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Machine learning approaches 
to evaluate infants’ general 
movements in the writhing 
stage—a pilot study
Lisa Letzkus 1*, J. Vince Pulido 2, Abiodun Adeyemo 1, Stephen Baek 3 & Santina Zanelli 1

The goals of this study are to describe machine learning techniques employing computer-vision 
movement algorithms to automatically evaluate infants’ general movements (GMs) in the writhing 
stage. This is a retrospective study of infants admitted 07/2019 to 11/2021 to a level IV neonatal 
intensive care unit (NICU). Infant GMs, classified by certified expert, were analyzed in two-steps (1) 
determination of anatomic key point location using a NICU-trained pose estimation model [accuracy 
determined using object key point similarity (OKS)]; (2) development of a preliminary movement 
model to distinguish normal versus cramped-synchronized (CS) GMs using cosine similarity and 
autocorrelation of major joints. GMs were analyzed using 85 videos from 74 infants; gestational 
age at birth 28.9 ± 4.1 weeks and postmenstrual age (PMA) at time of video 35.9 ± 4.6 weeks The 
NICU-trained pose estimation model was more accurate (0.91 ± 0.008 OKS) than a generic model 
(0.83 ± 0.032 OKS, p < 0.001). Autocorrelation values in the lower limbs were significantly different 
between normal (5 videos) and CS GMs (5 videos, p < 0.05). These data indicate that automated pose 
estimation of anatomical key points is feasible in NICU patients and that a NICU-trained model can 
distinguish between normal and CS GMs. These preliminary data indicate that machine learning 
techniques may represent a promising tool for earlier CP risk assessment in the writhing stage and 
prior to hospital discharge.

Cerebral palsy (CP) is the leading childhood motor neuro-disability, affecting 1 in 325 infants in the United 
 States1. Advances in neonatal care have led to increased survival of preterm infants, even those born extremely 
preterm. However, the risk of neurodevelopmental disability and CP, in particular, remains  high2 with an 
increased incidence and severity of CP in infants born at younger gestational ages (GA)3,4. Research shows that 
early identification of CP risk followed by early intervention at favorable stages of brain  development5–7 are 
critical steps in improving  outcomes6,8.

Infant general movements (GMs) are a reliable predictor of later motor development and have been used 
with high accuracy for the early identification of CP risk in high-risk  infants9–11. Infants typically exhibit these 
spontaneous GMs through 20 weeks post-term and progress from writhing GMs (9 weeks gestation to 8 weeks 
post-term) to fidgety GMs (6 to 20 weeks post-term) before transitioning to goal oriented  movements10. Infants 
with abnormal GMs are known to be at higher risk of neuro-disability and CP in particular. The Prechtl General 
Movement Assessment (GMA) is a validated qualitative diagnostic tool developed for the classification of GMs 
by certified providers. The GMA is non-invasive and can be used shortly after birth to monitor GMs longitudi-
nally with the goal to detect high-risk GM  patterns9–12. The presence of cramped-synchronized (CS) GMs in the 
writhing stage followed by absent fidgety GMs in the fidgety stage has a specificity of 96% for the identification 
of high-risk  CP7,13,14. Persistent CS GMs are also predictive of later diagnosis of CP with a specificity of 92.5%12. 
The GMA is typically used in combination with other assessments such as brain imaging and physical evaluation 
in order to make a diagnosis of  CP6.

While the GMA is an effective tool for the early detection of  CP6, there are barriers to its widespread imple-
mentation into routine neonatal intensive care unit (NICU) clinical care, including associated cost of training 
and re-training, as well as resource allocation considerations to obtain and score  videos15. As such, technologies 
aiming to decrease the impact of these barriers may lead to more neonates benefiting from the GMA. Many 
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investigators have studied sensor-based methods to augment the  GMA16–22, including accelerometers attached 
to the infants’  limbs17,23,24. However, these sensor-based methods have limited applicability due to concerns 
regarding skin integrity in small premature infants, aside from the added logistic constraints of setting up sen-
sors for each measurement  session25,26.

