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Optimizing vitiligo diagnosis 
with ResNet and Swin 
transformer deep learning 
models: a study on performance 
and interpretability
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Vitiligo is a hypopigmented skin disease characterized by the loss of melanin. The progressive nature 
and widespread incidence of vitiligo necessitate timely and accurate detection. Usually, a single 
diagnostic test often falls short of providing definitive confirmation of the condition, necessitating 
the assessment by dermatologists who specialize in vitiligo. However, the current scarcity of such 
specialized medical professionals presents a significant challenge. To mitigate this issue and enhance 
diagnostic accuracy, it is essential to build deep learning models that can support and expedite the 
detection process. This study endeavors to establish a deep learning framework to enhance the 
diagnostic accuracy of vitiligo. To this end, a comparative analysis of five models including ResNet 
(ResNet34, ResNet50, and ResNet101 models) and Swin Transformer series (Swin Transformer 
Base, and Swin Transformer Large models), were conducted under the uniform condition to identify 
the model with superior classification capabilities. Moreover, the study sought to augment the 
interpretability of these models by selecting one that not only provides accurate diagnostic outcomes 
but also offers visual cues highlighting the regions pertinent to vitiligo. The empirical findings reveal 
that the Swin Transformer Large model achieved the best performance in classification, whose AUC, 
accuracy, sensitivity, and specificity are 0.94, 93.82%, 94.02%, and 93.5%, respectively. In terms 
of interpretability, the highlighted regions in the class activation map correspond to the lesion 
regions of the vitiligo images, which shows that it effectively indicates the specific category regions 
associated with the decision-making of dermatological diagnosis. Additionally, the visualization of 
feature maps generated in the middle layer of the deep learning model provides insights into the 
internal mechanisms of the model, which is valuable for improving the interpretability of the model, 
tuning performance, and enhancing clinical applicability. The outcomes of this study underscore 
the significant potential of deep learning models to revolutionize medical diagnosis by improving 
diagnostic accuracy and operational efficiency. The research highlights the necessity for ongoing 
exploration in this domain to fully leverage the capabilities of deep learning technologies in medical 
diagnostics.
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Skin diseases present a substantial healthcare challenge worldwide, with vitiligo standing out as one of the 
prevalent conditions. It is a dermatological condition characterized by the progressive loss of melanocytes, 
resulting in depigmentation of the skin. The progressive nature of vitiligo can profoundly impact patients’ physical 
and psychological well-being1. Consequently, prompt and accurate diagnosis is pivotal for facilitating effective 
treatment interventions.
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Various diagnostic methods, including dermoscopy, wood lamp examination, skin CT scans, and skin 
biopsies, are utilized in the diagnosis of skin conditions. Dermoscopy, in particular, affords comprehensive 
insights into the status of melanocytes and the distinctive characteristics of vitiligo  patches2,3. By recognizing the 
pigment cell loss or reduction and identifying structural changes within areas of depigmentation, it contributes 
to the diagnosis of vitiligo. Apart from this, skin biopsy and histological examination can also be employed to 
evaluate the condition of pigment cells and confirm the presence of vitiligo. Nevertheless, since skin biopsy is 
invasive, it is not used for routine diagnosis. Typically, the clinical diagnosis of vitiligo relies on a combination 
of physical examination, dermoscopy, and wood lamp examination. There is no single diagnostic test that 
conclusively confirms vitiligo, which requires the involvement of a dermatologist with expertise in vitiligo.

Unfortunately, there is a shortage of dermatologists and an unequal distribution of medical resources. In 
some remote areas, even non-dermatologists have to undertake the diagnosis and treatment of vitiligo due to 
medical resource constraints, despite their limited knowledge and training in this field. Although dermatology 
textbooks can be used as reference material, accurate identification and diagnosis is still the main challenge for 
these laypersons. As a result, rates of misdiagnosis and underdiagnosis remain high, and diagnostic accuracy 
ranges from 24 to 70%4–7. Therefore, the development of accurate and efficient Artificial Intelligence (AI) -assisted 
diagnostic tools is crucial for analyzing vitiligo dermoscopy images. The AI-assisted diagnostic tools hold the 
potential to furnish dermatologists with precise classification results, thereby contributing to the accuracy of 
vitiligo diagnosis. This technology also serves to mitigate potential errors stemming from limited expertise, 
especially in the context of non-dermatologists.

