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Exploring the spatial and seasonal 
heterogeneity of cooling effect 
of an urban river on a landscape 
scale
Wen Zhou *, Tao Wu  & Xin Tao 

Urban water bodies can effectively mitigate the urban heat island effect and thus enhance the climate 
resilience of urban areas. The cooling effect of different water bodies varies, however, the cooling 
heterogeneity of different sections of a single watercourse or river network is rarely considered. Based 
on various satellite images, geospatial approaches and statistical analyses, our study confirmed the 
cooling heterogeneity from spatial and seasonal perspectives of the Suzhou Outer-city River in detail 
in the urban area of Suzhou, China. The cooling effect of the river was observed in the daytime in four 
seasons, and it is strongest in summer, followed by spring and autumn, and weakest in winter. The 
combination of the width of the river reach, the width and the NDVI value of the adjacent green space 
can explain a significant part of the cooling heterogeneity of the different river sections in different 
seasons. Land surface temperature (LST) variations along the river are more related to the width 
of the river reach, but the variations of the cooling distance are more related to the adjacent green 
space. The cooling effect of a river reach could be enhanced if it is accompanied by green spaces. 
In addition, the cooling effect of a looping river is stronger on the inside area than on the outside. 
The methodology and results of this study could help orient scientific landscape strategies in urban 
planning for cooler cities.
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Along with the rapid urbanization, landscape patterns and material and energy processes in cities have also 
changed  dramatically1–4. The transformation of urban land-use and land cover (LULC) has altered the surface 
thermal characteristics, and the high concentration of urban population has led to increased heat emissivity and 
anthropogenic heat  production5–7, much of which causes the urban heat island (UHI)  effect6. The UHI effect is a 
climatic phenomenon of higher air and surface temperatures in urban areas than in the rural areas surrounding 
 them8–10. In response to the negative impacts of the UHI effect on our living environment, potential mitigation 
and adaptation strategies are attracting considerable  interest5,11.

The cooling effect of urban blue space (areas dominated by surface water bodies) and urban green space (areas 
dominated by vegetation cover) is increasingly recognized as a promising nature-based solution to alleviate the 
UHI  phenomenon12–15. Urban water bodies can reduce ambient surface/air temperature, and form an “urban 
cooling island” (UCI) in summer daytime due to the great specific heat capacity and evaporation  effect16–19. 
Through the exchange of air convection, the cooler air originating from an urban water body is transported to 
the surrounding areas, and the cooling distance can reach 1000  m20,21. However, research on the cooling effect 
of urban blue spaces is much less than that of green spaces, although they have great cooling  potential22,23.

Heterogeneity of the cooling effect existed among different water bodies according to previous efforts. Some 
studies found little cooling or even warming effect of urban water  bodies24–26, but others reported significant 
cooling effect (up to 5.5 ℃)16,27,28. Literature indicates that the magnitude of the cooling effect of urban water 
bodies is affected by the size, shape, location, surrounding landscape and background climate (e.g., wind speed 
and direction)25,27,29–31. Specifically, taking 21 water bodies in Shanghai as a case, Du et al.27 found that a simple 
shape and a lower proportion of surrounding impervious surface resulted in a stronger UCI effect of the water 
body. Syafii et al.30 demonstrated that larger and more regularly shaped water bodies cause a more significant 
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drop in air temperature. Brans et al.25 discovered a warming effect for urban water bodies compared to rural 
water bodies (up to 3.04 °C).

Based on spatial form, blue space can be broadly categorized into two types: linear watercourses (e.g., rivers 
and streams) and polygonal water bodies (e.g., lakes, ponds, reservoirs and wetlands). The heterogeneity of 
cooling effect of different water bodies and the influencing factors have been widely  discussed28,31,32. However, 
much less attention has been paid to the UCI effect of a single watercourse or river system in detail. Many 
problems remain to be solved. For instance, does the cooling heterogeneity of the different sections of a river 
network exist? If so, what are the main factors causing this spatial heterogeneity? What type of surrounding 
landscape has the most significant influence on the UCI effect of a river reach? These uncertainties have limited 
the ability of urban planners to make specific recommendations to achieve a more significant cooling effect of 
water bodies, especially in water-rich cities.

