. 
Previous studies evaluated craniofacial traits to estimate sex using artificial intelligence. Toy et al.20 and Toneva 
et al.21 investigated computerized tomography (CBCT) images of the cranium and used parameters of the whole 
skull. Baban et al.24, also used CBCT to test the accuracy of the sex identification based on linear and volumetric 
measurements of the mandible. Senol et al.25 evaluated canines and molars measurements using CBCT for sex 
determination, while Anic-Milosevic et al.7 used dental cast from orthodontic records and used dental measure-
ments for sex determination. Although their data showed a good accuracy, none of these previous studies added 

Table 1.  Mandibular and dental measurements according to the sex.

Measurement n Mean (SD) P value Power test

Mandibular Length (Co–Gn)

 Male 53 118.63 (13.18)
0.006 0.78

 Female 55 112.72 (8.18)

Mandibular body length (Go–Pg)—mm

 Male 53 69.20 (8.84)
0.121 0.30

 Female 55 66.84 (6.77)

Mandibular ramus height (Co–Go)—mm

 Male 53 60.75 (8.71)
< 0.001 0.96

 Female 55 55.40 (5.62)

SNB

 Male 53 81.41 (5.69)
0.052 0.50

 Female 55 79.53 (4.08)

Mandibular divergence—Y-axis (S.Gn–SN)

 Male 53 58.6 (4.8)
0.015 0.70

 Female 55 60.9 (4.7)

Upper incisors

 Male 53 8.07 (0.49)
< 0.001 0.95

 Female 55 7.69 (0.58)

Upper canines

 Male 53 7.91 (0.50)
0.004 0.85

 Female 55 7.59 (0.60)

Upper premolars

 Male 55 7.08 (0.51)
0.011 0.74

 Female 53 6.82 (0.52)

Upper first molars

 Male 53 9.99 (0.53)
< 0.001 0.98

 Female 53 9.57 (0.51)

Lower incisors

 Male 52 5.91 (0.38)
0.009 0.75

 Female 54 5.71 (0.39)

Lower canines

 Male 52 7.14 (0.49)
< 0.001 0.99

 Female 54 6.59 (0.44)

Lower premolars

 Male 51 7.39 (0.69)
0.031 0.61

 Female 54 7.10 (0.63)

Lower first molar

 Male 50 11.29 (0.69)
< 0.001 0.99

 Female 53 10.68 (0.58)
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dental and craniofacial measurements in the same model. To the best of our knowledge, our study was the first 
to include bone and teeth measurements.

In our study, current estimates reveal a good overall accuracy of the model, especially for the logistic regres-
sion model. However, when considering metrics beyond AUC, it is observed that the precision values of this 
model were lower compared to the KNN and SVM models. It is also noteworthy that all metric values showed 
a decrease in cross-validation results. These findings align with the precision of previous  studies25,34,35, which 
employed larger samples combined with Machine Learning and Deep Learning techniques. This suggests a 
promising outlook for the model built in this study. One important aspect to be highlighted is the age heteroge-
neity of the sample. Although this heterogeneity can impact the model accuracy because mandibular size ranges 
according to the age, this sample variability reflects the forensic reality, in which remains of subjects of different 
ages are analysed. The sample size is one of the limitations of the present study; however, the variables included in 
the model showed adequate statistical power and demonstrated statistical significance in the univariate analysis.

It is plausible to hypothesize that a more precise model could be achieved with a more homogeneous sample 
and a larger sample size. Briefly, the findings and the design of this study may contribute to the knowledge of 
different fields, such as anthropology, forensic science, orthodontics, and craniofacial biology, providing valuable 
insights for research and practical applications.

Methods
This cross-sectional study evaluated orthodontic records from patients in treatment at the School of Dentistry 
of Ribeirão Preto, University of São Paulo. This study was conducted in accordance with the Declaration of Hel-
sinki and approved by the Human Ethics Committee of the School of Dentistry of Ribeirão Preto, University of 
São Paulo, São Paulo, Brazil (3.150.551). Informed consent was obtained from all patients/children and/or their 
parents/legal guardians (in the case of minors).

