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Lead exposure can have serious consequences for health and development. The neurological and 
behavioral effects of lead are considered irreversible. Young children are particularly vulnerable to 
lead poisoning. In 2020, Pure Earth and UNICEF estimated that one in three children had elevated 
blood lead levels above 5 µg/dL. The sources of lead exposure vary around the world and can range 
from household products, such as spices or foodware, to environmental pollution from nearby 
industries. The aim of this study was to analyze common products from markets in low‑ and middle‑
income countries (LMICs) for their lead content to determine whether they are plausible sources 
of exposure. In 25 LMICs, the research teams systematically collected consumer products (metal 
foodware, ceramics, cosmetics, paints, toys, spices and other foods). The items were analyzed on site 
for detectable lead above 2 ppm using an X‑ray fluorescence analyzer. For quality control purposes, a 
subset of the samples was analyzed in the USA using inductively coupled plasma mass spectrometry. 
The lead concentrations of the individual product types were compared with established regulatory 
thresholds. Out of 5007 analyzed products, threshold values (TV) were surpassed in 51% for metal 
foodware (TV 100 ppm), 45% for ceramics (TV 100 ppm), and 41% for paints (TV 90 ppm). Sources of 
exposure in LMICs can be diverse, and consumers in LMICs lack adequate protection from preventable 
sources of lead exposure. Rapid Market Screening is an innovative, simple, and useful tool to identify 
risky products that could be sources of lead exposure.
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ppm  Parts per million
RMS  Rapid market screening
WHO  World Health Organization
XRF  X-ray fluorescence
UN  United Nations
UNEP  United Nations Environment Programme
US  US Consumer Product Safety Commission

Lead is a highly toxic substance especially impacting children’s  health1. The neurological and behavioral effects of 
lead are considered to be  irreversible1,2. Young children are particularly susceptible to lead poisoning. Children 
absorb up to 4 times better lead compared to adults, their organ systems, especially their cognitive system is still 
developing and is negatively  affected1. In 2021, the World Health Organization (WHO) published guidelines on 
management of lead exposure and recommended that a blood lead level of 5 µg/dL in children should trigger an 
intervention, although it should be noted that there is no known safe level of lead in  blood3. In 2020, Pure Earth 
and UNICEF estimated that one in three children globally suffer from elevated blood lead levels above 5 µg/dL, 
especially in lower income  countries4. The Toxic Truth Report highlighted a number of consumer goods that 
can contribute to lead poisoning, many of which were included in the Rapid Market Screening (RMS)  study4.

There are multiple lead exposure pathways, from consumption of lead-contaminated dust near industrial 
hotspots, to ingestion of lead-contaminated paint chips to lead-adulterated  spices2,5–8. Prior studies have identi-
fied lead contamination in a variety of consumer products such as paints, ceramics, spices, foodware, traditional 
medicines, and  cosmetics1,2,8–13. However, the geographic variability and overall distribution of lead in these 
potential exposure sources have not been adequately characterized, particularly in low- and middle-income 
countries (LMICs). Given that lead exposure sources can vary considerably by location, it is important to identify 
local sources of lead exposure, especially for young children and particularly within their homes. Local exposure 
source assessments are important allowing for more accurate interventions that are designed specifically to tar-
get local priority sources, allowing for greater effectiveness and efficiency than interventions that are designed 
without local data.

Therefore, the aim of this study was to systematically analyze products in a range of LMICs for lead. Ulti-
mately, we wanted to determine which product types are more likely to contain lead and how lead concentrations 
vary around the world. More specifically, the research questions were as follows:

• What is the geographic distribution of lead concentrations among product types identified as containing lead 
in previous studies in the selected countries?

• How do the lead concentrations in each product type compare to available regulatory standards or health 
guidelines?

Methods
The research team developed a “Rapid Market Screening” protocolled by some of the authors (EN, AS, GB, JF), 
former Pure Earth Senior Director of Programs Petr Sharov and other Pure Earth staff with external expert 
review prior to implementation (see Supplement A). The protocol describes the information to collect about each 
market, vendor, and item, and includes standardized analytical approaches for each product type.