The major attention of AI-assisted diagnostic tools is to achieve more accurate classification of medical images. 
As early as 1959, AI-assisted diagnostic tools have been used in medicine. Initially, some traditional machine 
learning models are widely used for dermatological classification problems, such as Support Vector Machines 
(SVM)8, K-nearest neighbor (KNN)9, and Naive  Bayes10. Unfortunately, these machine learning models are 
heavily reliant on the quality of manual feature extraction, which poses challenges in simultaneously achieving 
more precise classification results and lower system complexity. Furthermore, the utilization of hand-crafted 
 features11 in these models significantly hampers both the performance and  generalisability12 of the models when 
applied to dermoscopic images.

In contrast to traditional machine learning methods, deep learning has shown superior performance and 
has attracted more attention. Its effectiveness has been prominently demonstrated in various medical image-
processing  applications13–15. The adoption of automatic feature extraction has made it becoming more and more 
popular in the dermatological image classification  field16–18. As early as 2017, deep learning architectures have 
been proposed and utilized in the ISIC 2017 Dermoscopy Image Segmentation Challenge for dermatological 
classification, segmentation, and detection  tasks19–21. Notably, ResGANet has exhibited outstanding performance 
in medical image classification tasks in comparison to state-of-the-art backbone  models22. Moreover, ResGANet 
has demonstrated the ability to enhance performance in medical image segmentation tasks by combining it with 
various segmentation networks. Therefore, deep learning-based methods can effectively overcome the limitations 
associated with traditional machine learning methods.

However, it is crucial to acknowledge the notable challenge known as the “black box” problem in deep 
learning methods. Despite the relative simplicity of the mathematical theory, the output mechanism is difficult 
to understand. In the field of medical image processing, the interpretability of classification results is crucial. 
However, the existence of the “black box” problem prevents physicians and researchers from understanding the 
logic and mechanisms of implementing these  methods23. This lack of interpretability undermines the reliability of 
deep learning methods, thus limiting their use in clinical practice. To break through this constraint, visualization 
tools and techniques can be used to increase the transparency of the model and enhance interpretability. 
Several researchers have explored the application of weakly supervised semantic segmentation. This method 
utilizes image-level labeling information, such as identifying the presence or absence of a lesion, to infer the 
segmentation results of the lesion region. This method significantly improves the interpretability of medical 
image classification  results24–26, since the segmented lesion regions correspond to the visual observations of 
the physician. Generally, this methodology is acknowledged for its capacity to obviate the requirement for 
manual processing of segmentation masks employed as training labels, resulting in substantial time and effort 
 conservation27. Nevertheless, the delineation of ground truth remains imperative during the training of the 
segmentation network, necessitating manual creation by domain experts.

This paper focuses on a AI-assisted diagnostic system based on deep learning methods, using dermoscopic 
images for the detection and assessment of vitiligo. The objective of the system is to provide a diagnostic outcome 
of vitiligo and a visual diagnostic report that highlights potential areas associated with the disease. For this 
purpose, a set of networks has been trained, and the top five deep learning models with the most favorable 
results were ultimately selected for comparison. These models belong to the Residual Network (ResNet) and Swin 
Transformer network series. The results reveal that the Swin Transformer, which is a series of image classification 
models based on Transformer architecture, attains the highest accuracy in vitiligo classification. This model 
effectively handles global dependencies in images through hierarchical attention mechanisms and cross-stage 
connectivity mechanisms. Diverging from conventional semantic segmentation techniques prevalent in medical 
image processing and weakly supervised semantic segmentation methods, the deep learning models used in 
this paper were exclusively trained by using disease category labels. With the overall training process, the deep 
learning-based method achieves unsupervised learning for the regions of interest(ROI).
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Materials and methods
A. Materials
The study obtained approval from the Ethics Committee at the Fourth Military Medical University, following the 
principles outlined in the Declaration of Helsinki. The dermoscopic image dataset utilized for both model train-
ing and testing was sourced from the Department of Dermatology at Xijing Hospital, affiliated with the Fourth 
Military Medical University. In accordance with confidentiality regulations and exclusions, no additional clinical 
data from patients were collected. The dataset consisted of a total of 4320 dermoscopic images, representing eight 
distinct hypopigmented skin diseases. Among these, 2678 images were specifically associated with vitiligo, while 
the remaining 1642 images represented seven other pigmented skin diseases distinct from vitiligo. These seven 
hypopigmented dermatoses were identified as pityriasis alba, pityriasis versicolor, marshall white syndrome, 
anemic nevus, idiopathic guttate hypomelanosis, amelanotic nevus, and hypomelanosis of Ito. Considering that 
the primary objective of this study was to distinguish vitiligo through dermoscopic images, which constitutes a 
dichotomous problem, the other seven pigmented dermatoses were collectively grouped. To enhance the assess-
ment of the model, the dataset was divided into training and test sets in a 7:3 ratio. Within the training dataset, 
there are 1875 images depicting cases of vitiligo and 1150 images of non-vitiligo cases. As for the test dataset, it 
comprises 803 images representing vitiligo cases and 492 images non-vitiligo cases. All images were captured 
in the RGB color space and resized to a standardized dimension of 1280*960 pixels for both model training 
and testing. Considering the bias of the dataset on vitiligo conditions, an attention mechanism is introduced in 
the model to focus more on the features of non-vitiligo images, thus balancing the bias in the training process.