The studied samples are orthodontic Brazilian patients from Ribeirão Preto, a city with an estimated popula-
tion of 720,216 inhabitants in 2010, located in São Paulo state. Ribeirão Preto is a city with an admixed popu-
lation, in which they self-report their ethnicity as: 69.8% European ancestry (mainly Portuguese and Italian 
ancestry), 6.4% African ancestry (mainly west central Africa), 0.9% Asian ancestry (mainly East Asia and Middle 
Eastern), 0.1% Indigenous Peoples, and 22.8%  mixed36.

Lateral cephalograms and dental casts of the maxilla and mandible were used for analyses. Records from 
individuals with underlying syndromes or congenital alterations were not included in this study.

Study variables and data collection
Tracings from lateral cephalograms were conducted by a proficient and calibrated orthodontist as previously 
 described37. The following linear and angular mandibular measurements were evaluated: mandibular total length 
(Co–Gn), mandibular body length (Go–Pg), mandibular ramus height (Co–Go), Steiner’s SNB angle, and the 
Y-axis (S.Gn–SN).

Figure 1.  Results of feature importance analysis from four machine learning models. (A) Gradient Boosting 
Classifier, (B) Logistic Regression, (C) Decision Tree, (D) Random Forest Classifier.
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Dental casts from maxilla and mandible were used to measure the maximum crown dimensions of permanent 
teeth in the mesio-distal direction. Only fully erupted teeth, without proximal dental caries or restoration, or 
significant crown abnormality were evaluated. Teeth mesio-distal size was defined as the maximum distance 
between the mesial and distal anatomical proximal contact points of the tooth on a line perpendicular to the long 
axis of the tooth crown. Second and third molars were not included. Only one previously calibrated operator 
measured all teeth. Each tooth was measured twice, and the arithmetic means were calculated for further analy-
ses. If measurements differed by more than 0.2 mm, the measurements were repeated as previously  described15,16.

An adequate intra-examiner reproducibility was observed for the skeletal and dental measurements 
 performed15,16,38.

Data analysis and model construction
For selection of the variables to be included in the supervised machine learning model, a univariate analysis using 
the Student’s t test for independent samples was initially performed (α = 0.05). The power of the test obtained for 
each comparison was calculated using the statistical software GPower version 3.1.9.6.

Prior to model construction, data preprocessing and cleaning were performed. Outliers were identified to 
provide a deeper understanding of the dataset. These steps were undertaken to prepare the data for subsequent 
analysis. In order to reduce the dimensionality of the data and mitigate the influence of multicollinearity on 
predictive models (due to the similarity between dental groups and their respective contralateral groups), the 
average dental size was calculated for each dental group. Thus, teeth from the same arch, belonging to the same 
dental group, were aggregated into a single input variable for the analysis.

Table 2.  Summary of metrics obtained for the cross-validation and test stages of the models, along with their 
respective optimal hyperparameters.

Model Optimal hyperparameters (random_state = 42) Cross-validation results (cv = 3) Test data results

