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Approximate solutions of the spin 
and pseudospin symmetries 
under coshine Yukawa tensor 
interaction
C. A. Onate 1*, I. B. Okon 2, E. Omugbe 3, A. Basem 4, B. F. Castillo Parra 5, K. O. Emeje 6, 
J. A. Owolabi 6 & A. R. Obasuyi 7

The approximate solutions of the Dirac equation for spin symmetry and pseudospin symmetry 
are studied with a coshine Yukawa potential model via the traditional supersymmetric approach 
(SUSY). To remove the degeneracies in both the spin and pseudospin symmetries, a coshine Yukawa 
tensor potential is proposed and applied to both the spin symmetry and the pseudospin symmetry. 
The proposed coshine tensor potential removes the energy degenerate doublets in both the spin 
symmetry and pseudospin symmetry for a very small value of the tensor strength (H = 0.05). This 
shows that the coshine Yukawa tensor is more effective than the real Yukawa tensor. The non-
relativistic limit of the spin symmetry is obtained by using certain transformations. The results 
obtained showed that the coshine Yukawa potential and the real Yukawa potential has the same 
variation with the angular momentum number but the variation of the screening parameter with the 
energy for the two potential models differs. However, the energy eigenvalues of the coshine Yukawa 
potential model, are more bounded compared to the energies of the real Yukawa potential model.
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The analysis and understanding of some physical systems in quantum theory is provided by the exact solu-
tions of the wave equations and different potential terms that increase research interest in quantum mechan-
ics. The type of wave equation solved depends on the nature of the system. For instance, the description of 
systems such as entropy and Fisher information for the applicable potentials are mostly in the nonrelativistic 
wave equation1–10. The spin 0, spin − 1/2 and spin 1/2 systems are described by the relativistic wave equations 
like the Klein-Gordon11–14 and Dirac equations15–18. In 1928 Dirac investigated the relativistic wave equation 
covariance of the Schrodinger equation and proposed a matrix α, β, and relativistic energy to the first order 
I. The relativistic Dirac equation which described a relativistic particle with spin 1/2 has been widely used to 
address some problems in nuclear physics, high energy physics and as well as quantum chemistry. The Dirac 
equation also describes the motion of particles governed by a strong force in relativistic effects. The solutions 
of Dirac equation for any physical potential model of interest has two symmetries. These are: the spin and the 
pseudospin symmetries. The spin symmetry is a fundamental concept in the realm of quantum field theory that 
relates the intrinsic angular momentum of particles to their statistical feature. It analyses identical bands and 
mesons19,20. This symmetry occurs when S(r) = V(r). On the other hand, the pseudospin symmetry was used 
to explain the actual characteristic of deformed nuclei, superdeformation and established effective shell model 
coupling scheme19,20. The pseudospin symmetry suggests that certain properites of nucleons in the nucleus are 
similar to those of electrons in the atoms. The symmetry has been observed in certain nuclei, particularly those 
with a large number of nucleons. Its applicability is limited to specific regions of the nuclear chart and certain 
energy regimes. Its study has contributed to the understanding of nuclear structure and dynamics in nuclear 
physics. The pseudospin symmetry limit occurs when S(r) = −V(r). The Dirac equation under the spin and 
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pseudospin symmetries have been studied for different potential terms of interest by different authors. These 
symmetries limits are known to produce energy degeneracy doublets for different states. The production of 
the energy degeneracy doublet causes atomic instability. To address this issue, a tensor potential term has been 
introduced to both the spin symmetry and pseudospin symmetry. Over the years, a Coulomb tensor potential 
has been applied by different authors21–23. It was revealed that the degeneracy doublets reduces when the tensor 
strength is 0.5. With the value of tensor strength as 1, more degeneracies were removed leaving few ones. This 
shows that the higher the value of the tensor strength, the more degeneracies that will be removed. This means 
that a tensor potential is highly effective if the degeneracies are removed at small value of the tensor strength. 
Yahya et al. in one of their papers on Dirac equation proposed Yukawa tensor model24. It was observed that the 
degeneracies were removed when the value of the tensor strength (H) is 0.5.