B. Data preprocessing and data enhancement
In order to improve the richness of the data during the subsequent training of the network, and thus improve the 
anti-interference ability and generalization of the model, conventional preprocessing methods such as filtering, 
segmentation, hair removal, etc., are not applied to the raw data. Considering that the lighting conditions may be 
different at the time of data acquisition, color constancy processing is used in this study to attenuate this effect.

The goal of color constancy is to transform the image acquired under an unknown light source so that the 
processed image is close to the image acquired under a standard light source. Typically, color constancy process-
ing can be accomplished in two separate steps. First, the estimation of the light source in RGB space is accom-
plished. The estimated light source is then used to transform the image to minimize the effect of the light source. 
The Shades of Gray method, which is the most commonly used method for dermatoscopic image processing, 
employs Minkowski’s paradigm for light source estimation. It uses Minkowski’s paradigm to estimate the light 
source. The value of P can be changed automatically, and when P = 1, the method degenerates to the GrayWorld 
algorithm. When P = ∞, the equation is equivalent to finding the maximum value of f(x), which is equivalent 
to the MaxRGB method. In this study, the value of P is set as 6. The steps of the calculation and the Minkowski 
paradigm used are shown below:

(1) Substitute the data of each channel into the Minkowski paradigm to find the Min distance of each channel; 
(2) Substitute the data of the whole image into the Minkowski paradigm to find the Min distance of the whole; 
(3) Calculate the ratio of the correction according to the distance of the whole and the distance of each chan-
nel; (4) Perform the correction of the ratio of each channel, and check whether there is any value exceeding the 
threshold value, and set it as 255 for the ones exceeding the threshold value of 255. All images are preprocessed 
to replace the original images, and by reading the label file, the images can be mapped to the corresponding 
dermatologic category.

After the preprocessing was completed, to further improve the model performance and results, we used a 
data augmentation technique in each training iteration to make some minor changes to the data as a preliminary 
step before batch sampling. This data augmentation strategy employed in this study encompassed four distinct 
methods, namely random rotation, random brightness, random contrast, and random saturation. Additionally, to 
maintain the original image dimensions, any empty spaces resulting from the data augmentation procedures were 
filled with black pixels. Visual illustrations of the input images following the application of the data augmentation 
procedures are presented in Fig. 1.
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Figure 1.  Three sample images following data augmentation procedures.
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C. Overview of the ResNet networks
The ResNet network architecture includes preprocessing layers, and residual units, as well as a fully connected 
layer and a Softmax layer. The key innovation of ResNet resides in its incorporation of residual connectivity, which 
effectively addresses the challenges of gradient vanishing and exploding encountered during the training of deep 
networks, by establishing direct interconnections between layers. In conventional deep networks, the increase 
in the number of layers results in a degradation of the gradient, thereby creating challenges in network training. 
In order to enhance the network’s interpretability and visual comprehension, a Class activation mapping (CAM) 
module is incorporated into the ResNet architecture (as depicted in Fig. 2). The CAM module plays a crucial role 
in comprehending how the network allocates attention to different categories and identifies significant image 
regions. This network architecture facilitates both image classification and the generation of category activation 
maps simultaneously. This capability allows the network not only to predict the input image’s category but also 
to provide visual interpretations of the classification outcomes. To enhance the analysis and comprehension 
of the feature extraction process within the network, as well as to support research and applications in feature 
visualization and analysis, the hook technique is utilized in conjunction with ResNet. This technique involves the 
extraction of feature output maps from intermediate layers of the neural network by registering hook functions 
during the forward propagation process. Through the implementation of the hook technique, the feature outputs 
of the middle layer can be acquired, thus enabling thorough exploration and analysis of the network’s feature 
extraction capabilities.

