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Driving singing behaviour 
in songbirds using a multi‑modal, 
multi‑agent virtual environment
Leon Bonde Larsen1*, Iris Adam2, Gordon J. Berman3, John Hallam1 & Coen P. H. Elemans2*

Interactive biorobotics provides unique experimental potential to study the mechanisms underlying 
social communication but is limited by our ability to build expressive robots that exhibit the 
complex behaviours of birds and small mammals. An alternative to physical robots is to use virtual 
environments. Here, we designed and built a modular, audio‑visual 2D virtual environment that 
allows multi‑modal, multi‑agent interaction to study mechanisms underlying social communication. 
The strength of the system is an implementation based on event processing that allows for complex 
computation. We tested this system in songbirds, which provide an exceptionally powerful and 
tractable model system to study social communication. We show that pair‑bonded zebra finches 
(Taeniopygia guttata) communicating through the virtual environment exhibit normal call timing 
behaviour, males sing female directed song and both males and females display high‑intensity 
courtship behaviours to their mates. These results suggest that the environment provided is 
sufficiently natural to elicit these behavioral responses. Furthermore, as an example of complex 
behavioral annotation, we developed a fully unsupervised song motif detector and used it to 
manipulate the virtual social environment of male zebra finches based on the number of motifs sung. 
Our virtual environment represents a first step in real‑time automatic behaviour annotation and 
animal–computer interaction using higher level behaviours such as song. Our unsupervised acoustic 
analysis eliminates the need for annotated training data thus reducing labour investment and 
experimenter bias.

Social communication involves multiple individuals that interact in networks, typically through multi-modal 
signals, such as vision and sound. Deciphering the mechanisms underlying social communication requires 
experimental manipulation of the complex multi-modal interactions within the social network. The field of 
interactive biorobotics provides unique experimental possibilities by letting animals interact with robots to 
understand, for example, mating  behaviours1–4, the underlying rules of shoaling  behaviour5–8 and communica-
tion  signals9,10. This approach is limited by our ability to build expressive robots that exhibit complex behaviours. 
What passes for an expressive robot is species and hypothesis dependent, but many animals will readily accept a 
robot as part of their social  network11–14. Building and controlling a small expressive robot might be possible in 
some  cases15 but is often not a viable solution for small model animals due to the mechanical and computational 
complexity involved in fully mimicking natural behaviours.

An alternative to physical robots is to use a virtual environment, such as virtual reality (VR)16, defined as 
“a real or simulated environment in which a perceiver experiences telepresence”17. Current VR setups used in 
larval zebra  fish18, fruit  flies19 and  mice20 virtualise the position of the agent in the environment by providing 
computer-generated visual feedback. The visual stimulus is generated by measuring the real-world movements 
of the agent and apply the same translation to its virtual  position18–23. To provide a sufficiently natural virtual 
environment to interact with and drive the behaviour of an agent, the system needs to be fast enough to analyse, 
compute and generate the virtual environment within the perceptual real-time of the agent. Studying social com-
munication in a virtual environment in most cases also requires multi-modal signals, such as vision and sound 
and interaction between multiple  agents24.

A potentially excellent system for studying social behaviour in a virtual environment is vocal interaction in 
songbirds. Zebra finches (Taeniopygia guttata) live in societies and form interactive networks through  calls10,25–28. 
The male song is a learned complex behaviour and is part of the mating ritual where both visual and auditory 

OPEN

1University of Southern Denmark, SDU-Biorobotics, Odense, Denmark. 2Department of Biology, University of 
Southern Denmark, Odense, Denmark. 3Department of Biology, Emory University, Atlanta, GA, USA. *email: 
lelar@mmmi.sdu.dk; coen@biology.sdu.dk