Computer vision and machine learning techniques are increasingly integrated into clinical care. Especially, 
recent advances in deep convolutional neural networks (CNNs) have enabled accurate, robust, and reliable optical 
human movement monitoring that do not require any sensors or fiducial markers. For instance, there is emerg-
ing evidence that machine learning models can assist with the identification of CP risk, specifically automated 
pose estimation methods aiming to analyze infants’ movements within the context of the  GMA16,17,19–22,27,28. 
With the emphasis on early diagnosis, the development of quantitative and automated methods to accurately 
identify concerning GMs (specifically CS GMs) early (in the writhing stage) and prior to NICU discharge is a 
key research priority. These techniques may also bring to light additional and more subtle patterns that could be 
incorporated into prediction algorithms for other neuro-disabilities29. Importantly, the successful development 
of these techniques may allow for widespread screening of all infants, as the majority of infants are not cared 
for at centers with expertise in the GMA. However, in the clinical context, further research is needed to bridge 
currently available movement models to clinical application in the NICU.

In this retrospective cohort pilot study, we describe the use of a machine learning model to analyze infants’ 
GMs in the writhing stage and during NICU hospitalization in a strictly automated fashion. To achieve this goal, 
we first trained a pose estimation model on NICU-based images and evaluated its performance against standard 
out-of-the-box models. Second, using the output of the NICU-trained pose estimation model, we developed 
a preliminary movement model prototype to differentiate between normal (low-risk) GMs and CS (high-risk) 
GMs. Results from this study describe the utility of machine learning techniques to accurately differentiate 
normal from CS GMs using autocorrelation as a measure of repetitive movement. In addition, this study also 
widens the range of machine learning approaches for the automated analysis of infants’ movement to determine 
CP risk into earlier age groups.

Methods
Sample selection and experimental setting
This clinical observational retrospective pilot study using archival GMA videos was conducted in the level IV 
NICU at the University of Virginia (UVA). This study was approved by the University of Virginia Human Sci-
ences Research Internal Review Board (UVA-HSR) with waiver of consent and was performed in accordance with 
relevant guidelines and regulations. At UVA, the GMA is obtained as standard-of-care for the assessment of the 
motor repertoire of very low birth weight (VLBW) infants [GA < 32 weeks and/or birth weight (BW) < 1500 g] 
and all infants at high-risk for neuro-disability including those with hypoxic ischemic  encephalopathy5. The 
timing of obtaining the GMA videos was not dictated by this study and was obtained per unit guidelines. All 
GMA videos were obtained in a standardized fashion with infants in supine position and dressed in lightweight 
clothing with arms and legs bare and with removal of all positioning aids and/or other barriers, to allow for 
free movement of all extremities. Videos were obtained from a consistent angle, from above the infant and in 
a vertical orientation. Videos were stopped when at least 3 GMs were observed (5370.93 ± 1353.28 frames or 
179.03 ± 45.11 s). Videos were subsequently reviewed and scored on a weekly basis by at least 2 GMA-certified 
evaluators per unit routine procedure. GMA results were documented in the patients’ electronic medical record 
and concerning patterns (CS GMs) were directly reported to the treatment team.

Videos used for this study were selected from the GMA video archives housed on a secure UVA network 
which strictly follows the UVA protocol for electronic storage of highly sensitive data. Infants with archival GMA 
videos and admitted to the NICU between July 2019 and November 2021 were selected for analysis if they met 
the quality checks discussed above.

Annotation process
Current open-source, state-of-the-art pose estimation algorithms are not trained for infant body shapes and/
or for complex imaging conditions such as those occurring in the NICU setting, raising concerns of sub-opti-
mal performance. Hence, we first constructed a NICU-based training dataset to fine-tune an already available 
pose estimation model, the Microsoft Common Objects in Context (MS COCO)  dataset30. Using the Visipedia 
Annotation Toolkit as the primary labeling software (https:// github. com/ visip edia/ annot ation_ tools), a team of 
annotators (LL, SZ, VP, AM, SP) manually labeled 17 anatomical key points: eyes, nose, ears, shoulders, elbows, 
wrists, hips, knees, and ankles of the infants. All videos were labeled by a single human annotator. For annotation, 
we sampled every 10 other frames from each of the videos that had 30 frames per second (fps). For example, 
if a video contains 100 frames, we sample every 10th frame for annotation. This sampling method yielded 620 
images for training and 140 images for testing.