Country selection
The overall goal was to select 25 geographically diverse LMICs, including at least one country from each of the 
six World Bank-classified regions that represent the majority of LMICs: Africa, Middle East and North Africa, 
East Asia and the Pacific, South Asia, Europe and Central Asia, and Latin America and the Caribbean. Within 
each of these regions, candidate countries were listed and weighted for inclusion based on several factors:

• Prioritizing countries with evidence of a high prevalence and/or severity of childhood lead  poisoning14. For 
this purpose, an extensive literature review was performed.

• Within each global region, balancing a mix of countries with and without evidence of lead-tainted products 
(or countries that are hypothesized to sell these products based on cultural similarities).

• Priority was given to countries in which Pure Earth employees or its partners have capacities and in which 
there is sufficient geopolitical stability to be able to work there safely.

The countries were evaluated on the basis of the above-mentioned characteristics and ultimately selected 
by the project team in a discourse. Consequently, a total of 25 countries, including India (Fig. 1), were chosen 
for the study. However, recognizing the vast size and diversity of India, the sampling strategy focused on three 
geographically distinct states within the country. As such, the study covered 27 locations, including Armenia; 
Azerbaijan; Bangladesh; Bolivia; Colombia; Egypt; Georgia; Ghana; the Indian states of Maharashtra, Tamil 
Nadu, and Uttar Pradesh; Indonesia; Kazakhstan; Kenya; Kyrgyzstan; Mexico; Nepal; Nigeria; Pakistan; Peru; 
the Philippines; Tajikistan; Tanzania; Tunisia; Turkey; Uganda; and Vietnam).

The cities were samples were selected were:

• Ghana – Cape Coast, Koforidua, Kumasi
• Maharashtra (India) – Kolhapur, Nagpur, Pune
• Uttar Pradesh (India) – Gaziabad, Lucknow, Prayagraj



3

Vol.:(0123456789)

Scientific Reports |         (2024) 14:9713  | https://doi.org/10.1038/s41598-024-59519-0

www.nature.com/scientificreports/

• Tamil Nadu (India) – Kancheepuram, Namakkal, Tiruvallur
• Indonesia – Makassar, Medan, Surabaya
• Bangladesh – Barisal, Khulna, Rajshahi
• The Philippines – Sebu, Davao, Mabalacat, San Fernando
• Colombia – Barranquilla, Bogota, Bucaramanga, Cali
• Tajikistan – Bokhtar, Dushanbe, Khudjand, Kulyab
• Kyrgyzstan – Bishkek, Cholpon-Ata, Osh
• Kazakhstan – Saryagash, Shymkent, Turkestan
• Georgia – Mestia, Tbilisi, Zugdidi
• Armenia – Gyumri, Vagharshapat, Vanadzor
• Mexico – Cuautia, Huazulco, Puebla, Toluca
• Peru – Callao, Cusco, Lima, Pucallpa
• Tanzania – Arusha, Dar Es Salaam, Mwanza
• Bolivia – Cochabamba, La Paz, Oruro
• Egypt – Alexandria, Cairo, Giza
• Kenya—Kisumu, Mombasa, Nairobi
• Tunisia—Sfax, Tataouin, Tunis
• Nigeria—Abuja, Lagos, Port Harcourt
• Uganda—Kampala, Lira, Mbarara
• Pakistan – Karachi, Lahore, Rawalpindi
• Nepal – Biratnagar, Kathmandu, Neplagunj
• Azerbaijan – Baku, Ganja, Imishli
• Vietnam – Da Nang, Dong Ha, Nam Dinh
• Turkey – Ankara, Bursa, Eskisehir

Product selection
The general types of products sampled were selected following a series of global desk assessments that reviewed 
literature on lead concentrations in a variety of products in  LMICs14–17. An initial list of product types and a 
sample desk assessment were then provided to the researchers in the countries. The initial list was designed to 
examine common items across geographies, but also allowed for flexibility based on local contexts. The research-
ers chose any relevant items for their countries, supporting their point with references (both published and 
unpublished), and carried out initial product screening. Based on this formative research, eleven product types 
were selected for analysis: ceramic foodware, metal foodware, plastic foodware, cosmetics, toys, paints intended 
for large surfaces, paints for art and crafts, spices, sweets, staple dry foods, and traditional and herbal medicines.