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-16456-0&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2022) 12:13414  | https://doi.org/10.1038/s41598-022-16456-0

www.nature.com/scientificreports/

cues play crucial roles in the natural  behaviour25. To situate a zebra finch in a virtual environment requires at 
least sound and vision but is likely also influenced by  gaze29 and orientation relative to other  agents30. Previous 
work has shown that zebra finches interact vocally with an immobile physical decoy providing audio from a 
built-in  speaker10,31 and are physically attracted to more life-like actuated zebra finch  robots15. Furthermore, 
adult finches can recognize and discriminate between conspecifics from live video  feeds32,33 and sing song to 
still  images34 or live video feeds of  females34,35. Also, juvenile males can learn song from video and audio play-
back of a  tutor36,37. Finally, perturbation of virtual auditory environments can drive active error correction of 
 song38,39. Taken together, these studies suggest that zebra finches allow studying social vocal behaviour in a virtual 
environment. However, to our best knowledge no multi-agent setup currently exists that supports multi-modal 
manipulation of vocal communication, and we do not know if zebra finches exhibit normal vocal behaviour 
when placed in such a virtual environment.

Here we designed and built a multi-agent, audio-visual environment for experimentally manipulating social 
communication. Our system implementation is based on events processing that allows for much more complex 
computation than the state-of-the-art and a step towards integrating closed-loop control and AI in studying 
social communication. The latency of the current system was latency 308 ms and 383 ms for audio and video, 
respectively. The delay may restrict some interactive behaviours, but still allows a wide range of applications. 
Before using the system in biological experiments, we first wanted to test if the audiovisual environment is suffi-
ciently realistic to elicit established behavioral responses in a social context. Therefore, in this paper we quantified 
several well-described social vocal behaviours in zebra finches when communicating through the environment. 
We show that zebra finches exhibit normal call timing behaviour to their partner, that males sing female directed 
song and both males and females display high-intensity courtship behaviours when communicating through 
the virtual environment. As an example of exploiting complex computation, we developed a fully unsupervised 
song motif detector. We subsequently used this detector to manipulate the virtual social environment of male 
zebra finches making them sing directed song to a virtual mate. Although we accepted longer system latency, 
our results suggest that the virtual environment is sufficiently natural to elicit courtship behaviours. Our work 
represents a first step in using automatic behaviour annotation for animal–computer interaction during higher 
level behaviours such as song.

Results
We present a modular, audio-visual virtual environment able to experimentally manipulate social communica-
tion. Our system allows for multi-modal, multi-agent interaction and focuses on songbirds. Our setup is imple-
mented in a box placed inside a cage and the cage is placed in a sound attenuating isolator box. We record and 
present a high-speed (60 fps) visual environment through a teleprompter system that allows direct eye contact 
and ensures a realistic visual perspective of the video (Fig. 1A). The cage has two perches with presence sensors 
(Fig. 1A); one in front of the teleprompter screen (front perch) and one behind an opaque divider that does not 
allow visual contact with the screen (back perch). Connecting two setups provides the visual impression that 
the other animal is located 20 cm away (Fig. 1B). We furthermore record the acoustic environment and present 
audio from a speaker located behind the teleprompter to provide the cue that sound and video have the same 
spatial origin. Data from all sensors is streamed on a network, translated into events using cloud-based event 
 processing40 and is captured for offline processing by a node connected to storage (historian, Fig. 1C). This 
modular and distributed design allowed for scaling of individual parts of the system (e.g., to add sensors or 
software analyses) and can be extended to connect multiple setups.

Event  Processing41 was used to represent onset and offset of behavioural features and event streams from 
multiple producers were combined to form new events (Fig. 1D). The position of a single bird generated three 
different events for absence/presence on the front or back perch or other location (Fig. 1D, cyan, yellow and 
magenta lines). We assumed a visual contact event when both birds perched in front of the screen. To detect and 
identify vocal signals, the audio stream from the male was analysed real-time (see “Methods” section) to generate 
events based on power and entropy threshold-crossings (Fig. 1D, green lines). A bout of song was detected by 
combining power and entropy with hysteresis thus suppressing most noise. Finally, a directed song (DS) event 
was generated when bout and contact were active at the same time (Fig. 1D, bottom line) in other words, when 
a male was singing while both male and female were sitting on the front perch.