Recently, Ekong et al.25 in one of their papers proposed a new Yukawa potential called coshine Yukawa 
potential model. The coshine Yukawa potential model physically seems to be more fitted in the description of 
molecules compared to the existing Yukawa potential due to the presence of dessociation energy. However, the 
effectiveness or realibity of the coshine Yukawa potential over the existing Yukawa potential has not been given. 
The coshine Yukawa potential model proposed in ref.25 is given as,

where de is the dessociation energy. The authors pointed out that the potential can be applied in the description 
of quantum confinement and molecular dynamics. Motivated by the effect of tensor potential on the degeneracy 
removal, the present study wants to examine the Dirac equation for coshine Yukawa potential model and removal 
of the degeneracies in both the spin and pseudospin symmetries by the coshine Yukawa tensor potential. The 
coshine Yukawa potential model is expected to remove all the energy degeneracies in both the spin and pseu-
dospin symmetries in the present work. The present results will show the effectiveness of the proposed coshine 
Yukawa potential compared to the real/existing Yukawa potential. The orbital spin coupling term in both the 
spin and pseudospin symmetries will be addressed by the formular.

Dirac equation
The Dirac equation with spin-1/2 particles under the potentials S(r) and V(r) as attractive scalar potential and 
repulsive vector potential is of the form26–28.

with E and M are the energy and particle mass, ρ = −iℏ∇ defines momentum operator with α and β as 4× 4 
Dirac matrices, i.e.

And,

Here, I represents the 2× 2 matrix identity and, σi are the Pauli 3-vector spin matrices.
In the nuclei spherical symmetry, the angular momentum operator J  and spin–orbit matrix operator 

κ = −β(σ .L+ I) commute with the Dirac Hamiltonian, where L is the total orbital angular momentum opera-
tor. The spinor wave functions can be classify following the radial quantum number n and the spin–orbit quantum 
number κ and can be express according to the Pauli-Dirac representation26–30.

where the upper and lower spinor components Fnκ (r) and Gnκ (r) are the real square-integral radial wave func-
tions. Yℓ

jmκ (θ ,ϕ) and Yℓ
jm(−κ)(θ ,ϕ) are the spin spherical harmonic functions coupled to the total angular momen-

tum j and its projection m on the z axis for κ(κ + 1) = ℓ(ℓ+ 1) and κ(κ − 1) = i(ℓ+ 1) . The quantum number 
κ is related to the quantum number ℓ for spin and Pseudospin symmetries as,

The quasi-degenerate doublet structure can be expressed in terms of pseudospin angular momentum s̃ = 1/2 
and pseudo-orbital angular momentum ℓ̃ which is defined as,

(1)V(r) = −4deve
−αr

r
cosh(αr),

(2)
1

r2
≈ α2

(1− e−2αr)2
.

(3)[Cα.ρ + β
(

MC2 + S(r)+ V(r)− E
]

ψnκ (r) = 0,

(4)α =
(

0 σ1
σ1 0

)

; β =
(

I 0
0 I

)

.

(5)σ1 =
(

0 1
1 0

)

, σ2 =
(

0 −i
i 0

)

, σ3 =
(

1 0
0 −1

)

.

(6)ψnκ (r) =
�

fnκ (r)
gnκ (r)

�

= 1

r





Fnκ (�r)Yℓ
jmκ (θ ,ϕ)

iGnκ (�r)Yℓ
jm(−κ)(θ ,ϕ)



,

(7)κ =
{

−(ℓ+ 1) = −(j + 1
2
), (s1/2, p3/2, etc), j = ℓ+ 1

2
, aligned spin(κ < 0)

+ℓ = +(j + 1
2
), (p1/2, d3/2, etc), j = ℓ− 1

2
, unaligned spin(κ > 0)

}

.
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where κ = ±1,±2, ... Upon direct substitution of Eq. (6) into Eq. (3), we can obtain two radial coupled Dirac 
equation for the two symmetry components as follows:

For the spin symmetry, �(r) = Cs = constant. Then, we obtain a second-order differential equation for upper-
spinor component as,

and the lower-spinor component is given by,

It is only the real positive energy states that exist when Cs = 0 . However, under the pseudospin symmetry, 
∑

(r) = Cp = constant, one can have from Eq. (9) a second-order differential equation for the lower-spinor 
component as17,26–35.