Against this background, this study proposed to quantitatively investigate the spatial heterogeneity and 
seasonal variation of the UCI effect of a major urban river in Suzhou—the Suzhou Outer-city River, and the 
relationships with the characteristics of different river reaches and surrounding landscape composition. Based on 
high-resolution Google Earth maps and Landsat-8 satellite imagery, 141 sampling sites were selected along the 
river with different inner and outer riverside landscapes and characteristics (e.g., width, elevation). Our objective 
is to: (1) quantify and compare the distributions of mean LST and cooling distances of 141 river reaches; (2) 
model the relationships between surface temperatures of different river sections and landscape variables; and 
(3) investigate the spatial heterogeneity and seasonal correlation of cooling distances of 141 river reaches. The 
landscape indicators selected in this study could help explain a large portion of the spatial variation in surface 
temperature and cooling distance, and implications for landscape planning for climate adaptation are discussed.

Study area and data
Study area and site description
Suzhou is located in the middle of the Yangtze River Delta in eastern China’s Jiangsu Province (Fig. 1a). The 
Suzhou metropolitan region covers a total area of approximately 8657  km2, and had a population of about 12.8478 
million in 2021. Suzhou is a top-ranking water-rich Chinese city, with almost 37% of its land area covered by 
water. The rate of greenery coverage in built-up area of the urban district was 43.29% in  202133. The main portion 
of the city lies on a flat plain with a few remnant hills in the southwest, and the average elevation is 3.5–5 m 
above sea level. The flow velocity is not greater than 0.1 m/s34, so the flow velocity is not considered in this study. 
Suzhou is characterized by a north subtropical humid monsoon climate, and had a mean annual temperature of 
18.3 ℃ and a mean annual precipitation of 1318.6 mm in  202133. The Outer-city River investigated in this study 
is a part of the Suzhou river system with approximately 15,400 m long, and is located in Gusu District which is 
the old town of Suzhou city (Fig. 1b,c).

As can be seen in Fig. 1d, the research path can be simply summarized into two routes, namely the longitudinal 
route A-A’ and the transverse route B-B’. For route A-A’, 141 sampling sites were chosen around the centerline 
along the watercourse from the starting point to the ending point in a counterclockwise direction, and designated 
as Site 1 through Site 141. These 141 sampling sites were selected mainly with respect to their differences in the 
width of their situated river reaches and LULC types on the riverbanks (inside and outside). Since the spatial 
resolution of the LST data is 30 m, river reaches with a width of less than 30 m were excluded in this study to 
ensure that each sample point extracts only the LST value of the water body. The LST of 141 sampling sites for 
six dates was extracted to analyze their spatial and seasonal variations and the corresponding influencing factors. 
Unlike route A-A’, routes B-B’ are cross-sectioned for each sampling site at both the landscape (Fig. 1e) and LST 
levels to quantify LULC characteristics and transverse LST variations, respectively. More information on route 
B-B’ LST profile is presented in “Quantification of cooling intensity and selection of landscape variables”.

Data descriptions and applications
Data used in this study include six cloud-free Landsat-8 Operational Land Imager (OLI) images with multiple 
spectral bands with 30-m resolution and one panchromatic band with 15-m resolution, and Thermal Infrared 
Sensor (TIRS) imagery with 30-m resolution, and six high-resolution Google Earth maps and DEM (Digital 
Elevation Model, 30-m resolution) data. The OLI data was applied to calculate the NDVI (Normalized Difference 
Vegetation Index) value. The TIRS data was applied to derive LST data. The Landsat-8 imagery was obtained 
from the United States Geological Survey (https:// glovis. usgs. gov/). The detailed imagery information is shown 
in Table 1. Besides, high-resolution Google Earth maps were used for LULC classification through manual 
interpretation. DEM data were applied to extract elevation information of various river reaches obtained from 
the Geospatial Data Cloud website (www. gsclo ud. cn).

The primary consideration in selecting Landsat 8 imagery was the quality of the imagery. Since the cooling 
effect of urban water bodies was expected to be most pronounced during the daytime in summer, three Landsat-8 
datasets were obtained from summer, and one from each of the other three seasons. The study area was the 
ancient city of Suzhou Gusu District, whose landscape has hardly changed in recent decades due to the policy 
of protecting the ancient city of Suzhou.

The LST maps were derived using radiative transfer equation (RTE)  method34 and the results of spatial 
distribution of LST were shown in Fig. 2. The most important steps, for convenience, are shown as follows:

where Lλ is the sensor radiance converted from the DN value (W·m − 2·sr − 1·μm − 1);  mλ and  nλ represent the 
scale factors obtained from Landsat-8 metadata file; DN represents the digital number value of image pixel.