To investigate the animals’ motivation for social interaction through the setup, we measured the perch prefer-
ence of twelve pair-bonded male-female couples in four different audio-visual modality combinations of speaker/
screen on and off. When a modality was on it was streamed to the other setup with a delay (see “Methods” 
section). The delays for audio and video were 308 and 383 ms, respectively. Our data showed that birds spent 
significantly more time on the front perch when one modality (either sound (two-proportion z-test, 1% signifi-
cance level, n = 24 ; z = −6.56 , p = 0.0 ) or video ( z = −10.10 , p = 0.0 )) from the other bird was on (Fig. 1E). 
When both video and audio modalities were on, birds also spent more time on the front perch than video-only 
( z = −2.31 , p = 0.0105 ) but not when compared to live audio ( z = 1.23 , p = 0.8910 ). This demonstrates that 
the birds were attracted to both audio and visual signals of another individual supplied by the system.

To demonstrate that the setup provided a sufficiently natural social environment, we exploited two key behav-
ioural responses in communication between pair-bonded individuals: call timing and directed song. Coordinated 
call production between partners is a well described behaviour in birds, where it is thought to influence pair-bond 
maintenance and mate  guarding42. Zebra finches show time-locked call behaviour using two types of calls: Tet 
and stack  calls26. Both are short, low power vocalizations used when the birds are physically close  together25,28. 
We quantified the call timing of calls between established pair bonded couples communicating through our 
virtual environment (Fig. 2A) and identified calls using a supervised random forest classifier (see “Methods” sec-
tion). With both audio and visual modalities on, the delay from hearing a call to producing one was unimodally 
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distributed (Fig. 2B) with a peak delay at 291 ms (median: 271 ms, range: 231–431 ms, N = 8, Fig. 2B,C). This 
data is consistent with previous published ranges of call timing delay (249–466  ms10 and 68–283  ms27). Because 
calls were synchronized and contingent on the call of the mate, we conclude that the birds displayed natural call 
timing behaviour through the virtual environment.

Next, we studied whether males exhibited natural singing behaviour to their virtual mate. Male zebra finches 
sing both to females (directed song, DS) and not directed towards any particular conspecific (undirected song, 
US)25. The song consists of introductory notes and a stereotyped sequence of syllables, called the motif, that is 
often repeated several times to form a song  bout25,43. Although the DS and US motif consist of the same syllable 
sequence, several key acoustic features are different between DS and US. The DS motif is delivered faster and is 

Figure 1.  A modular multi-agent multi-modal setup for social communication in birds. (A) The cage equipped 
with the setup and an opaque divider. On the front perch the bird is able to see the screen, while not when it sits 
on the back perch. (B) Connecting two setups provides the visual impression of the other animal being twice the 
distance between the bird and the camera away; in this case 20 cm. (C) The distributed hardware architecture 
of the setup based  on40. See “Methods” section for more detail. (D) Perch and acoustic event streams produced 
during 2 h of communication through the environment and a 10-min zoom of the area with yellow overlay. For 
complex event definitions see main text. (E) The perch preference in four different experimental conditions. 
Different letters denote significant difference (two-proportion z-test, 1% significance level, n = 24).

Figure 2.  Zebra finches communicating through the setup exhibit established call timing behaviour. (A) Sound 
oscillograms and spectrograms for the stack calls of a male and a female communicating through two setups. 
Detected onsets are indicated by vertical lines on the oscillograms. The arrow denotes that the playback of 
the male call can be seen in the recording of the female. We measure the time dt from playback to answer. (B) 
Histogram of the elapsed time between the playback of the mate’s call until next call in one pair. The peak of the 
kernel density estimate is marked. Bottom plot shows a histogram of time differences for the same pair with the 
system off. (C) Summary showing the peak for all 8 birds. The black lines show the range of values reported  in10.
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preceded by more introductory  notes44. It also has more repetitions of the motif in each bout, increased sequence 
 stereotopy43 and DS syllables exhibit less variation in the fundamental frequency (FF) of harmonic  stacks45.