D. Overview of the Swin transformer networks
Swin  Transformer28 has been proposed by Microsoft Research in 2021 as a deep neural network model based 
on the Transformer architecture. Its primary objective is to extend the application of the Transformer model 
into the realm of image processing by incorporating a layered window attention mechanism. In contrast to 
traditional Transformers, the Swin Transformer employs a Shifted-Window-based Multi-head Self-Attention 
(SW-MSA) module. This module is instrumental in modeling images at various granularities, contributing to the 
model’s enhanced performance in capturing diverse features within the image data. This design allows the Swin 
Transformer to effectively process large-sized images while maintaining computational complexity low during 
inference. Furthermore, the Swin Transformer consists of multiple Transformer layers, forming a deep network 
structure. To improve the model’s local perception, an interaction layer is introduced. This layer facilitates the 
information exchange and interaction between different windows.

Figure 2.  A brief overview of the ResNet framework with the addition of the CAM module.
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In comparison to the Vision Transformer (VIT), the Swin Transformer introduces a hierarchical structure 
reminiscent of a convolutional neural network (CNN), marking a significant enhancement over VIT. Another 
notable improvement involves replacing the multi-headed self-attention (MSA) module with a SW-MSA mod-
ule. Summarizing these two improvements as hierarchical feature mapping and SW-MSA. Hierarchical feature 
mapping requires the work of downsampling, which is commonly used in image recognition before pooling 
operations. Instead of traditional pooling, the Swin Transformer employs Patch Merging for downsampling, 
reducing both height (H) and width (W) by half, and channels (C) by four times. These modifications effectively 
address VIT’s challenges in fine-grained tasks and excessive complexity, respectively. In terms of the skeleton, 
the structural skeleton of VIT is still used for the design and continues to process input image data using the 
same patched.

In terms of scale, the Swin Transformer provides various model specifications tailored to different tasks and 
resource constraints. The three main types of Swin Transformers are Base, Large, and Tiny, and the two specific 
scales used in this study are Base and Large.

E. Swin transformer attention module
The attention mechanism serves as a computational model designed to identify and assign weights to relevant 
elements within a sequence or set. This process involves computing an attention weight by learning the relation-
ship between a query (Q), a key (K), and a value (V). Subsequently, this weight is applied to the corresponding 
value to produce a weighted representation. In practical applications, the Self-Attention mechanism has found 
extensive use. The MSA is an extended version of the self-attentive mechanism, aiming to enhance the repre-
sentation capability of the model. It applies the attention mechanism to multiple attention heads (i.e., multiple 
Q, K, and V). Each attention head within the MSA mechanism is capable of learning distinct weights, allowing 
it to focus on different information within the input sequence. Finally, the outputs from these multiple attention 
heads are combined or aggregated to produce the final representation vector. MSA is extensively employed in 
Transformer models to capture global dependencies present in the input sequence. And the Swin Transformer 
mainly contains Window-Based Multiple Self-Attention (W-MSA) and SW-MSA.

The input features are partitioned into multiple equally sized, non-overlapping windows in W-MSA, each 
treated as an individual attention head. In this way, the number of windows directly corresponds to the number 
of attention heads. For each window, W-MSA utilizes self-attention to compute dependencies between various 
positions within the window. This involves calculating the similarity between Q and K (usually using dot product 
attention or scaled dot product attention). Consequently, the attention weights for different positions within the 
window are determined, and the aggregation of values within the window is weighted using these attentional 
weights. This process produces the feature representation within the window. Its main objective is to tackle the 
problem of excessive memory usage linked to VIT’s Self-Attention mechanism. The computational complexity 
of the self-attention mechanism is illustrated in Fig. 3 for both MSA and W-MSA. W-MSA effectively reduces 

Figure 3.  Computational complexity of self-attention mechanisms for MSA and W-MSA.
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the complexity of MSA from O(n2) to O(n) , alleviating the memory footprint constraints associated with VIT. 
Nonetheless, W-MSA has its limitations, and confining attention to the window introduces the challenge of 
global attention loss. To address this problem, the Swin Transformer integrates the SW-MSA module following 
the W-MSA module. This window-shifting approach introduces essential inter-window connections, thereby 
improving the network’s overall performance. The SW-MSA module splits the image into non-overlapping blocks 
and computes the attention of each block with the neighboring blocks, which enables the model to pay more 
attention to the local information of the image. In order to solve the problem of mismatched attention due to 
interactive movement between windows, a mask matrix is added. For each window, a mask matrix is designed 
separately, in which the mask matrix is assigned to -100 for the part that should not be computed, so that after 
subsequent Softmax computation, it will eventually become 0, which is equivalent to playing a filtering role. In 
addition, the SW-MSA module can establish long-distance dependencies between different locations through 
the multi-head self-attention mechanism, which helps to capture the correlation information between different 
locations in the image and improves the model’s ability to perceive the global information of the image.