(1)L� = m� × DN + n�

https://glovis.usgs.gov/
http://www.gscloud.cn
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Figure 1.  (a). China map and the location of Suzhou city; (b) the location of Suzhou Outer-ciry river; and (c) 
satellite imagery of the old town of Suzhou and the Outer-city River marked in dark blue; (d) the location of the 
141 sampling sites (numbered 1–141 from the starting point to the ending point) and riverside LULC types; and 
(e) route B-B’ landscape profiles of Site 27-30 showing the definitions of Wr, Wnng_I, Wnng_O and Wnng_t. Wr 
is the width of the river reach. Wnng_I and Wnng_O are the transverse widths of the inside and outside nearest 
neighbor greenspace. Wnng_t is the sum of Wnng_I and Wnng_O. Here, nng (the nearest neighbor greenspace) 
refers to the green space that is in direct contact with the river reach.

Table 1.  Descriptions of the Landsat 8 OLI/TIRS images used. BJT Beijing time.

Seasons Scene ID Acquisition date Acquisition time (BJT)

Summer/hot

LC81190382014203LGN00 22 July, 2014 10:31 am

LC81190382017147LGN00 27 May, 2017 10:30 am

LC81190382021174LGN00 23 June, 2021 10:31 am

Spring/warm LC81190382019105LGN00 15 April, 2019 10:30 am

Autumn/cool LC81190382019313LGN00 9 November, 2019 10:31 am

Winter/cold LC81190382021030LGN00 30 January, 2021 10:31 am
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B (Ts) refers to the ground radiance; ε and τ represent the land surface emissivity and atmospheric 
transmissivity, respectively; and L↑ and L↓ are the upwelling and downwelling atmospheric radiances 
(W·m − 2·sr − 1·μm − 1), respectively.

where Ts is the LST; K1 and K2 are the calibrated constants with the values of 774.88 W·m − 2·sr − 1·μm − 1 and 
1321.08 K (i.e., Kelvin degree) for the Landsat 8, respectively.

Method
Quantification of cooling intensity and selection of landscape variables
The mean LST  (Tmn) and maximum cooling distance (CD) were used to measure the UCI intensity of different 
reaches along the river, and a lower  Tmn and a larger CD refer to a stronger UCI effect. Since UCI intensity 
was always quantified by the temperature difference between the water body and the ambient environment, a 
higher UCI intensity could be explained by a lower LST of the water body. Specifically, the Tmn of a river reach 
is measured by the LST of the grid cell where the sampling point is located (i.e., the middle grid cell of the river 
reach). Similar to previous  studies35–38, the value of CD for each reach was defined as the distance between the 
edge of the reach and the first turning point of LST. LST of all grid cells (30 m each) along the transverse route 
B-B’ of the river reach was extracted and prepared to identify the maximum CD (CDi and CDo). CDmean is the 
mean value of CDi and CDo of a river reach.

In addition to the characteristics of the water body itself, the magnitude of the cooling effect was also expected 
to be influenced by the surrounding landscapes. In order to identify the most influential LULC type on the 
cooling effect of the river, the riverine landscapes were classified into four types: green space (GS), roads or 
squares (RS), residential area (RA), and commercial area (CA) (Fig. 1d). Each type was further divided into 
two categories showing location, including green space on the outside (GS_out) and green space on the inside 
(GS_in), and the same for other LULC types. See Supplementary Fig. 1 for a description of LULC shares across 
all 141 sampling sites. Based on multiple regression analysis, after LULC types were transformed into dummy 
variables, the results confirmed the dominant influence of green space (GS_in and GS_out) on the riverbank 

(2)B(TS) = [L� − L ↑ − τ(1− ε)L ↓]/τε

(3)TS = K2/ln(K1/B(TS)+ 1)

Figure 2.  Land surface temperature (℃) maps of the six dates.
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among the different LULC types on the UCI effect of the river reach (Supplementary Table 1). This is because 
vegetated areas are not only associated with a relatively lower air/surface  temperature39–41, but can also cool their 
immediate  surroundings42,43. Therefore, a dataset describing the characteristics of river reaches and adjacent 
GS was prepared. Reach-related descriptors were Wr and Er; and neighboring vegetation-related descriptors 
included Wnng_I, Wnng_O, Wnng_t, NDVInng_I and NDVInng_O and NDVInng_t. NDVInng_I and NDVInng_O 
represent the NDVI of the inner-side and outer-side nearest adjacent green space; and NDVInng_t was the sum 
of NDVInng_I and NDVInng_O. See Table 2 for definitions of cooling indicators and landscape indicators, and 
see Fig, 1 (e) for the calculations of landscape indicators in this study.