Product sampling
Sample collectors in each country selected in at least three or four geographically diverse cities, and selected, 
when possible, at least one wholesale bazaar and one retail market in each city to purchase items. Within each 
market, sample collectors interviewed the sellers and purchased items from at least two vendors. There are 

Figure 1.  Countries in which the study was conducted.
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different probabilities of lead contamination between whole, unprocessed spices and processed or powdered 
spices as well as between loose and packaged spices. We opted for the loose processed spices to reduce the 
likelihood of getting an invalid result due to technical detection issues if there was indeed a problem. Loose 
processed spices were usually more homogeneous in composition compared to whole or unprocessed spices. The 
homogeneity reduced the risk of variability and led to more consistent samples. Samples were collected between 
September 2022 and May 2023.

Product analysis
The primary screening tools used for the study were portable X-ray fluorescence analyzers (XRF). The portable 
XRF machine is a valuable screening device for this type of study because it is easy to use, field portable, and 
gives immediate results that are comparable to laboratory data. Once an XRF device has been purchased, there 
are few consumable costs, with the exception of ancillary supplies like gloves, bags and labels. The protocol out-
lined how to prepare each item for testing and specified the number of XRF readings required for each item. In 
every country except Bangladesh, samples were analyzed with a Thermo Scientific Niton XL3T XRF, using the 
“Test All” mode, which is designed for consumer goods. In Bangladesh, an Olympus Vanta Series C was used 
in “Soil” mode, with a subset of those items later also tested with a Thermo Scientific Niton XL3T for confirma-
tion purposes and uniformity of data acquisition. The testers were instructed in the provided protocols and 
in on-line training sessions to regularly check the accuracy of the XRF using the provided "standard" samples 
with known lead concentrations. Investigators were instructed to check calibration standards at the beginning 
of the day, anytime the instrument has been off for 30 min, and at the end of each session. All data collected by 
the investigators was entered into a central database using the platform SurveyCTO. Subsets of samples from 
each country were sent to Pure Earth’s Headquarters in New York for quality control (see Supplement B) which 
consisted of confirmatory testing of 354 representative samples by a certified laboratory and spot checking of 
field XRF results using the provided protocols and Thermo Scientific Niton XL3T XRF. Local versus New York 
XRF measurements generally compared well except in the cases of sample heterogeneity (e.g. toys with differ-
ent colored paints). New York XRF and laboratory data also indicated issues with the field XRF readings from 
Tajikistan and Kazakhstan, which limited the data from these countries to samples that were sent to New York. 
Literature shows a XRF and laboratory devices results correlate well in case of soil and sediment samples, however 
there is not much research done in consumer  items18,19. For certain product types, especially powdered spices, 
XRF lead levels correlated strongly with laboratory results, with correlation coefficients (R2) ranging from 0.70 
to 0.98 for plastic toys, cosmetics, plastic foodware and spices. For other product types, however, the agreement 
between XRF values and laboratory results is not well documented and may depend on the form and prepara-
tion of the sample. Literature shows that XRF and laboratory devices results do well correlate in case of soil and 
sediment samples, however there is not much research done in consumer  items20.

Statistical methodology
The values were determined using the XRF; they were recorded in Survey CTO, and the statistical analysis was 
conducted in Microsoft Power BI. Minimum, maximum, quartile and median levels of lead in various products 
were determined. There was a significant portion of the XRF results below the XRF’s lower limit of detection 
(LOD). LOD refers to the minimum concentration of an element detectable with reasonable confidence. It signi-
fies whether an element is present or absent, without guaranteeing the accuracy of the obtained value. Typically, 
the LOD is quantified as three standard deviations (or 1.5 times the reported measurement error) observed in 
a sample containing either none or only a trace amount of the analyte. For this reason, and since the data was 
skewed to the left, we do not report mean, but median values. For product types that were expected to be largely 
homogenous, such as ground spices or paint samples, researchers were requested to take only one reading. 
For product types with the potential for a high level of heterogeneity, such as toys, ceramics, which could have 
multiple colors glazes, or metal foodware, which could have components like rivets, researchers were requested 
to take between 3 and 5 readings. Due to this potential for heterogeneity and the lack of certainty of how each 
reading would contribute to the exposure profile for that item, the highest of the readings for a given item was 
used in the analysis. Furthermore, where there are existing regulations for the items included in the study, these 
regulations apply to all components of an item, rather than an average.