F. Class activation mapping module
To visualize the classification results, a CAM module is incorporated before the final output layer, comprising a 
global average pooling (GAP) layer and a dense layer. For instance, as depicted in Fig. 4, the CAM module takes 
the output feature map of the last residual module as input. It then applies GAP to the feature map, resulting in a 
fixed-length vector. This vector undergoes dot-product computation with the weights in the final fully connected 
layer, yielding activation values for each category. These activation values can be interpreted as the significance 
of the region associated with a particular category within the input image. By weighting and summing the input 
feature mapping values of the last layer of the residual unit, the CAM can be obtained. In the calculation, it is 
assumed that fk(x, y) represents the activation of the spatial position coordinate point (x, y) in the last residual 
cell of channel k . With channel k , the result of the GAP that has been performed is denoted as Fk , and Fk is 
1

H∗W

∑
x,y fk(x, y) . Hence, given the category c , the result of classifier Sc is:

where wc
k represents the weight of the model for channel k in the final dense layer corresponding to category 

c . It follows that wc
k is important for the final class judgment, and each position element in CAM is defined in 

category c is:

In the case where the input image is classified as target class c , the CAM identifies the significance of each 
location pixel (x, y) on feature map’s spatial grid. Up-sampling the CAM to match the size of the original input 
image, the most relevant region to the target category c can be identified.

G. Intermediate layer feature map output module
Applying the Hook technique to ResNet enables the extraction of feature output maps from the intermediate 
layers of the neural network, facilitating a deeper analysis of the network’s feature extraction process. The Hook 
function is applied by registering it on a specific layer or module within ResNet. This Hook function is a custom 
callback function. During the forward propagation of the input image through ResNet, the registered Hook 
function is triggered, capturing the output feature maps of the specified layer or module in accordance with 
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Figure 4.  Graphical diagram of the CAM module mechanism.
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the specified instructions. These feature maps can then be employed for subsequent analysis, visualization, or 
further processing.

Informed consent
Informed consent was obtained from all subjects involved in the study.

Results
In this section, all five proposed deep learning models are evaluated for their performance on a real pathology 
image set. Our experiments are structured into three parts: first, we conduct training and testing of these five deep 
learning models on the target dataset to identify the most effective model for vitiligo classification. Second, we 
analyze the visual interpretation to determine if the internal weighting parameters will provide valuable informa-
tion for vitiligo diagnosis. Finally, we visualize the output feature maps for the intermediate layers of ResNet, Swin 
Transformer Base, and Swin Transformer Large. This visualization enables us to observe the response regions of 
neurons and the important features during the feature extraction process.

The classification performance was evaluated based on accuracy (ACC), sensitivity (SEN), specificity (SPE), 
precision (PRE), and F1-score with vitiligo considered as the positive example. These metrics were computed 
using True Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN) respectively. ACC 
serves as a measure of the overall correctness of predictions, irrespective of whether they pertain to positive 
or negative samples. It reflects the ratio of correct predictions to the total predictions made. SEN represents 
the proportion of tests that accurately detect true instances of disease, essentially capturing the true positive 
rate. On the other hand, SPE denotes the proportion of tests that accurately identify non-diseased individuals, 
constituting the true negative rate. PRE represents the proportion of samples with a positive prediction that is 
actually positive. F1-score is a weighted average of PRE and Recall. PRE reflects the model’s ability to discriminate 
between negative samples, and the higher the PRE, the better the model’s ability to distinguish between negative 
samples; Recall reflects the model’s ability to recognize positive samples, the higher the Recall, the better the 
model’s ability to recognize positive samples. The F1-score is a combination of the two, with higher F1-scores 
indicating a more robust model.

In addition to these quantitative metrics, we generated receiver operating characteristic (ROC) curves for 
these five models. These curves are employed for a binary categorization task to distinguish between vitiligo and 
non-vitiligo skin diseases.

A. Performance of five models
The ROC curves of the five models used in this research were analyzed, and the final results of the test set are 
presented in Fig. 5. Notably, in the case of AUC, the Swin Transformer Large model outperforms the other 
models, achieving a value of 94%. AUC is a significant performance metric, indicating the reliability of prediction 
outcomes, especially for binary classifiers. Furthermore, to provide a more detailed assessment, a confusion 
matrix was utilized to quantify and visualize the performance of five models (Fig. 6). The rows and columns of 
the matrix correspond to the predicted and actual classes, respectively, where 1 represents vitiligo and 0 represents 
other skin diseases that are not vitiligo. It is noteworthy that the Swin Transformer Large model exhibited the 
highest sensitivity at 94.02%%, and also a commendable specificity at 93.5%. Conversely, the Swin Transformer 
Base model demonstrated a slight reduction in its ability to accurately classify both negative and positive samples, 
with specificity and sensitivity values of 93.09% and 92.53%, respectively. Among the networks in the ResNet 
series, ResNet34 emerged as the top performer with a classification accuracy of 89.26%. After assessing the 
performance of five models, it was evident that the Swin Transformer Large model had the highest accuracy of 
93.82% (as indicated in Table 1). Consequently, among the five models, Swin Transformer Large stands out as 
the preferred choice for the diagnosis of vitiligo based on dermatoscopic images.