Analysis process and methods
The dummy variable is used to determine which type of riverbank LULC most affects the cooling intensity and 
distance of river reach. Bivariate correlation analyses and regression analyses were then conducted to identify 
and quantify the relationships between the cooling indicators (Tmn/CDi/CDo) and various landscape variables 
of 141 sampling sites in four seasons, as well as the seasonal relevance. The stepwise multiple linear regression 
(SW-MLR) method was performed to quantify the effect of selected landscape variables on the cooling effect of 
141 sampling sites. The relative weights (RW) analysis  method44 was then used to derive the predictive power of 
the landscape variables on the regression models. All statistical analyses were performed using SPSS 23.0 (SPSS 
Inc., Chicago, IL, USA).

Results
Distributions of UCI intensities and cooling distances of the different river sections
Figure 3 howed the LST profiles along route A-A’ and demonstrated that there is spatial heterogeneity in the 
mean LST  (Tmn) both existed between 141 reaches and between different seasons. Combined with the values of 
range and standard deviation, spatial heterogeneity in UCI intensity between reaches was greatest in summer 
(i.e., July 22, 2014, May 27, 2017, and June 23, 2021), followed by spring, and very small  Tmn differences were 
observed in autumn and winter. Besides,  Tmn of 141 sampling sites in different seasons were characterized by 
normal distributions. The trends in the LST curves increase and decrease randomly, and no specific patterns were 
observed for all six dates. It was noteworthy that the peaks and valleys along the LST curves were essentially in 
the same locations, implying that reaches with higher LST appear to have higher LST at other times and seasons 
and vice versa.

To further understand the distribution of maximum CD values of the different river sections for different 
directions and seasons, the cooling distances of the inner (CDi) and outer (CDo) sides were summarized in 
terms of minimum, maximum, range, mean and standard deviation (StdDev) values, as presented in Table 3. 
The value of CDi ranged from 18–601 m, 43–550 m, 75–583 m and 40-467 m in summer, spring, autumn and 
winter, respectively. The value of CDo ranged from 8–286 m, 62–500 m, 50–396 m and 50–324 m in summer, 
spring, autumn and winter, respectively. Overall, the maximum, range and mean values of CDi were all greater 
than CDo at different seasons.

The results showed significant differences between CDi and CDo (p < 0.001) in four seasons. Moreover, most 
CDi were obviously greater than CDo for a single sampling site, especially in summer (Fig. 4). On all six dates, 
both CDi and CDo curves varied arbitrarily, and the peaks and valleys along route A-A’ profiles were most likely 
at the same locations in three summer dates. The positive linear correlations of CDi/CDo among the different 
dates were confirmed by regression analysis (p < 0.01), suggesting that the river section with a greater CD always 
had a greater CD in other seasons, and vice versa (Supplementary Fig. 2). Overall, the results confirmed the 
spatial heterogeneity of different sections of an urban river and the seasonal stability of fixed river sections on 
urban cooling.

Table 2.  Definitions of cooling indicators and landscape indicators in this study.

Abbreviations Descriptions

Cooling indicators

Tmn The mean LST of a river reach (℃)

CDi The maximum cooling distance of a river reach in the inward direction (m)

CDo The cooling distance of a river reach in the outward direction (m)

CDmean The mean value of  CDi and  CDo of a rive reach (m)

Landscape indicators

Wr The width of the reach (m)

Wnng_I The transverse widths of inner-side nearest neighbor greenspace of the reach (m)

Wnng_O The transverse widths of outer-side nearest neighbor greenspace of the reach (m)

Wnng_t The sum of Wnng_I and Wnng_O (m)

NDVInng_I The NDVI of inner-side nearest neighbor greenspace of the reach

NDVInng_O The NDVI of outer-side nearest neighbor greenspace of the reach

NDVInng_t T$he sum of NDVInng_I and NDVInng_O

Er the elevation of the river reach (m)
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Effects of landscape indicators on the surface temperature of river reaches
Variations in the mean LST  (Tmn) of different river sections were associated with the scale of the reach and the 
characteristics of its riverside green spaces (Fig. 5). No correlations were found between  Tmn and the elevation 
of reach (Er) for all seasons. Wr, Wnng_t and NDVInng_t were three relevant landscape variables affecting  Tmn. 
Specifically,  Tmn was significantly and negatively correlated with Wr in summer (r > − 0.645) (p < 0.01), spring 
(r = − 0.636) (p < 0.01) and winter (r = -0.706) (p < 0.01), with the magnitude of correlation being lowest in autumn 
(r = -0.366) (p < 0.01). Negative correlations were observed between  Tmn and Wnng_t for summer (r > − 0.313) 
(p < 0.01), spring (r = − 0.382) (p < 0.01), autumn (r = -0.406) (p < 0.01) and winter (r = -0.201) (p < 0.05). Similarly, 
 Tmn negatively correlated with NDVInng_t in summer (r > − 0.276) (p < 0.01), spring (r = − 0.373) (p < 0.01) and 
autumn (r = − 0.473) (p < 0.01), but no correlation was observed in winter. Compared to Wnng_t and NDVInng_t, 
Wr was most closely and negatively associated with  Tmn in summer, spring and winter, but it was the weakest 
explanatory variable in autumn. Based on scatter plots, there were obvious linear correlations between  Tmn and 
Wr, Wnng_t and NDVInng_t for the four seasons, except for  Tmn and NDVInng_t in winter. In addition, some extreme 
values of Wnng_t were observed, so discretization was applied in the modeling to reduce the overfitting problem. 
The seasonal correlations of the fixed river reaches were further confirmed, as significant and positive linear 