We studied five established pair-bonded couples communicating through our environment and we isolated 
candidate DS events as the simultaneous occurrence of bout and contact events, i.e., when both animals were 
perched in front of the screen and the male was vocalizing. The video segments of potential DS events were 
subsequently scored for accompanied behaviour by experienced observers (IA, CPHE). All (5/5) males sang 
directed song to their virtual mates and displayed courtship behaviours, such as fluffing, beak wipes and jump-
ing, that are indicative of DS (Fig. 3A) at high intensity. The coefficient of variance (CV) of the fundamental 
frequency (Fig. 3B,C) was significantly lower (Wilcoxon signed rank test 1% significance level, n = 5 , W = 15 , 
p = 0.0312 , CLES = 0.76 , Fig. 3D) when the virtual environment was on compared to off further indicating DS. 
Taken together our data strongly suggest that all males sang DS to their virtual mates.

In summary, call timing between individuals was comparable to that of freely communicating animals and 
males sang DS to their virtual mates, which showed that our virtual environment provided a sufficiently natural 
environment for normal behavioural responses in songbirds.

A final crucial component in the design of a closed-loop system is the ability to manipulate an agent’s envi-
ronment and thereby drive its behaviour within its perceptual real-time. When zebra finch males sing DS to a 
female, they typically habituate to its presence, which leads to a reduction in the number of motifs per  minute44. 
In experiments requiring extended periods of DS and/or a high number of motifs, this effect is typically countered 
by introducing novel females to reinvigorate the  male44,46. Here we aimed to drive DS behaviour by presenting 
different virtual females based on the measured song performance of the male.

Driving song behaviour based on song performance requires detection of the stereotyped syllable sequence, 
i.e., the motif. Therefore we developed a novel, unsupervised motif detector (see “Methods” section). The detec-
tor is based on dimensionality reduction of feature vectors generated from the spectrogram of sound segments 
(Fig. 4A–E). Training of the model was based on 60,000 feature vectors per animal, each representing a segment 
of sound. The feature vectors were embedded in a 2D space using t-distributed Stochastic Neighbor  Embedding47 
and the watershed  transform48 was used to cluster the space into a behaviour  map49. Next, we computed the 
transition probability matrix between all syllables in the training data (Fig. 4H) and used it to detect the most 
stereotyped sequence of syllables by starting at the globally most likely transition and following the path of locally 
most likely transitions (Fig. 4H). In all the males, this path contained a cycle that we defined as the motif of the 
individual and it was confirmed by experienced observers (IA, CPHE) to be the correct motif.

Next, we extended the method to detect motifs real-time (Fig. 5A). We detected syllable events by analysing 
the audio stream and post-embedding the sound segments into the previously computed 2D space (Fig. 5B). 
Syllable events were then collected in sequence events that were screened for ordered subsets of the motif (see 
“Methods” section) to create the motif event (see example in Fig. 5C). The entire process was parallelised to 
achieve real-time detection.