Training and test dataset development
In order to test the generalizability of the pose estimation model, 76 GMA videos were used: 62 for training, and 
14 for testing for an optimal 80:20  ratio31,32. Splitting the train/test dataset at the infant level can give evidence 
to the model’s generalizability. Of note, during the model training phase, the model was blinded to the hold-out 
test setWe then developed a two-step sequential framework (Fig. 1A) comprised of two distinct models: (1) a 
CNN model for pose estimation of anatomic key points, and (2) a time-series movement model prototype to 
analyze the output of the pose estimation CNN. The goal of this two-step framework is to accurately assign a 
high-risk for CP diagnosis based on the presence of CS GMs prior to NICU discharge. In the first step, the pose 
estimation model estimates the location of the infant’s anatomical key points (Fig. 1B, C) relative to the video 
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frame. Each frame of a video is processed by the model resulting in a frame-ordered time-series location of these 
key points. To train a preliminary pose estimation model, we used the Detectron2 framework using a R-CNN 
X101-FPN backbone model containing 101 convolution  layers33. In order to train a model on a limited number 
of infant videos, we employed the transfer learning  method34. Starting from a model pre-trained on a generic 
computer vision data set comprised of images of people, the MS COCO  dataset30. we then fine-tuned the neural 
network weights on infant videos in the NICU setting (see Supplemental Material for the training parameters).

In the second step, the preliminary movement model aims to use the time series signals from the pose estima-
tion model to distinguish between normal and CS GMs. Five normal videos (5 videos not included in the test 
set) and 5 CS videos (1 from the test set and 4 new videos). The movement model converts the inferred poses 
into eight joint angles (see Fig. 2A) which are then represented using cosine similarity and calculated as follows:

where the dot operator ‘ · ’ is the standard Euclidean dot product in two-dimensions and � · � is the Euclidean 
vector norm. Here, A and B are vectors rooted at the same body joint but pointing at different limb directions. 
For example, Fig. 2B shows an example of the two vectors used to calculate the cosine similarity value of the left 
elbow anchor. Note that a cosine similarity value near 1 indicates that the limbs are flexed; whereas a value near 
−1 indicates that the limbs are extended. A cosine similarity value of 0 means that the limbs are perpendicular 
(at a 90° angle). Using these time-series cosine similarity representation, we then tracked these angular values 
across time to visualize patterns within the context of the GMA. Figure 2C shows the spread of the autocorrela-
tion values for K = 5, 7, 11, 13 between the two groups.

These cosine similarity time series were then analyzed using autocorrelation to distinguish movement patterns 
that indicate high-risk for CP. Autocorrelation represents the degree of similarity between a given time-series 
and a lagged version of itself over successive time intervals. This study measures the autocorrelation of each 
angular position for each limb. Autocorrelation measures the relationship between a variable’s current value and 
its past values. When the autocorrelation in a time series is high, it becomes possible to predict future values 
by referring to past values—indicating GMs that are repeated and predictable. We used a normalized autocor-
relation measure to compare across subjects. A normalized autocorrelation of + 1 represents perfect positive 

dcosine(A,B) =
A · B

||A||||B||
,

Figure 1.  Data pipeline using a two-step framework. (A) Model and data pipeline illustrating the two-step 
framework composed of two distinct models. Step 1 consists of a pose estimation model—which is a neural 
network trained to detect and localize anatomical key points on NICU specific data. Step 2 consists of a 
preliminary movement model trained to classify movement as normal or CS using the time series information 
generated by the pose estimation model. (B) Example of the data output from a representative patient. The 
key points form the infant’s skeleton from which movement is analyzed. (C) List of the 17 anatomic key points 
inferred by the pose estimation model.
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correlation, while an autocorrelation of 0 represents very high dissimilarity. The normalized autocorrelation, rk 
was calculated as follows:

where yi is autocorrelation at lag i , k is the time lag, and n is the number of observations in the time series, and 
yt is the position at time t  and  y is the average of yt for all t.

Data analysis and metrics
This section describes the evaluation metric used to measure the performance of model using the annotated test 
set. We measured the localization accuracy of the key point detection model trained on the NICU dataset with 
the object key point similarity (OKS) of the model’s inference against ground truth 35.