Figure 3.  Profiles and distributions of LST (℃) of 141 sampling sites along route A-A’ of six dates.

Table 3.  Statistical summary of inside (CDi) and outside (CDo) cooling distances for six dates (unit: m). 0722, 
0527, 0623, 0415, 1109 and 0130 represent 22 July, 2014; 27 May, 2017; 23 June, 2021; 15 April, 2019; 9 
November, 2019 and 30 January, 2021, respectively.

Min Max Range Mean StdDev Min Max Range Mean StdDev

CDi_0722 18 512 494 176.9 98.13 CDo_0722 12 231 219 91.6 40.46

CDi_0527 33 532 499 190.3 105.5 CDo_0527 8 250 242 91.25 42.47

CDi_0623 60 601 541 231.57 113.25 CDo_0623 54 286 232 151.12 44.38

CDi_0415 43 550 507 237.12 115.87 CDo_0415 62 500 438 188.6 103.05

CDi_1109 75 583 508 228.37 109.26 CDo_1109 50 396 346 156.3 64.3

CDi_0130 40 467 427 184.62 93.8 CDo_0130 50 324 274 140.39 53.63
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correlations were observed between  Tmn of any two of six dates, and the correlation coefficients ranged from 
0.735 to 0.930 (p < 0.01).

Table 4 summarizes the results of the SW-MLR and RW analyses. The variance inflation factor (VIF) values 
ranging from 1.011 to 1.595 suggested a low level of collinearity among the explanatory variables. Overall, the 
results showed that Wr, Wnng_t and NDVInng_t could explain a large amount of spatial variations in  Tmn for all six 
dates (Tmn _0722: 69.4%; Tmn _0527: 67.4%; Tmn _0623: 74.9%; Tmn_0415: 73.4%; Tmn _1109: 54.2%; Tmn_0130: 
56.6%) (p < 0.001). Specifically, the spatial variations of  Tmn in summer, spring and autumn were mainly explained 
by Wr, NDVInng_t and Wnng_t, and in winter by Wr and Wnng_t. The results showed that all the individual regression 
coefficients of the landscape variables were statistically significant (p < 0.001). Besides, the results indicated 
that Wr consistently had high values of standardized β in the different seasons. Wr consistently had the greatest 
explanation power of the regression models in summer (59.9%, 70.2% and 58.2%) and spring (54.9%), followed 
by NDVInng_t and Wnng_t. In winter, Wr had much higher importance (88.0%) than Wnng_t (12.0%). The importance 
of Wnng_t and NDVInng_t in explaining  Tmn variations in autumn was noticeable compared to the other seasons.

Modelling the relationship between the maximum CD of reach and landscape indicators
The results indicated that the CDi of 141 river reaches were significantly correlated between any two of the six 
dates (p < 0.001) (Supplementary Fig. 2). Moreover, there were positive linear correlations between the CDi of 
141 river reaches between any two of the six dates, indicating that a reach with a greater CDi was more likely to 
have a greater CDi at other times, and vice versa. In particular, correlations between winter and the other three 
seasons appeared lower. Similarly, the CDo values of the fixed river sections were highly correlated between the 
different seasons (p < 0.01). However, the correlations of CDo of 141 river reaches between different dates and 
seasons  (R2 = 0.219–0.801) (p < 0.01) were significantly weaker than CDi  (R2 = 0.391–0.907) (p < 0.001).

As shown in Table 5, the VIF values ranged from 1.000 to 1.110, suggesting a low level of collinearity among 
the chosen landscape indicators. The results indicated that Wnng_I and Wnng_O are two dominant variables 
that can explain a significant portion of the spatial variations in CDi and CDo, respectively. Although the overall 
contribution of Wr to the explanatory power of the regression models was significantly smaller than that of 
Wnng_I, it was also considered a relevant explanatory factor for the variations of CDi (p < 0.01) in spring and 
summer. The negative correlation between NDVInng_I and CDi was detected only in winter, and its contribution 
to the regression model (0.7%) was also significantly lower than that of Wnng_I (99.3%). The correlations between 
Wr and CDo were found only in spring and autumn. The low importance of Wr in explaining the variations of 
CDi and CDo variations suggested that the width of a river reach might be relevant, but not important.