Furthermore, to ensure easy replication and validation of the research methodology, we analyze the proposed 
methodology in comparison with some state-of-the-art (SOTA) methods that have performed  well29,30. Consid-
ering that most of the recent advances in the use of dermoscopic images have been aimed at bridging the gap 
between clinical and dermoscopic  images31,32.  Both29,30 used datasets of clinical images.

(3)ACC =
TP + TN

TP + FP + TN + FN

(4)SEN = Recall =
TP

TP + FN

(5)SPE =
TN

TN + FP

(6)PRE =
TP

TP + FP

(7)F1−score = 2×
Pr ecision× Recall

Pr ecision+ Recall
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The comparative analysis results, as presented in Table 2, reveal that the model introduced in this paper 
exhibits inferior performance when compared to the method proposed  in29 concerning the public dataset. 
Notably, the observed maximum accuracy difference is approximately 4%. This discrepancy could be attributed 
to variations in dataset characteristics. Specifically, the public dataset predominantly comprises skin images 
from non-smooth regions such as arms, whereas the dermoscopic images utilized in our study predominantly 
feature smoother regions. This dissimilarity in dataset composition emerges as a potential contributing factor 
to the discerned algorithmic differences.

Moreover, it is noteworthy that the proposed method demonstrates a marginally superior performance on the 
personal dataset compared to the method  in30. This nuanced improvement could be indicative of the adaptability 
and efficacy of our proposed approach in handling the specific attributes inherent to the personal dataset. Further 
analysis and exploration of these dataset-specific intricacies are warranted to comprehensively understand the 
observed performance variations between the proposed method and existing methods. In summation, our mod-
els obtain good results on several types of datasets, which validate the stability and generalization of the models.

B. Interpretive visuals generated by the CAM module
There are some instances of visual interpretation that are extracted from ResNet’s CAM module (Fig. 7). The 
original images corresponding to these results are also included for further analysis. In these visualizations, red 
areas indicate regions where the network is activated, while blue areas signify regions with no activation. The 
darker red color indicates that the region has a higher contribution value to the model discrimination. Notably, 
the activation is concentrated in areas associated with skin lesions, from the figure, it can be seen that there are 
two bases of discrimination when the model makes judgments: one is based on whether the area of the white 
spots is large and continuous and combined with the edge characteristics of the lesion area, and the other is 
based on the color difference for differentiation, i.e., the difference in pigmentation between the lesion area and 
the other normal skin areas. According to the comprehensive analysis conducted by experienced dermatologists, 
the model captures the two bases and features of clinical diagnosis, i.e. edge and pigmentation, in the judgment. 
The interpretability of the class activation map cues is in great agreement with the physician’s clinical experience. 
This suggest that the CAM-generated heat maps are capable of highlighting category-specific areas of interest 
at critical diagnostic points. When analyzing the class activation maps, we observed that activations were not 
presented in all regions associated with vitiligo. The distribution density of activations did not exactly correspond 
to the features of vitiligo. This may due to the fact that the activation layers selected when generating the class 
activation maps may not provide enough information to accurately reflect the key features of vitiligo. Different 
levels of activation may highlight different image features. This results in failure to capture features associated 
with vitiligo at specific levels.

However, despite these limitations, we would like to acknowledge and emphasize the insights provided by 
class activation maps in terms of visual interpretation. By localizing key regions for classification, we can guide 
vitiligo diagnostic decisions. Although the distribution of activations may not exactly match the reality of the 
lesion, this analysis still provides us with information about which regions of the image the model is focusing 
on, thus providing a strong guide to diagnosis.

C. Visual explanations from feature maps
By utilizing Hooks to access feature maps from the neural network’s intermediate layer, the convolutional 
layers are intercepted to obtain feature representations of the different layers. These feature maps serve multiple 
purposes, including visual interpretation, analysis, and enhancing the interpretability of deep learning models. In 

Figure 5.  ROC curves of five models.
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Fig. 8a, the ResNet middle layer feature output image is displayed, with each grid in different layouts representing 
a feature map. In Fig. 8b, the feature layer output images of Swin Transformer Large and Swin Transformer 
Base are showcased. Due to the depth and complexity of the models, each convolutional layer extracts features 
at different levels and abstraction. As a result, the feature maps output from multiple intermediate layers can 
synthetically represent various visual information within the input image. This aids in better understanding the 
decision-making process and performance of the deep learning model.