OKS was calculated as follows:

where di is the euclidean distance between ground truth and predicted key point location of the i th key point; s is 
scale and ki per-key point constant that controls fall off. More specifically, the distance, di , is the distance between 
the pixel location of the model inference and the pixel ground truth evidence provided by human annotators.

The OKS metric shows how close a predicted key point is to the true key point (value from 0 to 1). The greater 
the value the closer the prediction is to the ground truth. We chose OKS because it is the standard metric to 
evaluate key points  individually36.

Statistical analysis
To statistically measure the difference between the autocorrelation of normal and CS GMs, we performed an 
independent two sample t-test between the autocorrelation values of normal vs. CS GMs at certain lag level, k . 
For this work, we performed a t-test on autocorrelation values at lag level k = 1, 2, 3, 5, 7, 11, 13 seconds which 
was empirically sampled as no standard exists in the literature. Results are shown as mean ± SD unless otherwise 
specified.

Consent
This study was approved by the University of Virginia Human Sciences Research Internal Review Board (UVA-
HSR) with waiver of consent. Patient consent was not required for this study.

r(k) =

∑T
t=k+1(yt − y)(yt+k − y)

∑T
t=1

(

yt − y
)2

OKS = exp

(

−
d2i
s2k2i

)

Figure 2.  Cosine similarity calculation method. The preliminary movement model (step 2) is trained to 
measure the cosine similarity between two vectors anchored at the joint. (A) Example of a left elbow anchor. The 
joint angle is calculated using the cosine similarity of the two vectors: (A) left elbow key point to left shoulder 
key point and (B) left elbow key point to left wrist key point. (B) List of the eight joint anchors and their 
respective endpoints used in the movement model. (C) Shows the spread of the autocorrelation values for k = 5, 
7, 11, 13 for the eight joints between normal and CS.
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Results
Cohort demographics
A total of 85 archival videos from 74 infants were used in this study. Infants’ demographic and clinical informa-
tion are shown in Table 1. The mean GA at birth was 29.9 ± 4.1 weeks (23–40 weeks); Fig. 3. The analyzed GMA 
videos were obtained at 35.9 ± 4.6 weeks postmenstrual age (PMA). The majority of the infants (58; 78.4%) were 
classified as having poor repertoire GMs patterns while 11 (14.9%) and 5 (6.8%) were classified as normal and 
CS, respectively.

To evaluate the pose estimation model, 62 videos (620 frames) were used for developing the anatomical 
key point detection model and 14 videos (140 frames) served as the test set for measuring key point accuracy. 
Subsequently, five videos classified by the interprofessional GMA clinical team as normal (none of the normal 
videos were included in the test set) and five classified as CS GMs (1 video was also included in the test set) were 
used for the autocorrelation analysis as the basis of an initial preliminary movement model.

Model performance
Our pose estimation model (Step 1) trained on custom NICU data was more accurate (0.91 ± 0.008 OKS) than 
the MS COCO model (0.83 ± 0.032 OKS, p   ≤ 0.001), representing an improvement in the key point detection 
accuracy performance of 9% (Fig. 4A). Additionally, improved accuracy was noted for all anatomic key points 
(Table 2) indicating that the NICU-trained model better adapts to the NICU setting than the MS COCO model. 
Furthermore, the OKS performance monotonically increased as more patient training data was added (Fig. 4B). 
The average OKS saturated to achieve a maximum performance of 0.912 beginning at 50% and achieving a 
minimum OKS standard deviation of 0.008 at 75%. Provided in a supplementary file is a video example of the 
output of our pose estimation model. The cosine similarity time series of representative infants with normal 
and CS GMs are shown in Fig. 5. We used the autocorrelation of the time series for each of the eight joints of 
interest to measure repeated movements. As shown in Fig. 6, the results of the autocorrelation analysis indicate 

Table 1.  Cohort demographics and clinical characteristics. GA gestational age, NEC necrotizing enterocolitis, 
PMA postmenstrual age, PVL periventricular leukomalacia, SIP spontaneous intestinal perforation, sIVH 
severe intraventricular hemorrhage-grade 3/4.