and the upper-spinor component Fnk(r) as,

It is only real negative energy states that exist when Cp = 0 . If we now include tensor interaction, then we 
obtain an equation in each case for both spin and pseudospin symmetries as follows:

Here, we define a tensor term of the form,

Supersymmetric method
In this section, we briefly review the methodology of supersymmetric approach. To use the supersymmetric 
approach, one considered the partner36–42.

where

When E0 = 0, the ground state of the system can now be written as,

(8)κ =
{

−ℓ̃ = (−j + 1
2
), (s1/2, p3/2, etc), j = ℓ̃− 1

2
, aligned spin(κ < 0)

+(ℓ̃+ 1) = (j + 1
2
), (d3/2, f5/2, etc), j = ℓ̃+ 1

2
, unaligned spin(κ > 0)

}

,

(9)
(

d

dr
+ κ

r

)

Fnκ (r) =
[

MC2 + Enκ −�(r)
]

Gnκ (r),

(10)
(

d

dr
− κ

r

)

Gnκ (r) =
[

MC2 − Enκ +
∑

(r)
]

Fnκ (r).

(11)

[

− d2

dr2
+ κ(κ + 1)

r2
+ 1

�2C2
(MC2 + Enκ − Cs)

∑

(r)

]

Fnκ (r) =
1

�2C2

[

(E2nk −M2C4 + Cs)
(

MC2 − Enκ
)]

Fnκ (r),

(12)Gnκ (r) =
1

MC2 + Enκ − Cs

(

d

dr
+ κ

r

)

Fnκ (r).

(13)

[

− d2

dr2
+ κ(κ − 1)

r2
− 1

�2C2
(MC2 − Enκ + Cps)�(r)

]

Gnκ (r) =
1

�2C2

[

E2nκ −M2C4 − Cps)(MC2 − Enκ )
]

Gnκ (r),

(14)Fnκ (r) =
1

MC2 − Enκ + Cps

(

d

dr
+ κ

r

)

Gnκ (r).

[

d2

dr2
− κ(κ + 1)

r2
+ 2κ

r
U(r)− dU(r)

dr
− U2(r)+

d�(r)
dr

M + Enκ −�(r)

(

d

dr
+ κ

r
− U(r)

)

]

Fnκ (r),

(15)=
[

(M + Enκ −�(r))
(

M − Enκ +
∑

(r)
)]

Fnκ (r),

[

d2

dr2
− κ(κ − 1)

r2
+ 2κ

r
U(r)+ dU(r)

dr
− U2(r)+

d
∑

(r)
dr

M − Enκ +
∑

(r)

(

d

dr
− κ

r
+ U(r)

)

]

Gnκ (r),

(16)=
[

(M + Enκ −�(r))
(

M − Enκ +
∑

(r)
)]

Gnκ (r).

(17)U(r) = −He−αr cosh(αr)

r
.

(18)H± = p2

2m
+ V±(x),

(19)V±(x) = Q′′(x)± Q′(x).
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where N is a normalization factor and,

If the condition,

Is satisfied, the partner Hamiltonians are then referred to the shape-invariant. The a1 called the new 
set of parameters is determined from the a0 called the old set of parameters through mapping of the form 
F : a0 → a1 = F(a0) . The term R(a1) is called the residual term which do not depend on the variable x. The 
problem is thus, simplified where calculations can be done from36–42.

With,

Thus, with the shape invariant condition, the eigen-spectrum of the Hamiltonians can total be determined,

Then, the energy eigen functions,

of the family Hamiltonians are related by,

Solutions of the spin symmetry
The spin symmetry limit occurs when d�(r)

dr = 0, �(r) = CS , and 
∑

(r) = V(r). Substituting Eqs. (1), (2) and 
Eq. (17) into Eq. (15) leads to the following:

To adopt the concept of supersymmetric approach, we write the ground state wave function as,

where W(r) is a superpotential fuction that forms a Riccati equation of the form,

(20)φ−
0 (x) = Ne−U ,

(21)U(x) =
x

∫

x0

Q(r)dr.