Reference values
To provide context to the concentrations of lead found in the various products, a “reference level” for each prod-
uct type was selected. These reference levels serve as thresholds indicating where United Nations (UN) agencies 
including WHO or particularly well-resourced regulatory authorities have established public health guidance, 
a level of concern, or a regulatory limit for lead in each product class. Although countries often have unique 
standards for lead concentrations in different products, a uniform reference level for each product type was 
applied for this study to facilitate comparisons across  countries21. The inclusion of uniform reference levels is not 
a suggestion that any one guidance value or regulatory standard is superior to any other, or that concentrations 
below the reference levels are safe. Rather, the reference levels used here are simply an attempt to contextualize 
concentrations and highlight particularly concerning results. We selected existing regulatory standards and guid-
ance values promulgated by UN agencies, the European Union (EU), and the United States (US), prioritized in 
that order. We could not identify existing reference levels for total lead in foodware (items used to cook, serve, 
consume, and store food). While standards for leachable lead from foodware exist, field testing of leachable lead 
in foodware was not possible. We engaged in a substantial effort to test the degree to which lead leaches from 
metal foodware (mostly aluminum) with a variety of lead concentrations under various cooking scenarios. 
Results of leachate testing are unpublished as of February 2024, but are being prepared for publication. For this 
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assessment a reference level of 100 ppm of total lead for all types of foodware was applied. This reference level 
for total lead is not based on an existing regulatory standard, and lead doses per use likely vary between product 
types of foodware, and indeed between individual products. The lead dose per use is likely also affected by the 
type of food prepared, the method and duration of cooking, and other contextual factors. In the absence of any 
available standards for total lead content for these product types of foodware, we used the US Consumer Product 
Safety Commission total lead standard for “children’s products’’ (also used in this study for the product type of 
toys). The use of 100 ppm total lead as a conservative threshold is supported by leaching tests on over 100 metal 
foodware items, which indicated that pots with total lead below 100 ppm leached less than the World Health 
Organization (WHO) drinking water standard of 10 ppb (17 out of 18 pots tested)22.

Reference levels and measured lead levels in this study are expressed in parts per million (ppm), which is 
equivalent to milligrams per kilogram (mg/kg). The following reference values used in this study are listed in 
Table 1.

Results
This study analyzed a wide variety of consumer products and materials. Samples included both small batch, 
informally produced items, as well as large-scale, commercially produced items. There are 382 shopping venues 
where sampling took place (markets, shopping areas, malls, stores). For metal foodware, total lead levels in 51% 
of the 520 samples collected were above the reference level of 100 ppm. In 17 locations (countries or, in the case 
of India, states), even median levels exceeded the reference level and in 9 locations the maximum level exceeded 
10,000 ppm (see Supplement D). Of the items in the metal foodware product type that were found to be above 
the reference level, 69% were pots and pans, 17% were vessels for food or water not intended to be exposed to 
direct heat, and 14% were cooking utensils. Across all item types, 57% of the items found to be above the refer-
ence level were reported to be made of or labeled as aluminum or aluminum alloys. For 35% of the items, we 
were not able to determine the metal composition based on the item description or label. Other metal types—
including brass, copper, and iron alloys—made up the remaining 8% of samples found to be above the reference 
level. Leachate testing was conducted on more than 100 pots from 25 countries and 5 regions in the US. Lead 
levels above 100 ppm were common across all regions, indicating the potential to leach lead above the 10 ppb 
WHO drinking water standard. Notably the 100 ppb threshold could result in a blood lead level of around 0.5 
ug/dL based on the US EPA’s IEUBK model, assuming daily intake of 250 g of food at this lead concentration. 
For ceramic foodware, high lead levels were common across all regions (see Supplement D), with 45% of 308 
samples above reference level of 100 ppm. In 11 locations, the median sample exceeded the reference level, sug-
gesting that contaminated items are common. In 25 of the study locations (all but Pakistan and Uttar Pradesh 
State, India), the maximum lead level was more than 10 times the reference level (see Supplement D). Out of 
364 plastic foodware samples, 12% showed lead levels exceeding the reference level of 100 ppm. Unlike ceramic 
and metal foodware, for which many countries had samples with maximum concentrations above 10,000 ppm, 
all samples of plastic foodware were below 3300 ppm.