Demographics (n = 74)

 GA (mean ± SD) 28.9 ± 4.1 weeks

 Birthweight (mean ± SD) 1803 ± 387 g

 Born at less than 32 weeks 57 (77%)

 Male gender 46 (62%)

 Delivery mode (cesarean section) 45 (61%)

 Skin color (White) 50 (68%)

 Ethnicity (non-Hispanic) 70 (95%)

 PMA at time of first assessment (mean ± SD) 35.9 ± 4.6 weeks

Comorbidities

 sIVH/PVL 9 (14%)

 NEC/SIP 5 (8%)

 Sepsis 14 (22%)

 Severe ROP 10 (14%)

Figure 3.  Distribution of gestational age and birth weight of the cohort. The mean GA at birth was 
29.9 ± 4.1 weeks (range 23–40 weeks) and the mean birth weight was 1803 ± 387 g.
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Figure 4.  Training of the key point detection model on NICU images. (A) Representative example in two 
patients of the performance of the NICU trained model versus the (MS COCO model) for key point detection. 
(B) OKS results in the NICU-trained versus the MS-COCO models demonstrating a maximum of 0.912 OKS. 
We performed an ablation analysis where the model was trained on 0% (open-source model), 25%, 50%, 75%, 
100% of the available NICU training data and tested each models performance on a hold-out test set. The 
results show that OKS performance begins to saturate starting at 50% and OKS standard deviation reaches its 
minimum at 75%. This indicates that additional data would only marginally improve the pose estimation model. 
For this analysis the following parameters were used: s = 1 and k = 0.001 for all 17 anatomic key points. Legend: 
MS COCO (Microsoft Common Objects in Context); OKS (Object Key point Similarity).

Table 2.  Differences between COCO model and our NICU model. Our NICU model outperformed and 
was more accurate than the COCO model representing an improvement in keypoint detection by 9%. p- 
value < 0.001.

COCO model NICU model (ours)

Nose 0.83 0.91

Left eye 0.85 0.92

Right eye 0.87 0.92

Left ear 0.80 0.89

Right ear 0.80 0.91

Left shoulder 0.86 0.92

Right shoulder 0.87 0.92

Left elbow 0.87 0.91

Right elbow 0.86 0.92

Left wrist 0.83 0.91

Right wrist 0.85 0.92

Left hip 0.81 0.91

Right hip 0.80 0.90

Left knee 0.80 0.91

Right knee 0.78 0.92

Left ankle 0.80 0.91

Right ankle 0.79 0.91

Mean 0.83 0.91

stdev 0.031 0.008
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that CS GMs have a higher autocorrelation value than normal GMs in the lower extremity joints. This difference 
was statistically significant on univariate analysis (Table 3). Of note, a MANOVA test with multiple comparison 
analysis generated similar results again demonstrating significant differences for the two lag times at 11 and 13 
s [p = 0.0418 and p = 0.0357 (data not shown)]. Normal GMs had significantly lower autocorrelation values for 
lag levels k = 2, 3, 5, 7, 11, 13 seconds, which approaches 0 values sharply; whereas, CS GMs had higher autocor-
relation values gradually tapering to 0 as lag is increased, indicating a higher measure of “repetitive movement” 
or movement lacking variety. Normal and CS GMs were maximally distinguished using a lag level of k = 5, 7, 11

—achieving a p-value less than 0.05 in the lower extremities. There were no statistically significant differences 
in the upper extremities.

Discussion
The GMA is a state-of-the-art tool for early detection of CP. The automated analysis of GMs is of high inter-
est given the many barriers limiting the wide application of the GMA. With this study, we describe a two-step 
machine learning model to automatically analyze infants’ GMs early, in the writhing stage, expanding previous 
applications. In the first step, a pose estimation model was able to accurately infer an infant anatomic key point 
with improved accuracy when compared to out-of-the box pose estimation models. Based on the time series 
information from the pose estimation model, the movement model prototype was able to accurately separate 
CS and normal GMs using lower extremity data. We believe that future studies, incorporating features beyond 
autocorrelation, will improve the model’s ability to accurately classify GMs.