(22)V+(a0, x) = V−(a1, x)+ R(a1),

(23)En =
n

∑

s=1

R(as),

(24)φ−
n (a0, x) =

n−1
�
s=0

(

A†(as)

(En − Es)1/2

)

φ0(an, x),

(25)φ−
0 (an, x) = N exp



−
x

�

0

drQ(a0, x)



,

(26)A†
s = − ∂

∂x
+ Q(a0, x),

(27)Hs = − ∂2

∂x2
+ V(as , x)+ Es .

(28)Hsφn−s(as , x) = Enφn−s(as , x), n ≥ s.

(29)φ−
n+s(as , x) =

A†

(En − Es)
1/2

φ−
n−(s+1)(as + 1, x).

(30)
d2F(r)

dr2
=

[

(M − En.κ )βs + κ(κ + 1)α2 + α2
�S1e

−2αr

1− e−2αr
+ α2H�S2e

−2αr

(1− e−2αr)2

]

F(r),

(31)

�S1 = κ(κ + 1)− 2devβ

α
−H

�

1+ H

4

�

,

�S2 = 2+ κ + κ(κ + 1)

H
+ H

4
,

βS = M + En,κ − CS,























.

(32)F0,κ (r) = exp

(∫

W(r)dr

)

,
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The E0,κ is the ground state energy. In other to obtain the solution of Eq. (33), we define the superpotential 
function in the form,

where �i and  �f  are superpotential constants. The present study considered the bound state solutions for the wave 
function that satisfy the boundary conditions: Fκ ,n(r)/r = 0, r → ∞;∞, r → 0. These regularity conditions 
result to a restriction that �i > �f . Substituting the superpotential function in Eq. (34) into the nonlinear Riccati 
equation in Eq. (33) with some mathematical manipulations and simplifications leads to the following equation.

Using Eq. (34), the partner potentials V±(r) = W2(r)± dW(r)
dr  in the supersymmetric approach can be con-

structed. It is noted that the family potentials must form shape invariance for the negative partner potential to 
be adopted in the computation of the energy equation. Thus, the partner potentials are given as,

From Eqs. (38) and (39), we find that the family potentials V+(a0, r) and V−(a1, r) are shape-invariant and 
thus satisfy the shape invariance condition43–46.

via mapping of the form �f → �f − 2α. , where �f = a0. It is deduced that a1 = f (a0) ⇒ a0 − 2α, where a1 is a 
new set of parameters uniquely determined from the old set a0 and R(a1) is a residual term which is independent 
of the variable r . Using the shape invariance approach, and we can write the following,

Using the equations above, the deduction for energy equation begins with,

From the above, the real energy equation for the spin symmetry is obtained as,

(33)W2 − dW(r)

dr
= α2

�S1e
−2αr

1− e−2αr
+ α2H�S2e

−2αr

(1− e−2αr)2
+ E0,κ .

(34)W(r) = �i −
�f e

−2αr

1− e−2αr
,

(35)�
2
i = E0,κ ,

(36)�f = α

(

1±
√

1+H�S2

)

,

(37)�i =
−
(

�S1 + �
2
f

)

2�f
.

(38)V+(r) = W2(r)+ dW(r)

dr
= �

2
i −

�f (�f − 2�i)e
−2αr

1− e−2αr
+ �f (�f + 2α)e−2αr

(1− e−2αr)2
,

(39)V−(r) = W2(r)+ dW(r)

dr
= �

2
i −

�f (�f − 2�i)e
−2αr

1− e−2αr
+ �f (�f − 2α)e−2αr

(1− e−2αr)2
.

(40)V+(a0, r) = V−(a1, r)+ R(a1).

(41)R(a1) = V+(a0, r)− V−(a1, r) =
(−�S1 − a20

2a0

)2

−
(−�S1 − a21

2a1

)2

,

(42)R(a2) = V+(a1, r)− V−(a2, r) =
(−�S1 − a21

2a1

)2

−
(−�S1 − a22

2a2

)2

,

(43)R(a3) = V+(a2, r)− V−(a3, r) =
(−�S1 − a22

2a2

)2

−
(−�S1 − a23

2a3

)2

,

(44)R(a4) = V+(a3, r)− V−(a4, r) =
(−�S1 − a23

2a3

)2

−
(−�S1 − a24

2a4

)2

,

(45)R(an) = V+(an−1, r)− V−(an, r) =
(

−�S1 − a2n−1

2an−1

)2

−
(−�S1 − a2n

2an

)2

.