For paints, high lead concentrations were prevalent in new paints even among countries that have already 
adopted a 90 ppm limit (see Supplement D). The paint samples were divided into two product types: paints 

Table 1.  Reference level per product type in ppm. (1) As explained in the text above, Pure Earth (PE) applied 
100 ppm as reference level for foodware; (2) EU regulations state that cosmetics cannot contain heavy metals. 
They provide exceptions for unavoidable concentrations but do not define these. The German Office of 
Consumer Protection and Food Safety (BFV) states that for most cosmetics, levels above 2 ppm are  avoidable23; 
(3) The 100 ppm limit we used is from the US Consumer Product Safety Commission (US CPSC)24. There is a 
much lower EU standard but it is the amount of lead that can migrate from the toy as opposed to the total lead 
standard from the  US25. The EU has a toy standard, but it is a “migration” standard that measures lead leaching 
from products during an acid bath and is not applicable to XRF measurements of total lead; (4) UNEP “Model 
Law and Guidance for Regulating Lead Paint”26; (5) The EU has several regulatory levels that apply to various 
spice types , 2 ppm is the  highest27; (6) US Food and Drug Administration (FDA): Lead in  Candy28; (7) Food 
and Agriculture Organization of the United Nations (FAO) – Codex Alimentarius—General Standard for 
Contaminants and Toxins in Food and  Feed29; (8) World Health Organization (WHO): WHO guidelines for 
assessing quality of herbal medicines with reference to contaminants and  residues30.

Product type Reference level [ppm] Reference

Ceramic foodware 100 PE (1)

Metal foodware 100 PE (1)

Plastic foodware 100 PE (1)

Cosmetics 2 EU/BFV (2)

Toys 100 US CPSC (3)

Paint 90 UNEP (4)

Spices 2 EU (5)

Sweets 0.1 US FDA (6)

Staple dry foods 0.2 FAO (7)

Herbal/traditional medicines 10 WHO (8)
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intended for use on large surfaces, such as interior and exterior walls, and paints intended for crafts, art, and 
other specialty uses. This division was based on the recognition that exposure pathways may be different between 
wall paints, where exposure likely results from deteriorating paint that becomes dust, and specialty paints, where 
exposure may be more directly related to the application of the paint or use of the painted product (e.g. a toddler 
getting art paints in the mouth or mouthing a painted toy). Note that we were not able to determine the primary 
purpose of all paint samples collected, and therefore we have included an additional “unclassified” product type 
category. We also note that the protocol for testing paint was amended during the RMS study to specify testing 
only dried paint samples as opposed to allowing analysis of wet samples. In total, 41% of the 437 samples of 
paint for large surfaces were above reference level of 90 ppm. Out of 70 samples of paint for crafts, art, and other 
specialty uses, 11% showed lead levels exceeding 90 ppm. Among 102 paint samples not classified, 47% showed 
lead concentrations exceeding 90 ppm. More than half of the study locations (14 of 27) had maximum lead con-
centrations exceeding 10,000 ppm, while 10 locations had samples exceeding 20,000 ppm (see Supplement D).

For toys, high lead levels above the reference level of 100 ppm were found in 13% of 781 samples tested. This 
product type encompasses a variety of hard toys, composed primarily of plastic items, but also including metal, 
wood or other materials. Some of these toys were also found to have paint or coatings on them, with lead con-
centrations either in the paint of the underlying substrate. In addition to the variety at the product type level, 
many toys were heterogeneous, made from a combination of materials. We found many toys to contain internal 
electronic or metal parts, which were responsible for some of the highest lead readings observed by XRF. Such 
readings may not necessarily best reflect the potential exposure risk for that item, as the reference level relates 
to “accessible parts” to children.

For cosmetics, 12% of the 812 samples were above reference level of 2 ppm, across many subcategories. The 
highest concentrations were reported in traditional eyeliners (see Supplement C). Cosmetics with elevated lead 
levels were found in 21 of the 25 countries (see Supplement D).