Machine learning techniques are increasingly studied as tools to analyze infants’ movements and previous 
studies have investigated the utility of computer vision techniques to assess CP risk in infants. Previous studies 
have evaluated the utility of computer vision techniques to assess CP risk in infants. However, there remains 
significant gaps in knowledge, specifically with regards to their applicability and utility in the writhing stage of 
GMs 16, as other groups have primarily focused on the fidgety period 28,37. Our approach is similar to that of other 
research groups 28,37 and employs a multi-step framework. First infants’ position is tracked and estimated. Then, 
using the movement information, the risk of CP is determined using a classifier. Our team favored a classical 
modeling approach in contrast to othertinvestigators who utilized models based on neural network approaches 
for the classification (prediction) step 28. This strategy is more explainable and thereby may provider a higher level 
of trust and confidence in the results for the end-users. An additional difference in the strategy we employed is 
the use of custom-trained pose estimation model to improve performance in the NICU environment, character-
ized by interfering technology (i.e., leads for monitoring, etc.) and clutter. Other studies, also employing classical 

Figure 5.  Time series of cosine similarity in normal versus cramped synchronized GMs. Representative 
examples of time series of cosine similarity for each joint for normal (A) and CS GMs (B) are shown. The x-axis 
represents the frame number and the y-axis represents the cosine similarity. A cosine similarity of 0 indicates 
perpendicular vectors, + 1 indicates vectors with similar orientation and −1 indicates vectors in opposite 
direction. Because CS GMs lack variability and movements tend to be in extension with activation of limbs at 
the same time, the signal demonstrates increase in repeated patterns best shown in the left elbow and left knee as 
well as frequent occurrence of cosine similarity of −1.
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modeling approaches have used “brittle” models (e.g., optical flow, etc.) to classify infant movements which are 
less adept for the busy environment of the NICU 37.

While studies indicate that abnormal GMs in the writhing stage are less predictive than abnormal GMs in the 
fidgety  stage6, determining if earlier identification of risk for CP prior to NICU discharge remains an important 
goal in order to provide individualized treatment plans upon transition to community resources. Before clini-
cal applications can be considered, further research is needed to better understand differences in movement 

Figure 6.  Autocorrelation values in normal versus abnormal GMs. Average autocorrelation values of the eight 
anatomic anchors for all patients are shown at each lag level (CS GMs are shown in red, normal GMs are shown 
in green and individual patients are shown in light grey). CS GMs have a higher autocorrelation value at every 
lag level compared to normal GMs, particularly in the lower extremities.

Table 3.  Autocorrelation values of anatomic key points at varying levels of lag. The independent statistical 
t-test p-values of autocorrelation results at varying levels of lag (in seconds) for all the anatomic key points are 
shown demonstrating a statistically significant difference between normal and CS GM autocorrelation values. 
Statistical significance is indicated by bold text (p < 0.05). Note that a statistically significant difference between 
normal and CS GMs is only noted in the lower extremities. r right, l left.

Lag in seconds r_elbow l_elbow r_shoulder l_shoulder r_hip l_hip r_knee l_knee

1 0.82 (0.44) −0.98 (0.35) −1.36 (0.21) −062 (0.55) −2.04 (0.08) −1.89 (0.1) −1.91 (0.09) −0.93 (0.38)

2 0.42 (0.68) −1.65 (0.14) −1.26 (0.24) −0.38 (0.71) −2.36 (0.05) −1.89 (0.1) −2.39 (0.04) −1.23 (0.25)

3 0.5 (0.63) −1.83 (0.11) −1.16 (0.28) −0.29 (0.78) −2.59 (0.03) −2.04 (0.08) −2.83 (0.02) −1.61 (0.15)

5 0.43 (0.68) −1.51 (0.17) −0.91 (0.39) −0.4 (0.7) −3.16 (0.01) −2.49 (0.04) −3.46 (0.01) −2.32 (0.05)

7 0.75 (0.47) −1.3 (0.23) −0.98 (0.35) −0.16 (0.88) −3.61 (0.01) −2.72 (0.03) −3.65 (0.01) −2.34 (0.05)

11 0.49 (0.64) −0.86 (0.41) −1.1 (0.3) −0.0 (1.0) −3.56 (0.01) −2.6 (0.03) −4.2 (0.0) −2.46 (0.04)

13 0.72 (0.49) −0.56 (0.59) −1.02 (0.34) 0.04 (0.97) −3.6 (0.01) −2.45 (0.04) −4.27 (0.0) −2.21 (0.06)
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patterns that can be captured using computer vision and machine learning techniques at different GA and in 
the writhing phase.