(46)E2n,κ =
n

∑

κ=1

R(aκ ) = V+(a0, r)− V−(a1, r),
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The lower components of the wave function can be written as,

To obtain the upper component of the wave function, we substitute Eqs. (1), (2) and Eq. (17) into Eq. (15) 
and defining a variable of the y = e−2αr , to have,

where

When r tends zero and infinity, Eq. (49) has solutions off the form,

where

Taking a trial ave function of the form and replace the function with the hypergeometric function, we have 
the upper component of the wave function as,

Solutions of the pseudospin symmetry
The spin symmetry limit occurs when d�(r)

dr = 0, �(r) = Cs , and �(r) = V(r). Substitute Eqs. (1), (2) and Eq. (17) 
into Eq. (16) leads to the following:

Following the procedure for that of the spin symmetry in Sect. "Solutions of the spin symmetry", the negative 
energy equation (pseudospin symmetry) for the Dirac equation becomes,

The lower and upper components of the wave functions respectively can be written as,

(47)

M2. − E2n,κ − Cs(M − En,κ )+ α2κ(1+ κ) =

α2

[

2βSdev
α

− κ(κ + 1)−H
(

1+ H
4

)

−
(

1+ 2n+√
1+H�S2

)2

2
(

1+ 2n+√
1+H�S2

)

]2

,

(48)Gn,κ (r) =
1

M + En,κ − Cs

(

d

dr
+ κ

r
− U(r)

)

Fn,κ (r),

(49)
d2F(y)

dy2
+ 1

y

dF(y)

dy
+

[

−Py2 + Ry − Q
]

F(y),

(50)

−P = Hα2 + βS(M − En,κ )

4α2
+ H2

16
+ devβ

2α
,

R = −Hα2 + 2βS(M − En,κ )

4α2
+ κH

4
+ devβ

2α
,

−Q = κ(κ + 1)α2 + βS(M − En,κ )

4α2
,

(51)Fn,κ (y) = yδ0(1− y)δ1 ,

(52)
δ0 =

1

2
+ 1

2

√

1+ 2H + κ(1+ κ +H)+ H2

4
,

δ1 =
√

κ(1+ κ)+ βS(M − En,κ )

4α2
.

(53)Fn,κ (y) = yδ0(1− y)δ1 2F1
(

−n, n+ 2(δ0 + δ1), 2δ0 + 1, y
)

.

(54)
d2G(r)

dr2
=

[

(M + En.κ )βP + κ(κ − 1)α2 + α2
�P1e

−2αr

1− e−2αr
+ α2H�P2e

−2αr

(1− e−2αr)2

]

G(r),

(55)

�P1 = κ(κ − 1)+ 2devβ

α
+H

�

1− H

4

�

,

�P2 = κ − 2+ κ(κ − 1)

H
+ H

4
,

βP = M − En,κ + CP ,























.

(56)

M2. − E2n,κ + CP(M + En,κ )+ α2κ(κ − 1) =

α2

[

H
(

H
4 − 1

)

− 2βPdev
α

− κ(κ − 1)−
(

1+ 2n+√
1+H�P2

)2

2
(

1+ 2n+√
1+H�P2

)

]2

,

(57)Fn,κ (r) =
1

M − En,κ + Cp

(

d

dr
− κ

r
+ U(r)

)

Gn,κ (r),
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where

Nonrelativistic solution for coshine Yukawa potential
To obtian the nonrelativistic limit of the Dirac equation that gives the solutions of the Schrὅdinger equation, we 
make the following transformations in the solution of the spin symmetry limit: Cs = H = 0, κ → ℓ,M + E → 2µ

�2 , 
M − En,κ → En,ℓ, Fn,κ (r) → Rn,ℓ(r), then, the nonrelativistic solution becomes,

The radial wave for the nonrelativistic limit becomes,

where

and Nn,ℓ is a normalization factor which can be determine using normalization condition. The normalization 
condition is written as,

Substituting Eq. (58) into Eq. (60), we have,

Defining a transformation of the form z = 1− 2y, Eq. (64) simple turns to,

On comparson, the normalization is obtained and the normalized radial wave function becomes,