Figure 6.  Confusion matrixes of five models on test set: (a) ResNet34; (b) ResNet50; (c) ResNet101; (d) Swin 
Transformer Base; (e) Swin Transformer Large.



10

Vol:.(1234567890)

Scientific Reports |         (2024) 14:9127  | https://doi.org/10.1038/s41598-024-59436-2

www.nature.com/scientificreports/

Institutional review board statement
Written informed consent for the use of identifying images was obtained from all patients. The study was 
approved by the Ethics Committee of the Fourth Military Medical University in accordance to the Declaration 
of Helsinki Principles.

Discussion
Recently, there has been a notable surge in interest surrounding the application of deep learning in medi-
cal diagnostics. Particularly, deep learning has demonstrated exceptional capabilities in tasks associated with 
image classification, with its application extending into the field of  dermatology33. Seung et al. proposed a clas-
sification of clinical images encompassing 12 skin diseases using a deep learning algorithm, achieving a final 
average classification accuracy of 90%34. Andre et al. employed CNNs for skin cancer classification, achieving 
results comparable to the expertise of all evaluated experts and demonstrating a similar level of competence as 
 dermatologists35. However, this is only the effect observed in experimental studies. In real-world settings, the 
results of models compared to experts need to be revisited and  explored36. Furthermore, several studies have 
demonstrated the remarkable diagnostic and classification abilities of deep learning in tasks related to melanoma 
image  analysis37–39. Which further promotes the development of deep learning in the field of dermatology.

Up to now, only a limited number of studies have delved into the application of deep learning in the context 
of vitiligo, and most of them have relied on publicly available  datasets40. For example, Guo, L. et al. developed 
and validated a hybrid artificial intelligence (AI) model utilizing deep learning for the objective measurement 
and color analysis of vitiligo lesions. The accuracy achieved in detecting vitiligo lesions using the YOLO v3 
architecture was reported at 85.02%41. Another study proposed an effective intelligent classification system for 
vitiligo, which generated high-resolution vitiligo images under the wood lamp and demonstrated high precision 
in classifying these images, achieving a classification accuracy of 85.69%42. In comparison to other skin diseases, 
the research on extensively trained vitiligo image datasets and high-precision diagnostic systems is still in its 
early stages. In this study, an accurate diagnostic system with interpretable vitiligo dermoscopic images was 
developed based on a deep learning model.

Five deep learning models were selected for comparison in this study, primarily comprising two network 
structures ResNet and Swin Transformer, along with their variants, ResNet34, ResNet50, ResNet101, Swin 

Table 1.  Performance of five models on test set.

Models ACC (%) SEN (%) SPE (%) AUC PRE (%) F1-score (%)

ResNet34 89.26 90.04 88.01 0.90 92.46 91.23

ResNet50 88.49 88.54 88.41 0.88 92.58 90.51

ResNet101 87.18 87.92 85.98 0.88 91.10 89.48

Swin transformer base 92.74 92.53 93.09 0.92 95.62 93.75

Swin transformer large 93.82 94.02 93.50 0.94 95.93 94.97

Table 2.  Performance of proposed models and other SOTA methods on different dataset.

Dataset Models ACC SEN SPE PRE F1-score

Public dataset collected from seven public dermatology atlas websites: DermNet, DermNet NZ, 
AtlasDerm, DermIS, SD-260, Kaggle, and DanDerm

(a) Proposed models

ResNet34 84.43% 84.97% 83.60% 85.38% 85.17%

ResNet50 85.32% 85.45% 85.19% 86.67% 86.06%

ResNet101 86.82% 87.79% 85.71% 87.38% 87.58%

Swin Transformer Base 90.80% 90.61% 91.01% 91.90% 91.25%

Swin Transformer Large 92.78% 92.96% 92.59% 93.40% 93.18%

(b)  Reference29

VGG 96.77% 97.20% 96.30% 96.73% 96.80%

ResNet 95.27% 95.10% 95.60% 96.19% 95.80%

DenseNet 96.27% 96.20% 96.10% 96.70% 96.20%

Person dataset provided by Department of Cosmetic Laser Surgery in the Hospital for Skin Disease 
and Institute of Dermatology, Chinese Academy of Medical Sciences (CAMS) & Peking Union 
Medical College