We found that out-of-the-box pose estimation models such as the widely-used MS-COCO dataset, do not 
translate well to the complex environment of the NICU with sub-optimal performance with regards to anatomic 
key point localization accuracy (0.83 OKS). The custom trained model we developed using annotated NICU-
images demonstrated improved anatomic key points detection accuracy (Table 2). Additionally, we show that 
increasing the amount of training data thereafter only marginally improved key point localization indicating 
performance saturation with no further improvement in OKS beyond 75% of the training set.

We also found that the output of the pose estimation model can differentiate between normal and CS GMs 
using cosine similarity to represent limbs’ angular position and autocorrelation as a measure of repetitive move-
ment. On average, infants with CS GMs had a higher autocorrelation level at every lag factor as opposed to those 
with normal GMs, indicating increased proportion of repetitive movement patterns. This was only apparent in 
the lower limbs (hip and knee joints) and maybe due in part to the higher degree of freedom that upper limbs 
have compared to the lower limbs. To ameliorate this finding, future models will include other measures that 
may capture high-risk movements, especially those of the upper extremity (i.e. velocity). Finally, the lack of 
observed difference in the upper extremities could be related to the positioning of the camera and the use of 2D 
videos obtained as part of clinical care. More advanced video technology may capture additional differences in 
movement patterns.

There are several limitations to this pilot study. We used a convenience sample of archival GMA videos that 
were obtained as part of clinical care and not as part of a prospective research protocol. While our institution 
was an early adopter of the GMA in the NICU and we developed a standardized process for obtaining these 
videos as part of clinical care, not all videos were optimized and could be used for this study, thus resulting in a 
limited number of normal and CS videos. Additionally, while poor repertoire is the most frequent GMA pattern 
in preterm infants, they were intentionally excluded from this phase of the model development 5. Future work, 
incorporating additional vision-based features, will focus on developing a model able to differentiate all writhing 
GMs, including poor repertroire movements. Our results, based on a single feature (autocorrelation) support 
the feasibility of such an approach and we plan to develop and test a more robust and complex movement model 
that includes signals beyond autocorrelation measures and is based on a larger set of videos. Once our data set 
is expanded, we will be able to optimize the pose estimation model hyper parameters using a validation dataset. 
Furthermore, we will need to determine the accuracy of this movement model in classifying GMs into three 
CP risk categories: low (normal GMs), medium (poor repertoire GMs) and high (CS GMs). This classification 
can then be used to tailor post-discharge follow up recommendations. Finally, validation in videos obtained 
prospectively, at pre-established gestational ages and varied levels of risk is needed.

Conclusions
Machine learning techniques are a promising avenue to visualize and objectively analyze infants’ GMs in the 
writhing stage. A pose-estimation models trained on NICU images can accurately infer infant poses, widening 
the application of automated GMs video analysis to younger ages. Further, a model built on a single movement 
feature (autocorrelation) can distinguish CS GMs from normal GMs, supporting further model development in 
order to classify all writhing GMs patterns. If successful, this approach would provide a one-step visual assess-
ment of GMs and could represent a low-cost method to rapidly screen neonates for CP risk prior to hospital 
discharge. This is optimal to individualize and optimize follow-up needs as well as therapy recommendations. 
Importantly, this approach would decrease inequities and allow for infants not born in centers where the GMA 
is performed routinely to benefit from this assessment. Additionally, this objective tool may be helpful to allow 
for risk stratification for future interventions based on assigned risk. Future work will focus on improving the 
current prototype by adding additional vision-based features as well as prospectively validate the model’s accuracy 
against the state-of-the-art clinical diagnosis.

Data availability
The dataset collected and/or analyzed for the current study is not publicly available due to patient privacy (videos 
include infants’ faces), but are available from the corresponding author upon reasonable request.
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