Figure 4.  Profiles and distributions of cooling distances of inside  (CDi), outside  (CDo) and mean value 
 (CDmean) of 141 sampling sites along route A-A’ of six dates. ***Indicate significantly different means based on an 
Independent-Sample t-test at 0.001 level.
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Discussion
Spatial heterogeneity of the river cooling effect and influencing factors
The results confirmed the spatial heterogeneity of LST in different sections of an urban river. Specifically, wide 
river sections always had a lower LST than narrow sections. The reason is that a larger water body usually 
has a stronger convection capacity for heat dissipation than a smaller one, which is consistent with previous 
 studies30,45. Previous  studies27,46 indicated that the surrounding LULC of water bodies has a significant influence 
on UCI intensity. This study has also shown that vegetated areas have the greatest impact on UCI intensity 
among different LULC types along river courses in spring, summer and autumn. The presence of riverside 
green spaces can effectively lower the LST of the river section, as urban green spaces have been demonstrated 
to be another urban “cold source”47–49. The coupling effect between coexisting water bodies and green spaces is 
still uncertain, and needs to be further investigated. The study by Wu et al.50 found that the elevation of water 
bodies significantly affected the UCI intensity of water bodies. However, the elevation of river reach is not an 
influencing factor for LST in this study, which could be due to the narrow range of elevation data among the 
141 sampling sites (3.5–5 m). Therefore, further studies should be conducted to include some regions and cities 
with more complex terrain conditions.

The significant differences in the cooling distances among 141 river reaches demonstrated the heterogeneity 
of UCI effect of an urban river in the adjacent area in all seasons, which is mainly caused by the heterogeneity 
of the riverbank landscape. The results of this study revealed that the cooling effect of a looping river was 
significantly greater on its inner side than on its outer side. The cooling distances of the different river reaches 
varied considerably, and ranged from 8–601 m. In particular, the correlations of CDi  (R2 = 0.391–0.907) (p < 0.001) 
of fixed river sections between different dates were significantly stronger than those of CDo  (R2 = 0.219–0.801) 
(p < 0.01) (Supplementary Fig. 2), suggesting that the cooling capacity of a looping river is more stable on the 
inner side than on the outer side.

Seasonal heterogeneity of the river cooling effect and influencing factors
The LST within a linear watercourse showed the largest fluctuations in summer, and the LST stability is strongest 
in winter, which is consistent with the study by Wu et al.50. This may be due to the fact that the evaporation of 

Figure 5.  Relationships between landscape variables and reach LST of six dates, and seasonal correlations of 
LST of fixed reaches among different dates. *Significance at the 0.05 level; **Significance at the 0.01 level.
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water is highest in summer and lowest in winter. In this study, the width of the river section is the most important 
factor influencing LST in summer, spring and winter. In contrast, the characteristics of riverside greenspace 
(i.e., NDVInng_t and Wnng_t.) account for much more LST variation than the width of the river reach in autumn. 
This greater influence of NDVI in autumn on LST could be caused by a larger NDVI difference between 141 
sampling sites, as the leaves of many deciduous tree species fall, but evergreen tree species remain standing as 
usual. In winter, NDVI was no longer correlated with LST, and only significant positive correlations between Wr 
and Wnng_t with LST were observed. This was mainly due to the fact that transpiration of neighboring vegetation 
is relatively weak in winter compared to warmer seasons. In conclusion, the relative explanatory power of these 
influencing factors varies with season.

Unlike the mean surface temperature, the cooling distance of a river section is more relevant to the 
characteristics of the adjacent green space than the scale of the reach in all four seasons. No significant 
correlations between the cooling distances of river reach and the NDVI values of the adjacent green spaces were 
observed in warm seasons. In contrast to the other seasons, the cooling distance in winter is negatively correlated 
with the NDVI values of the adjacent green space, suggesting that the cooling distance may be reduced with 
increasing vegetation density. Part of the reason may be that riverside green spaces with dense vegetation can 
effectively dampen the river breeze and block some winds, and therefore, reducing the cooling capacity of the 
river reach to the surrounding area.