(a) Proposed models

ResNet34 81.65% 82.04% 81.00% 87.72% 84.78%

ResNet50 82.40% 82.63% 82.00% 88.46% 85.45%

ResNet101 83.52% 84.43% 82.00% 88.68% 86.96%

Swin Transformer Base 86.89% 87.43% 86.00% 91.82% 89.57%

Swin Transformer Large 87.64% 88.02% 87.00% 91.88% 89.91%

(b)  Reference30

YOLO V3 85.02% 92.91% 72.00% 84.70% 88.62%
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Transformer Large, and Swin Transformer Base. It is noteworthy that Swin Transformer is a relatively new 
network. In previous studies, ResNets have been used widely for dermatological image segmentation and 
classification and have demonstrated excellent  performance43–45. Swin Transformer is a deep learning model based 
on Transformer architecture. It has found extensive applications in the field of medical image processing and has 
achieved remarkable results in computer vision tasks. Consequently, we chose to investigate the performance 
of these two widely used and innovative deep learning networks in the specific context of vitiligo diagnosis. The 
experimental results indicate that among the ResNets, ResNet34 performs slightly better than ResNet50, while 
ResNet101 exhibits the least favorable results. Generally, with an increase in network depth, the performance 
of ResNet gradually improves, as deeper structures tend to capture finer details and features in images more 
effectively. However, it’s noteworthy that on specific datasets or tasks, ResNet34 may outperform  ResNet5046, and 
ResNet34 with fewer parameters could also be more robust and better generalized, particularly on smaller datasets 
where the data size is limited. It’s important to acknowledge that performance comparisons are influenced by 
various factors, and different studies may reach slightly different  conclusions47. Swin Transformer, proposed as a 
novel model for computer vision in 2021, has demonstrated wide applicability in various tasks, including image 
segmentation, restoration, and  reconstruction48–50. Swin Transformer has been used in medical image processing 
through its hierarchical structure and self-attention mechanism, which demonstrates a robust capability for 
feature extraction and modeling. This presents promising opportunities for innovation in medical image analysis 
and diagnosis. Currently, there have been limited studies reporting the utilization of Swin Transformer in the 
context of medical  images51–53. As far as we are aware, our study stands out as one of the relatively few instances 

Figure 7.  Examples of visual interpretation.
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where the Swin Transformer has been applied to the analysis of dermoscopic images. As the optimal model in 
our task, Swin Transformer achieved an accuracy of 93.82% and 92.74% for both specifications, respectively. This 
indicates the potential of Swin Transformer in medical applications, warranting further research and exploration 
in the field of medicine.

Figure 8.  Examples of feature maps for different channels extracted from: (a) ResNet; (b) Swin Transformer.
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Conclusion
Vitiligo is a common hypopigmentation disease, and its final diagnosis usually requires a combination of 
professional doctors’ experience and test results from specialized instruments. With the help of computer 
vision and deep learning technology, it can provide an auxiliary means to help doctors diagnose vitiligo more 
accurately. The objective of this study is to evaluate the performance of multiple deep learning models using 
vitiligo image samples and subsequently identify five models with optimal diagnostic performance, including 
ResNet34, ResNet50, ResNet101, Swin Transformer Base, and Swin Transformer Large. These models were then 
utilized to develop a vitiligo diagnostic system that not only provides a disease label but also generates a visual 
diagnostic report displaying the possible regions associated with the disease. The outcomes produced by the CAM 
module effectively emphasize specific areas relevant to each class within diagnostic points, thereby assisting in 
decision-making during the diagnosis of skin conditions. Additionally, the use of feature output maps from the 
middle layer of the neural network enhances the understanding of how the model processes input images for 
tasks such as classification or localization. This integrated visual and informational output helps to improve the 
interpretability of the system, providing physicians with more comprehensive and in-depth insights that enhance 
confidence and decision-making during the diagnostic process.

The results of this study demonstrate that deep learning techniques have achieved significant accuracy gains 
in vitiligo diagnosis and provide comprehensive visual and informative outputs for diagnostic results. This not 
only emphasizes the excellence of deep learning models in vitiligo diagnosis but also suggests the potential value 
of their application in a broader diagnostic setting covering a wide range of dermatological conditions. This 
finding highlights the great potential of deep learning techniques in the field of dermatological imaging and 
also emphasizes the urgency of delving deeper into this area in the future. These encouraging results not only 
provide more reliable diagnostic support for patients with vitiligo but also lay a solid foundation for advancing 
the diffusion of deep learning techniques in real-world dermatologic diagnostic applications.

Data availability
The data presented in this study are available on request from the corresponding author. The data are not publicly 
available due to privacy or ethical concerns.
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