Expectation values of coshine Yukawa potential
In this section, we calculate some expectation values of the coshine Yukawa potential model via Hellmann Fey-
nman Theorem47. The Hellmann Feynman Theorem relates the derivative of the total energy with respect to a 
parameter and to the expectation value of the derivative of the Hamiltonian with respect to that same parameter. 
If the spatial distribution of the electrons is determined by the solution of the Schrödinger equation, then, the 
forces in the system can be calculated using classical electrodynamics. If the Hamiltonian H for a particular 
system is a function of some parameters u with the eigenvalue and eigenfunctions denoted by En,ℓ(u) and Rn,ℓ(u) 
respectively, then, we can find the various expectation values provided the associated normalized eigenfunction 
Rn,ℓ(u) is continuous with respect to the parameter u. Then

The effective Hamiltonian of the coshine Yukawa potential is then given as,

(58)Gn,κ (y) = yδ2(1− y)δ3 2F1
(

−n, n+ 2(δ2 + δ3); 2δ2 + 1, y
)

,

(59)
δ2 =

1

2
+ 1

2

√

1− 2H − κ(1+ κ +H)+ H2

4
,

δ3 =
√

κ(1− κ)− βP(M + En,κ )

4α2
.

(60)En,ℓ =
ℓ(ℓ+ 1)α2

�
2

2µ
− 4vαde −

α2
�
2

2µ

[

8µvde
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Then, the expectation values for the various parameters are obtain as follows.
Setting u = µ, we have 

〈

p2
〉

 as,

Setting u = ℓ, we have 〈V〉 as,

Setting u = de , we have 〈V〉 as,

Results and discussion
The energies of the spin symmetry with and without tensor interaction are presented in Table 1. In the absence 
of tensor interaction (H = 0), there are different energy degeneracies produced. The Table shows the following 
energy degeneracies: np3/2 = np1/2, np3/2 = np1/2, np3/2 = np1/2, np3/2 = np1/2, nd5/2 = nd3/2, nd5/2 = nd3/2, nd5/2 = nd3/2, 
nd3/2 = nd3/2, nf7/2 = nf5/2, nf7/2 = nf5/2, nf7/2 = nf3/2, and nf7/2 = nf5/2. This make a total of twelve (12) pairs of degen-
eracy doublets. However, with the involvement of a tensor potential of strength H = 0.05, the whole pairs of the 
degeneracy doublets are removed. This shows that the tensor potential splicts the degeneracies. The spin sym-
metry of the Dirac equation poduces positive energy eigenvalues. The negative energies of the Dirac equation 
(pseudospin symmetry) are presented in Table 2. In the absence of the tensor potential, there are some energy 
degenerate doublets. The results obtained showed that a total of eighth (8) pairs of energy degenerate doublets. 
The produced degeneracies are: ns1/2 = (n-1)d3/2, np3/2 = (n-1)f5/2, nd5/2 = (n-1)g7/2, nf7/2 = (n-1)h9/2, ns1/2 = (n-1)
d3/2, np3/2 = (n-1)f5/2, nd5/2 = (n-1)1g7/2, and nf7/2 = (n-1)h9/2. In the presence of the tensor potential for H = 0.05, 
these energy degenerate doublets are splicted. These results showed that even when the tensor strength is as small 
as 0.05, the whole energy degenerate doublets are splicted for both the spin and pseudospin symmetries unlike 
the real Yukawa tensor potential where the tensor strength has to be as much as 0.5 as studied by Yahya et al.24. 
Table 3 shows the comparison of the energies of the coshine Yukawa potential and the energies of the existing 
Yukawa potential for various states. For all the s-states, the energies of the two Yukawa potentials are in agree-
ment but for the ℓ− states, the energies do not aligned. The results in Table 3 also showed that the energy of the 
existing Yukawa potential varies directly with the screening parameter for all the quantum states. As the screening 
parameter increases, the energy of the existing Yukawa potential also increases for s-state, p-state and d-state. 
However, this is not in the case for coshine Yukawa potential. In the coshine Yukawa potential, the energy for the 
s-state decreases as the screening parameter increases. But for the p-state and the d-state, the energy increases 
as the screening parameter increases. The results in Table 3 showed that without the effect of the approximation 
scheme, the energy of the coshine Yukawa potential and the existing Yukawa potential respectively, varies in 
the same way with the screening parameter. The energy also increases with increase in the angular momentum 
number for both the coshine Yukawa and the existing Yukawa potential in ref.48. However, the energies of the 
coshine Yukawa potential are more bounded than the energies of the existing Yukawa potential model. This 
means that at every s-state, p-state and d-state, the energy of the existing Yukawa potential are higher than the 
energy of the coshine Yukawa potential. In Table 4, the numerical values of different expectation values were 
presented for various quantum states. At the ground state (n = 0), the expectation value in momentum space and 
the kinetic energy expectation value respectively are zero. As the quantum number increases from the ground 
state, the momentum expectation value as well as the kinetic expectation value increases. In the same way, the 
expectation value of the potential and the inverse squared term increases increase in the quantum number. The 
results in Table 4 also showed that as the screening parameter increases from 0.25 to 0.75, the various expectation 
values rises significantly. İt is noted that the expectation values and the quantum state are directly proportional 
to one another. The expectation value of the potential produces negative values which reflects the behaviour of 
the energy eigenvalues of the potential.
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Table 1.   Energies in the spin symmetry limit (in fm–1) for coshine Yukawa potential with de = 3, a = 0.25, 
α = 0.05, M = 1fm−1 and Cs = 5fm−1.