Implications for urban water body design
The results demonstrated that the Outer-City River is a lower-temperature zone in four seasons. Consistent with 
previous  studies30,50, a larger river has a greater UCI intensity than a smaller one. Therefore, increasing the area 
of the urban water body can effectively mitigate the UHI effect. It is not an ideal method to enlarge existing water 
bodies from an economic and ecological point of view in highly urbanized areas. However, the amount, structure 

Table 4.  Results of the SW-MLR analyses and RW analyses (N = 141). Tmn_0722, Tmn _0527, Tmn _0623, Tmn 
_0415, Tmn _1109 and Tmn _0130 represent the LST of 141 sampling sites on 22 July, 2014; 27 May, 2017; 23 
June, 2021; 15 April, 2019; 9 November, 2019 and 30 January, 2021, respectively.

SW-MLR analysis RW analysis

Dependent variable Variables

Unstandardized coefficients Standardized 
coefficients (β) t Sig VIF Raw importance

Rescaled 
importance (%)β Std. error

Tmn_0722

(Constant) 44.497 0.361 123.374 0.000

Wr − 0.051 0.003 − 0.741 − 15.373 0.000 1.042 0.416 59.9

NDVInng_t − 3.771 0.619 − 0.349 − 6.089 0.000 1.469 0.231 33.3

Wnng_t − 0.276 0.060 − 0.259 − 4.580 0.000 1.427 0.047 6.8

R2 = 0.694; Adjusted  R2 = 0.687 Total 0.694 100.0

Tmn _0527

(Constant) 37.354 0.359 104.117 0.000

Wr − 0.049 0.003 − 0.761 − 15.359 0.000 1.031 0.473 70.2

NDVInng_t − 5.990 1.230 − 0.282 − 4.869 0.000 1.404 0.16 23.7

Wnng_t − 0.236 0.057 − 0.238 − 4.153 0.000 1.378 0.041 6.1

R2 = 0.674; Adjusted  R2 = 0.667 Total 0.674 100.0

Tmn _0623

(Constant) 42.172 0.333 126.738 0.000

Wr − 0.050 0.003 − 0.761 − 17.453 0.000 1.037 0.436 58.2

NDVInng_t − 8.614 1.120 − 0.406 − 7.690 0.000 1.524 0.278 37.1

Wnng_t − 0.228 0.052 0.228 − 4.361 0.000 1.486 0.035 4.7

R2 = 0.749; Adjusted  R2 = 0.743 Total 0.749 100.0

Tmn _0415

(Constant) 27.759 0.242 114.486 0.000

Wr − 0.033 0.002 − 0.748 − 16.530 0.000 1.052 0.403 54.9

NDVInng_t − 6.571 0.987 − 0.371 − 6.656 0.000 1.595 0.278 37.9

Wnng_t − 0.194 0.037 − 0.285 − 5.224 0.000 1.535 0.053 7.2

R2 = 0.734; Adjusted  R2 = 0.728 Total 0.734 100.0

Tmn _1109

(Constant) 21.849 0.152 143.907 0.000

Wnng_t − 0.116 0.022 − 0.369 − 5.368 0.000 1.412 0.270 49.8

Wr − 0.010 0.001 − 0.480 − 8.123 0.000 1.044 0.177 32.7

NDVInng_t − 5.169 0.969 − 0.372 − 5.335 0.000 1.458 0.095 17.5

R2 = 0.542; Adjusted  R2 = 0.532 Total 0.542 100.0

Tmn _0130

(Constant) 11.244 0.099 113.827 0.000

Wr − 0.014 0.001 − 0.733 − 13.002 0.000 1.011 0.498 88.0

Wnng_t − 0.075 0.016 − 0.263 − 4.656 0.000 1.011 0.068 12.0

R2 = 0.566; Adjusted  R2 = 0.560 Total 0.566 100.0
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and health of the adjacent vegetation area can easily be changed and optimized through vegetation management. 
Thus, strategies related to increasing the area of riparian vegetated areas, increasing tree canopy cover and 
improving the vegetation health of adjacent green spaces are recommended. The results of this study can help 
to develop more specific strategies to utilize the cooling benefits of urban rivers and the riverine landscape to 
improve the thermal environment in urban areas.

Table 5.  Results of the SW-MLR analyses and RW analyses (N = 141).