We exposed males to 1 min audio-visual recordings of one female in an excited state from the DS experiments, 
as long as motifs were detected (see “Methods” section). After 3 min without motif detection, we switched to the 
audio-visual recordings of another female. Driving the behaviour over 2 h, males sang significantly more motifs 
(Wilcoxon signed rank test 5% significance level, n = 8 , W = 33 , p = 0.0195 , CLES = 0.625 ) compared to the 
control US period (Fig. 6A,B). Because we did not randomize the experimental sequence, we cannot exclude 
that treatment ordering contributed to the observed effect. To confirm that the birds sang DS motifs, we com-
puted the CV of FF in a motif syllable containing a harmonic stack. The CV had the trend to be lower during the 
driving period compared to the US control period, which suggests that the males sang DS to the virtual females 

Figure 3.  Adult male zebra finches sing directed song to their mate through the virtual environment. (A) Male 
(left) and female (right) displaying behaviours associated with directed song. (B) Spectrogram of a syllable with 
harmonic stack used to estimate fundamental frequency. The vertical lines indicate the part of the syllable used 
to estimate fundamental frequency. (C) Kernel density estimates for the fundamental frequency of the syllable 
above based on 30 renditions with the system on (DS) and 30 with the system off (US). (D) The Coefficient of 
Variance of the fundamental frequency is significantly lower when the virtual environment is on (Wilcoxon 
signed rank test 10% significance level, n = 5 , W = 15 , p = 0.0312 , CLES = 0.76 ) indicating DS.
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Figure 4.  Unsupervised training of motif detector pipeline. (A) The raw sound signal is received as a 
continuous stream. (B) When the absolute value of the samples crosses the high threshold, we search back and 
forth for onset and offsets based on crossing of the low threshold. (C) The segmented signal. (D) A spectrogram 
of the sound is generated and two vectors are computed by summing the rows and columns, respectively. (E) 
The two vectors are normalised and concatenated to a 746-dimensional feature vector. (F) Dimensionality 
reduction of 60k feature vectors into a 2D space shows that sound segments cluster together. (G) Regions of 
stereotyped sounds are labelled. Examples of randomly picked sounds from three different regions are indicated 
by white dots on the density plot and with oscillograms and spectrograms on the right. Each column is a 
different region. (H) The most common song motif is extracted by forming the transition probability matrix and 
following the most likely transitions forming a loop. The loop represents the most stereotyped sequence and is 
defined as the motif.

Figure 5.  Analysis pipeline for real-time motion detection. (A) The pipeline for analysis uses the methods 
described in Fig. 4A–E for segmentation and feature extraction. The resulting feature vector is post-embedded 
in the 2D space and classified based on which region it falls within. Syllables are collected in sequences and 
screened for motifs. (B) The behaviour map annotated manually based on sample sound segments from each 
region. (C) Song spectrogram with vertical lines indicating onset (green) and offset (red) events of automatically 
detected syllables. The letters indicate the class of the syllable.
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(Fig. 6C). Taken together, our system made the birds sing (i) directed motifs and (ii) more so in 2 h compared 
to undirected motifs in the control period, thus demonstrating the ability to drive directed singing behaviour.

Discussion
We present an experimental environment to study social communication that allows multi-modal, multi-agent 
interaction. Our goal was to first test if the audiovisual environment was sufficiently realistic to elicit established 
behavioural responses in social communication, before using the system in biological experiments. Zebra finches 
communicating within the modular virtual environment emitted calls that were synchronized and contingent on 
the call of the mate with response latencies as in real life  situations10,26,27. Furthermore, our data show that males 
exhibited high-intensity courtship behaviour and sang directed song to their virtual females. To detect DS events, 
we used an easily implemented definition of DS as song that occurs assuming visual access. Previous studies also 
defined DS as song when the male was singing oriented towards a conspecific  female34, but did not confirm this 
classification by further acoustic analysis such as decreased DS motif  duration44, or decreased variation in the 
fundamental frequency of harmonic stacks in DS  syllables45. Both, behavioural and acoustic analysis support 
that song elicited under our definition was indeed DS. Taken together, these data suggest that the virtual environ-
ment was sufficiently realistic to elicit essential behavioral responses and courtship behaviours from both sexes.