ℓ κ n (ℓ, j) H = 0 H = 0.05

0  − 1 0 0s1/2 4.218770136 4.218676299

0  − 1 1 1s1/2 4.222317002 4.222361322

0  − 1 2 2s1/2 4.219880024 4.219952189

0  − 1 3 3s1/2 4.215291131 4.215383115

1  − 2 0 0p3/2 4.224797021 4.224537655

1  − 2 1 1p3/2 4.224245943 4.224212516

1  − 2 2 2p3/2 4.220720026 4.220770284

1  − 2 3 3p3/2 4.215432484 4.215545555

2  − 3 0 0d5/2 4.230330212 4.230119704

2  − 3 1 1d5/2 4.227531613 4.227442742

2  − 3 2 2d5/2 4.222979534 4.222968465

2  − 3 3 3d5/2 4.216901733 4.216958936

3  − 4 0 0f7/2 4.236058960 4.235837661

3  − 4 1 1f7/2 4.232127703 4.231980459

3  − 4 2 2f7/2 4.226756162 4.226676901

3  − 4 3 3f7/2 4.219941243 4.219928408

1 1 0 0p1/2 4.224797021 4.225340865

1 1 1 1p1/2 4.224245943 4.224446971

1 1 2 2p1/2 4.220720026 4.220794877

1 1 3 3p1/2 4.215432484 4.215417493

2 2 0 0d3/2 4.230330212 4.230722141

2 2 1 1d3/2 4.227531613 4.227767195

2 2 2 2d3/2 4.222979534 4.223118244

2 2 3 3d3/2 4.216901733 4.216957678

3 3 0 0f5/2 4.236058960 4.236423520

3 3 1 1f5/2 4.232127703 4.232408925

3 3 2 2f5/2 4.226756162 4.226961083

3 3 3 3f5/2 4.219941243 4.220071821

Table 2.   Energies in the pseudospin symmetry limit (in fm–1) for coshine Yukawa potential with with de = 3, 
a = 0.25, α = 0.05, M = 1fm−1 and Cp = −5fm−1.