SW-MLR analysis RW analysis

Dependent Variable Variables

Unstandardized coefficients Standardized 
coefficients (β) Sig VIF Raw import-ance

Rescaled importa-
nce (%)β Std. Error

CDi_0722

(Constant) 45.066 8.349 0.000

Wnng_I 0.990 0.031 0.920 0.000 1.072 0.888 99.2

Wr 0.337 0.110 0.087 0.003 1.072 0.007 0.8

R2 = 0.895; Adjusted  R2 = 0.894 Total 0.895 100.0

CDi_0527

(Constant) 40.344 8.622 0.000

Wnng_I 1.049 0.031 0.927 0.000 1.068 0.898 99.3

Wr 0.341 0.113 0.082 0.003 1.068 0.06 0.7

R2 = 0.904; Adjusted  R2 = 0.903 Total 0.904 100.0

CDi_0623

(Constant) 96.871 5.448 0.000

Wnng_I 1.077 0.018 0.972 0.000 1.057 0.965 99.8

Wr 0.202 0.072 0.045 0.005 1.057 0.002 0.2

R2 = 0.967; Adjusted  R2 = 0.966 Total 0.967 100.0

CDi_0415

(Constant) 86.498 9.496 0.000

Wnng_I 1.012 0.031 0.919 0.000 1.088 0.894 99.1

Wr 0.429 0.127 0.094 0.001 1.088 0.008 0.9

R2 = 0.902; Adjusted  R2 = 0.901 Total 0.902 100.0

CDi_1109

(Constant) 104.6 3.644 0.000

Wnng_I 1.048 0.023 0.967 0.000 1.000 0.935 100.0

R2 = 0.935; Adjusted  R2 = 0.934 Total 0.935 100.0

CDi_0130

(Constant) 100.09 6.382 0.000

Wnng_I 1.076 0.032 0.946 0.000 1.002 0.887 99.3

NDVInng_I -168.6 59.105 -0.079 0.005 1.002 0.006 0.7

R2 = 0.893; Adjusted  R2 = 0.892 Total 0.893 100.0

CDo_0722

(Constant) 45.502 4.253 0.000

Wnng_O 0.988 0.068 0.760 0.000 1.072 0.639 97.4

NDVInng_O 55.956 21.654 0.135 0.003 1.072 0.017 2.6

R2 = 0.656; Adjusted  R2 = 0.651 Total 0.656 100.0

CDo_0527

(Constant) 48.566 2.930 0.000

Wnng_O 1.024 0.054 0.851 0.000 1.000 0.724 100.0

R2 = 0.724; Adjusted  R2 = 0.722 Total 0.724 100.0

CDo_0623

(Constant) 108.37 2.548 0.000

Wnng_O 1.064 0.047 0.888 0.000 1.000 0.789 100.0

R2 = 0.789; Adjusted  R2 = 0.788 Total 0.789 100.0

CDo_0415

(Constant) 68.379 10.351 0.000

Wnng_O 1.329 0.052 0.886 0.000 1.110 0.842 98.8

Wr 0.413 0.141 0.102 0.004 1.110 0.01 1.2

R2 = 0.852; Adjusted  R2 = 0.849 Total 0.852 100.0

CDo_1109

(Constant) 83.631 6.464 0.000

Wnng_O 1.158 0.040 0.917 0.000 1.006 0.852 99.19

Wr 0.215 0.081 0.085 0.009 1.006 0.007 0.81

R2 = 0.859; Adjusted  R2 = 0.857 Total 0.859 100.0

CDo_0130

(Constant) 100.05 5.152 0.000

Wnng_O 1.149 0.061 0.863 0.000 1.039 0.696 97.07

NDVInng_O -231.3 71.803 -0.149 0.002 1.039 0.021 2.93

R2 = 0.717; Adjusted  R2 = 0.713 Total 0.717 100.0
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Conclusions
In this study, the spatial heterogeneity and seasonal variation of the cooling effect of different sections of a major 
inner-city river in Suzhou, China, and the influencing factors were investigated and quantified. It was found that 
landscape indicators, including the transverse width of the river reach, the width of riverside green spaces and 
the NDVI of riverside green spaces, influence the magnitude of the cooling effect of different river sections in 
varying degrees, and together can explain a lot of the cooling heterogeneity among different river sections of the 
large inner-city river. The LST variations along a river are more related to its transverse width, and the variations 
in cooling distance are more related to the adjacent green spaces. The logarithmic relationship between LST and 
CD was confirmed (Supplementary Fig. 3), suggesting that the cooling distance will incline to a constant level 
when the LST is lower than a certain threshold, and this threshold is very close to the mean LST value of the 
different river sections.

The Suzhou Outer-city River in this study is just one example to demonstrate the applicability of the 
methodology we proposed, and more importantly, it can also be applied in other cities to quantify the cooling 
effect and impact factors of linear water bodies or river networks. With the increasing concern about global 
climate change and continued rapid urbanization, it is undoubtedly very promising to effectively utilize the 
combined effects of urban green space and water resources to mitigate the UHI effect through appropriate 
landscape strategies.

Data availability
The datasets used and analyzed in this study are available from the corresponding author upon reasonable 
request.
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