The two items with the highest lead concentration were both eyeliners, known as kajal or kohl, from Pakistan. 
These samples had concentrations of 637,600 ppm (64%) and one million ppm (100%) lead as assessed by XRF, 
with lower but still extremely high concentrations (29% and 32%) reported by confirmatory laboratory testing. 
In some cultures, kajal/kohl is applied to infants and children. The item with the third highest lead concentra-
tion of lead (128,400 ppm) was face paint intended specifically for children. Among the samples with elevated 
lead levels, the most common item was nail polish (29 items, maximum lead concentration of 6,751 ppm), fol-
lowed by lipstick (15 items, maximum lead concentration of 42,350 ppm), and eyeshadow (13 items, maximum 
lead concentration of 974 ppm). As noted above and in the Quality Control section (see Supplement B), some 
deviations were observed between the XRF and lab-based measurements of lead concentration at the highest 
concentrations among the cosmetics. Nevertheless, at such extreme concentrations, the risk is still significant 
even with a wide margin of error.

For spices, 2% of 1,084 samples were above reference level of 2 ppm. The highest concentrations were found 
in turmeric and blends (see Supplement C).

Less than 5% of herbal/traditional medicine (4%), sweets (3%) and staple dry food (1%) were above reference 
levels (for details see Supplement C).

In summary, out of a total of 5,007 product samples from 25 countries, 913 samples had concentrations of lead 
exceeding the relevant reference level based on XRF readings, representing 18% of all samples. Metal foodware, 
ceramic foodware, and paints most frequently exceeded the relevant reference levels (see Table 2).

In all 25 countries where this assessment was performed consumer products were identified that exceeded 
at least some reference levels (see Fig. 2).

The Table 3 is organized by country and shows percentages of samples of each product and food product type 
that exceeded the relevant reference level.

Table 2.  Distribution of lead concentrations and the distribution of highly lead-tainted samples above the 
reference level across the 11 product types, aggregated for all 25 countries. Results in ppm lead. ND “non-
detect”. The effective limit of detection was in general 2 ppm lead.

Product type Total # Minimum 25th percentile Median 75th percentile Maximum  > Reference level [%]

Metal foodware 520 ND ND 118 754 119,500 51

Ceramic foodware 308 ND ND 73 3665 397,100 45

Plastic foodware 364 ND ND ND ND 3289 12

Toys 781 ND ND ND 13 97,300 13

Cosmetics 812 ND ND ND ND 1,000,000 12

Paints – large surface 437 ND ND 1 1518 807,309 41

Paint craft/art 70 ND ND ND ND 93,500 11

Paint—unclassified 102 ND ND 10 3400 79,000 47

Herbal/traditional medicines 54 ND ND ND ND 31 4

Sweets 111 ND ND ND ND 5 3

Spices 1084 ND ND ND ND 622 2

Staple dry food 364 ND ND ND ND 17 1

Total N 5007
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In Table 4 the regional variation of the results is shown. There are regional trends detectable.

Discussion
Previous studies have highlighted elevated levels of total and leachable lead in metal foodware made in LMICs, 
particularly in inexpensive aluminum  foodware11,12,31,32. These pots are generally light, inexpensive, and have 
good conductivity, which helps conserve fuel usage. Such foodware has previously been found to be made from 
mixed scrap metal from engine parts, radiators, electronic appliances, and aluminum  cans31. In all countries, 
total lead levels were above the reference level of 100 ppm; in South East Asia 70% of the samples were above 
this level (see Table 4).

The leachable lead from these pots represents an exposure source through ingested food cooked in these 
pots. Pure Earth has conducted leachability testing of more than 100 aluminum foodware samples to improve 
our understanding of the allocation of leachable lead in LMICs and potential doses of lead per use. The results of 
the leachate investigations in aluminum foodware are currently being prepared for publication. Of the 102 pots 
tested, 45% had lead concentrations in the leachate exceeding 10 µg/L which could result in a blood lead level in 
children above 0.47 μg/dL based on modeling conducted using IEUBK. The highest leachate concentration found 
was 2900 μg/L in a pot from Indonesia, a concentration that could result in a BLL of about 45 μg/dL. The pots 
with the highest leachate concentrations were from South and Southeast Asia. We found a high frequency (45%) 
and relatively wide geographic distribution of lead in ceramic foodware (see Table 4). Challenges regarding the 
use of lead-based glazes have been well-documented in  Mexico9,33,34, and have been identified  elsewhere35, but 
the RMS study shows a fairly uniform geographic distribution of contaminated items. This does not necessarily 
mean that these pieces all contribute to exposure equally. As with all forms of foodware, a high lead concentra-
tion on exterior surfaces does not tell us how much lead is leaching into food. The type of glaze, temperature in 
which it is fired, types of food prepared or served, and ways in which the item is used can all affect leachability 
and thus  exposure36. Ceramics with high concentrations of lead were not limited to handmade, artisanal, or 
traditional pieces, but included mass-produced pieces that may have been imported to the country where they 
were purchased. The leachability of lead from various ceramic glazes produced and used under different condi-
tions is an area that requires further research that was beyond the scope of this study.