Furthermore, by switching videos of excited females we could keep males to sing DS. Whether the increased 
amount of song was driven by video switching we cannot answer as this would require additional controls. Dis-
secting out the sensory and behavioral cues that trigger DS in a male and escalation of the courtship intensity 
are few of many of the interesting biological questions that will require complicated image and sound manipula-
tion to answer. This would be a major advance that we hope our system will be able to contribute in the future.

We present and implemented a syllable-based unsupervised audio classifier which we think will be widely 
applicable in bioacoustics. Unsupervised clustering methods have been used in the analysis of  vocalisations50 but 
are typically based on a few dozen acoustic features. A more data-driven approach is to use spectrograms directly 
as high dimensional  features51, which however imposes extensive computational costs. Here, we compressed the 
spectrograms to arrive at a manageable sized feature vector thereby keeping computational costs low. Especially 
for stereotyped behaviours, unsupervised methods like t-SNE47 excel because clusters of repeated behaviours 
stand out from  noise49. Furthermore, we parallelized a variation of the post-embedding algorithm described  in49 
to achieve real-time classification. Lastly, we could determine each individual’s motif in an unsupervised way by 
assuming only that the motif is the most repeated syllable string, thus exploiting the fact that zebra finch song 
is highly stereotyped. Our unsupervised method eliminates the need for annotated training data and thereby 
reduce labour investment and the risk for experimenter bias.

We acknowledge that our system latencies are rather large and can be optimized—though we note that the 
zebra finches displayed normal behavioral responses. There are three causes for these latencies. First, any modern 
video system copies a captured image as digital data, from the capture hardware to the render hardware, and 
this can only be avoided by custom design. Our choice of commodity components imposes a minimal latency 
because this unavoidable transfer time depends on the bus speed (and therefore the cost) of the computers used. 
It is always at least 1 frame period (17 ms). Second, given our architectural decisions to decouple and modularize, 
the data had to be transferred via network which again imposed a (cost-related) latency. The raw data rate of the 
camera is about 74 Mbit/s, necessitating gigabit networking and a delay of around 10 ms to transmit a frame. 
Further, jitter in the network travel time requires a jitter buffer at the rendering system to ensure uninterrupted 
timely presentation of frames. In all, this implies a minimal latency of about 60–80 ms for our system. The system 
latency can be reduced with faster, more expensive components.

Figure 6.  Number of directed motifs can be increased using real-time motif detection. (A) Cumulative 
sum of detected motifs for one bird during a 2-h period of driving the behaviour by switching virtual female 
individuals and the same 2 h on the following day without video. Background colours show which video was 
playing during that time. Videos change dynamically based on number of motifs. (B) The number of motifs 
sung was significantly higher (Wilcoxon signed rank test 5% significance level, n = 8 , W = 33 , p = 0.0195 , 
CLES = 0.625 ) during the 2 h with video compared to the 2-h control without video demonstrating that the 
video drives them to sing more. (C) The coefficient of variance for the fundamental frequency showed a trend 
to be lower (Wilcoxon signed rank test 5% significance level, n = 7 , W = 4 , p = 0.0547 , CLES = 0.612 ) during 
the 2 h with video compared to the 2-h control. Colored lines in (B) and (C) indicate individuals.
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Our setup represents a first step in closed-loop automatic behaviour annotation and animal–computer inter-
action using higher level behaviours. We used events to represent behaviour and event-processing and micros-
ervices to achieve near real-time  capabilities40. Several studies have demonstrated the power of near real-time 
processing in closed loop assays in  neuroscience52,53, to manipulate pitch in  songbirds54–56 or to provide virtual 
 reality18–20. Those studies take advantage of computationally attractive features, such as action potentials or 
acoustic features, to allow near real-time system response. We acknowledge that the implementation of our 
system architecture is slower, but we chose to devote engineering effort and resources to automating analysis 
of higher levels of behavioural organisation - which required a different architecture and higher computational 
load than previous works - rather than latency optimization. One interesting future application of our system 
would be to systematically alter latency between modality stream to study the tolerance for delay on the dynam-
ics of vocal exchanges.