ℓ κ n (ℓ, j) H = 0 H = 0.05

1  − 1 1 1s1/2  − 6.039906996  − 6.023647514

2  − 2 1 1p3/2  − 6.085111703  − 6.054713874

3  − 3 1 1d5/2  − 6.137822654  − 6.093870430

4  − 4 1 1f7/2  − 6.199699078  − 6.142728835

1  − 1 2 2s1/2  − 6.065695348  − 6.050649995

2  − 2 2 2p3/2  − 6.099933514  − 6.070663312

3  − 3 2 2d5/2  − 6.145918893  − 6.102910326

4  − 4 2 2f7/2  − 6.203596991  − 6.147387349

1 2 1 0d3/2  − 6.039906996  − 6.071430256

2 3 1 0f5/2  − 6.085111703  − 6.129997761

3 4 1 0g7/2  − 6.137822654  − 6.195510745

4 5 1 0h9/2  − 6.199699078  − 6.269637325

1 2 2 1d3/2  − 6.065695348  − 6.095393051

2 3 2 1f5/2  − 6.099933514  − 6.143343169

3 4 2 1g7/2  − 6.145918893  − 6.202466773

4 5 2 1h9/2  − 6.203596991  − 6.272668664
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Conclusion
The solutions of the Dirac equation for an inversely quadratic Yukawa potential are obtained for both the spin 
symmetry and pseudospin symmetry under a coshine Yukawa tensor potential model. The normal degenera-
cies in the absence of tensor term are produced for both symmetries. But with the application of the proposed 
coshine Yukawa tensor potential, all the degenerate doublets are splinted even when the strength of the tensor 
potential is as small as 0.05. Thus, based on the literature, the coshine Yukawa tensor potential is ten times more 
effective than the real Yukawa tensor potential obtained by Yahya et al. It is also noted that the variation of the 
nonrelativistic energy with the angular momentum quantum state are the same for both the coshine Yukawa 
potential and the existing Yukawa potential. However, the variation of the screening parameter with the energy 
for the two potentials are not the same for some states but the energy of the coshine Yukawa potential model 
are more bounded than the energy of the real Yukawa potential. This study reviewed that the coshine Yukawa 
tensor potential model has high degeneracy removal over the existing Yukawa tensor potential. This study also 
shows that the nonrelativistic energy of the coshine Yukawa potential and that of the existing Yukawa potential 
aligned with one another for only the s-states.

Data availability
All the data used in this work are in the manuscript.
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Table 3.   Energies of the non-relativistic coshine Yukawa potential with with 4ade = 3, and 2µ = � = 1 for 
various states.

State α Present Yukawa48

1 s

0.001  − 2.2500010  − 2.247 001

0.005  − 2.2500250  − 2.235 037

0.010  − 2.2501000  − 2.220 149

2 s

0.001  − 0.5625040  − 0.559 506

0.005  − 0.5626000  − 0.547 649

0.010  − 0.5629000  − 0.533 091

2p

0.001  − 1.2049685  − 0.559 505

0.005  − 1.2017771  − 0.547 624

0.010  − 1.1978329  − 0.532 993

3 s

0.001  − 0.2500090  − 0.247 013

0.005  − 0.2502250  − 0.235 332

0.010  − 0.2509000  − 0.221 306

3p

0.001  − 0.4016605  − 0.247 012

0.005  − 0.4007001  − 0.235 308

0.010  − 0.3997086  − 0.221 212

3d

0.001  − 0.6757711  − 0.247 010

0.005  − 0.6703781  − 0.235 259

0.010  − 0.6636819  − 0.221 024

Table 4.   Expectation values of coshine Yukawa potential with with de = 2, b = 0.25, and µ = � = ℓ = 1 for 
various states.

n

α = 0.25 α = 0.75
〈

p2
〉

〈V〉 〈T〉
〈

r−2
〉 〈

p2
〉

〈V〉 〈T〉
〈

r−2
〉

0 0.000000  − 0.227123 0.000000 4.477564 0.000000  − 0.544111 0.000000 4.977564

1 0.227671  − 0.221541 0.113835 8.742306 2.049038  − 0.493870 1.024519 9.242306

2 0.584512  − 0.220129 0.292256 12.480480 5.260608  − 0.481162 2.630304 12.980480

3 1.067206  − 0.219570 0.533603 16.070337 9.604852  − 0.476127 4.802426 16.570337

4 1.675182  − 0.219293 0.837591 19.598555 15.076637  − 0.473634 7.538319 20.098555

5 2.408278  − 0.219136 1.204139 23.095414 21.674502  − 0.472220 10.837251 23.595414

6 3.266434  − 0.219038 1.633217 26.574184 29.397903  − 0.471342 14.698951 27.074184

7 4.249622  − 0.218973 2.124811 30.041586 38.246599  − 0.470759 19.123299 30.541586

8 5.357830  − 0.218928 2.678915 33.501381 48.220471  − 0.470353 24.110235 34.001381
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