As of January 2024, 48% of countries in the world had legally binding controls on lead concentrations in new 
 paints37. Many of these have adopted regulations based on a model law establishing a maximum lead concentra-
tion of 90  ppm26. However, many of the paint samples analyzed through the RMS study that exceeded 90 ppm 
were collected from countries that have a 90 ppm regulatory limit. In eight of the countries (Colombia, Georgia, 
Kenya, Kyrgyzstan, Mexico, Pakistan, Philippines, Vietnam) and Indian States (Maharashtra, Tamil Nadu Uttar 

Figure 2.  Percentage of samples above reference level by country.
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Pradesh) were such regulations apply, more than 10% of paint samples had lead concentrations above 90 ppm 
(details see Supplement C). This suggests a considerable enforcement gap in these locations.

In cosmetics, in addition to high lead levels in kajal/kohl, elevated lead levels were found in other traditional 
products, including henna and kumkum (a red powder made of turmeric and other ingredients and used for 
social and religious purposes in India)38. Lead levels above the reference level were also found in a variety of 
conventional cosmetics, such as nail polish, lipstick, and eyeshadow as previously described, as well as face 
powder, mascara, eyeliner, liquid foundation/concealer, and hair  products23.

Previous studies have identified elevated lead levels in certain spices from countries around the Mediterra-
nean, the Caucasus, and South Asia, among  other39–43. In several countries, prior programs have confirmed that 
elevated lead concentrations were the result of producers adding lead-based pigments to spices to make their 
colors  brighter8. The RMS study was not designed to focus specifically on countries known to have contaminated 
spices, nor to focus solely on the types of spices that have been identified as more often contaminated. Rather, the 
RMS study includes a broad range of spice types from countries that were selected based on product-agnostic 
criteria. As a result, the findings generally show low levels of lead in spices. The minimum detection level for 
the XRF is often between 2 to 4 ppm for spices, and thus it is possible that some samples had a reading of “non-
detect” but exceeded the reference level of 2 ppm.

To our knowledge, this screening effort encompasses sampling from the widest range of consumer product 
types and geographies to date. Still, there are limitations in sample size for any given product type due to budg-
etary and logistical constraints. In some instances, there are only a few samples of a certain product type for a 
specific country. This study includes samples from 25 countries, which were selected at convenience. From each 
country, mainly three or four geographically diverse major cities were selected. The authors do not purport that 
these findings can be considered definitive for a country or region or globally, but they provide indications of 
potential sources of concern and hotspots geographically where supply chains do not effectively regulate for 
lead contamination.

Table 3.  Percent of samples exceeding reference level per product type and by country. *Results from 5 or 
fewer samples.