Logistic regression

C: 0.001 Accuracy = 0.74 Accuracy = 0.79

max_iter: 50 Precision = 0.74 Precision = 0.82

penalty: l2 Recall = 0.74 Recall = 0.79

l1_ratio: 0.2 F1-Score = 0.74 F1-Score = 0.79

solver: liblinear

Gradient boosting classifier

n_estimators: 2000 Accuracy = 0.67 Accuracy = 0.71

learning_rate: 0.1 Precision = 0.67 Precision = 0.74

criterion: friedman_mse Recall = 0.67 Recall = 0.71

max_depth: 3 F1-Score = 0.67 F1-Score = 0.71

loss: deviance

K-nearest neighbors

n_neighbors: 10 Accuracy = 0.71 Accuracy = 0.75

weights: distance Precision = 0.73 Precision = 0.85

leaf_size: 1 Recall = 0.71 Recall = 0.75

p: 10 F1-Score = 0.70 F1-Score = 0.75

Support vector machine

kernel: linear Accuracy = 0.70 Accuracy = 0.75

C: 0.1 Precision = 0.71 Precision = 0.85

gamma: auto Recall = 0.70 Recall = 0.75

F1-Score = 0.68 F1-Score = 0.75

MLPClassifier

activation: tahn Accuracy = 0.69 Accuracy = 0.66

alpha: 0.01 Precision = 0.68 Precision = 0.71

hidden_layer_sizes: 10 Recall = 0.69 Recall = 0.67

learning_rate_init: 0.01 F1-Score = 0.68 F1-Score = 0.67

max_iter: 100

solver: lbfgs

Decision tree

criterion: entropy Accuracy = 0.64 Accuracy = 0.58

max_depth: none Precision = 0.64 Precision = 0.63

splitter: random Recall = 0.64 Recall = 0.58

F1-Score = 0.64 F1-Score = 0.59

Random forest classifier

max_depth: none 10 Accuracy = 0.73 Accuracy = 0.62

n_estimators: 50 Precision = 0.73 Precision = 0.66

min_samples_split: 2 Recall = 0.73 Recall = 0.62

min_samples_leaf: 4 F1-Score = 0.73 F1-Score = 0.63

criterion: entropy

max_features: auto
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For the construction of predictive models, the following supervised machine learning algorithms were trained: 
Logistic Regression, Gradient Boosting Classifier, K-Nearest Neighbors (KNN), Support Vector Machine (SVM), 
Multilayer Perceptron Classifier (MLP), Decision Tree, and Random Forest Classifier (Fig. 3). For each model, 
the Grid Search method was employed, entailing the systematic evaluation of predefined hyperparameter com-
binations, thus facilitating the identification of the optimal configuration for each model.

Training, cross‑validation, and test
To build predictive models, 75% of the dataset was allocated for both model training and cross-validation 
implementation. The remaining 25% was set aside for evaluating the predictive capacity of each model. The data 
was split into training and testing sets using the ’train_test_split’ function from the ’sklearn.model_selection’ 
library. The performance assessment, using the k-fold cross-validation technique, involved splitting the data into 
k subsets, with the model being trained k times. In each iteration, k-1 subsets were used for training, and the 
remaining subset was used for validation. This approach facilitated the calculation of the average cross-validation 
results, resulting in a more reliable estimate of the model’s performance concerning unseen data. In this study, 
a threefold cross-validation approach was adopted to validate each model.

Additionally, for each predictive model, the AUC were computed, and ROC curves were constructed. This 
involved calculating the false positive rate (FPR) and true positive rate (TPR), as well as the area under the 
ROC curve (AUC). Metrics such as accuracy, recall, precision, and F1 Score were calculated for each model. 
Furthermore, the feature importance evaluation function from the Scikit-learn library was employed to visually 
identify the most relevant variables in each model’s formulation. This step is important for understanding which 
features have a greater influence on the model’s predictive ability. However, this evaluation was not conducted 
for the KNN, SVM, and MLP models due to the specificities of these algorithms, which do not operate with this 
function. The entire analytical process was conducted using the Python programming language (Supplementary 
Data 1) within the Google Colab environment.

ROC curves were plotted for the different predictive models using the ’matplotlib.pyplot’ library. Each curve 
represents the trade-off between the true positive rate (sensitivity) and the false positive rate (1-specificity) across 
different threshold values. The area under the ROC curve (AUC) was calculated for each model, providing a 
measure of its overall performance in binary classification tasks.

Figure 2.  Evaluation of Classification Models using ROC Curves. LR Logistic Regression, SVM Support Vector 
Machine, KNN K-Nearest Neighbors, GB Gradient Boosting, MLP Multilayer Perceptron, RF Random Forest, 
DT Decision Tree.
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Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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