Region Country
Ceramic 
foodware

Metallic 
foodware

Plastic 
foodware Cosmetics Toys

Paint—large 
surfaces

Paints—
crafts/art Spices Sweets

Staple/dry 
foods

Herbal/trad 
medicine

Caucasus Armenia 36% 11% 6% 7% 3% 0% 0%* 4% NA 11% NA

Caucasus Azerbaijan 100% 63% 60%* 10% 69% 100% NA 0%* NA NA NA

Caucasus Georgia 48% 16% 0%* 0% 3% 50%* 7% 0% NA 0%* NA

C. Asia Kazakhstan NA NA NA 0%* 33%* NA NA 0% NA 0%* NA

C. Asia Kyrgyzstan 44% 19% 13% 15% 6% 33% NA 0% NA 0% NA

C. Asia Tajikistan 100%* NA NA 0%* 0%* NA NA 60%* NA 0%* NA

S.S. Africa Ghana 18% 55% 0% 7% 14% 0%* 0%* 0% NA 0% NA

S.S. Africa Kenya 62% 53% 25% 6% 3% 36% NA 0% NA 0% NA

S.S. Africa Nigeria 29% 66% 4% 18% 16% 76% NA 0% NA 0% NA

S.S. Africa Tanzania 67%* 35% 4% 3% 10% 7% NA 2% 3% 0% NA

S.S. Africa Uganda 8% 73% 20% 2% 0% 16% NA 0% NA 6% 100%*

L. America Bolivia 60% 54% 14% 46% 6% 0%* NA 0% 0%* 0% NA

L. America Colombia 50% 40% 24% 10% 12% 31% 11% 2% 0% 0% 0%

L. America Mexico 67% 25% 8% 7% 22% 93% NA 3% 4% 0% 0%*

L. America Peru 42% 69% 17% 9% 2% 10% 0% 2% NA 0% 0%*

MENA Egypt 50% 55% 13% 42% 4% 0%* NA 2% NA 0%* 0%

MENA Tunisia 56% 12% 4% 11% 4% 50% NA 0% NA 0% 17%

MENA Turkey 53% 67% 19% 100%* 29% 70% NA 25%* NA NA NA

S. Asia Bangladesh 44% 59% 9% 6% 13% 0%* 50%* 7% NA 17% NA

S. Asia Maharashtra, 
lndia 71% 63% 19% 3% 21% 19% 17% 0% NA 0% 0%*

S. Asia Tamil Nadu, 
India 50% 70% 14% 9% 23% 57% NA 0% NA 0% NA

S. Asia
Uttar 
Pradesh, 
India

0% 65% 0% 2% 24% 42% NA 12% NA 0%* 0%*

S. Asia Nepal 9% 100% 12% 0% 0% 0% NA 0% NA 0% 0%

S. Asia Pakistan 20%* 75% 8% 30% 13% 35% NA 9% 0% 0% NA

SE Asia Indonesia NA 60% NA 33% 10% 97% NA 0% NA 0% NA

SE Asia Philippines 13% 24% 0% 13% 6% 16% 0%* 0% NA 2% 0%

SE Asia Vietnam 29% 56% 0% 23% 7% 59% 50% 3% NA 0% 0%*



9

Vol.:(0123456789)

Scientific Reports |         (2024) 14:9713  | https://doi.org/10.1038/s41598-024-59519-0

www.nature.com/scientificreports/

Conclusion
This screening effort revealed elevated lead levels among multiple product types and across diverse geographies. 
Total lead in metal foodware exceeded the 100 ppm reference value in more than half of the metal foodware 
tested, with samples above the reference level in all 25 countries in this study. The situation is similar with total 
lead content in ceramic foodware. In both cases, it is the amount of lead leaching out of these items into food 
that represents a potential exposure source. XRF analysis of foodware for total lead is relatively cheap and simple, 
especially compared to heated leachate testing and associated laboratory costs for analysis with limited resources 
in LMICs. Further studies on leachability—especially of metal and ceramic foodware—are required to establish 
usable total lead reference values. A transfer factor for lead from foodware to food would allow more LMICs to 
better protect consumers from lead exposure from foodware.

The problem of lead paint is very well known, but as our results show existing national and international 
measures to eliminate lead in paint are not sufficient. In this study, we bought new paints on the markets 41% 
of which contained lead above the threshold value of 90 ppm. This means that lead-based paints are still being 
sold and used today to paint large surfaces in homes, exposing more generations to lead in the air and dust that 
is harmful to the development of the nervous system. Better lead paint laws need to be enacted and/or regula-
tions enforced. There is also a need to analyze the supply chains for cosmetics to determine where these high 
lead cosmetics come from and how they are traded to end up in local markets.

With so many consumer products in 25 countries containing significant amounts of lead, there is a clear 
global public health impact as lead from these products exposes pregnant women, infants, children, adolescents 
and adults. Few LMICs conduct large surveys or ongoing monitoring of children’s blood lead levels. The result is 
that there is little visibility into the prevalence, severity, and geographic distribution of lead poisoning for many 
countries. This study highlights the allocation of potential lead exposure sources and the importance of blood 
lead level surveillance and related source apportionment to prioritize product- and non-product lead exposure 
sources and their elimination in low- and middle income-countries.

Data availability
The RMS dataset supporting the conclusions of this article is) available in the Zenodo repository under https:// 
doi. org/ 10. 5281/ zenodo. 10444 602 and https:// zenodo. org/ recor ds/ 10444 602.
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