Our system is modular and can be extended to multiple setups or to add more sensors, actuators, and compu-
tational units. We expect our modular setup to be applicable to other species of social birds and mammals. For 
example the sample rate of the audio interface can easily be increased to allow ultrasonic vocal communication 
in rodents. We deliberately based the setup on cheap distributed computers, free and open-source software, and 
cloud computing to ease the reuse of hardware and software modules in other projects, make it easier for multiple 
developers to contribute, and make the implementation more widely accessible. The distributed architecture 
complicates the system and increases the minimum latency, but allows it to scale linearly, makes it easier to 
maintain, and makes it resilient to single node failures. The system can be deployed anywhere with network and 
thereby enables global-scale social communication experiments. Setups situated around the globe could thus be 
connected and allow for unique long-term communication experiments between labs that are physically far apart.

Methods
The virtual environment. The virtual environment was built on the teleprompter principle, where a 
slanted one-way mirror allows the camera to record the bird through the mirror while the bird sees the reflec-
tion of a screen below (Fig. 1A).

A microphone is placed outside the cage above the perch in front of the screen while the rest of the system 
is placed inside a painted wooden box placed in the cage. The one-way mirror is constructed from a sheet of 
3 mm transparent acrylic plexiglass coated by 0.02 mm silver one-way film with 70% light admittance and 99% 
reflectance.

The screens are trichromatic 7″ LCD displays in 800x480 pixel resolution. Although birds possess at least 
tetrachromatic or even pentachromatic  vision57, previous studies showed that males sing when presented with 
live video of conspecific females on trichromatic  screens32,34,35. However, critical to eliciting courtship behaviour 
was the use of 100 Hz  screens32,35 that are above the flicker-frequency of  birds57,58 or non-flickering liquid-crystal 
displays (LCD). Therefore, we decided to use 60 Hz LCD screens that present slower, but continuous, flicker-
free images to the birds. The video is recorded with a Raspberry Pi Camera V2 in 800x480 pixel resolution at 60 
frames per second (fps) and streamed to the network from a Raspberry Pi 3. The video delay was measured by 
simultaneously turning on an LED in both boxes and recording a video with an external camera showing both 
the LED and the screen. By counting the number of frames from the local LED turns on to the remote LED 
from the other box can be seen on the screen the delay can be calculated. This delay was measured to 383 ms 
(23 frames at 60 fps).

The audio playback comes from a 1.5 W mini-speaker placed behind the mirror. While originally playing 
sound at the received level of the microphone in the other box, we slightly attenuated this signal (-6dB) to avoid 
acoustic feedback. Because a 6dB attenuation corresponds to a doubling of distance of the  source59, the bird in 
box would perceive the source level of the animal in box 2 as if it were two times further away than it was. How-
ever, because the source level of zebra finches in the lab varies from 50–70 dB reference 20µPa at 1  m60, a 6 dB 
attenuation is well within the natural range of variation. Since we form a loop between the two cages a bird could 
hear a delayed and strongly attenuated version of its own vocalisation similar to hearing an echo. We measured 
the total attenuation to vary between 15 and 30 dB.

The sound was recorded and streamed from a multi-channel recording  array61 using Knowles FG23329-PO7 
microphones. The recording equipment is not part of the developed virtual environment and it could be replaced 
by any system capable of streaming audio. The audio delay was measured by making a loud sound (with a clicker) 
in one box and timing the difference between that signal in one box and the version played back in the other 
box. This delay was measured to be 308 ms ± 4 ms. The audio to video leading delay was thus 75 ms. This delay 
is about two times below the 180± 42ms delay to perceive lip-syncing errors in  humans62, but we are not aware 
of any comparative data in birds.

Figure 1C shows the architecture of the system. Each module contains two Raspberry Pi 3 model B connected 
to a gigabit switch. One is connected to the camera and is only responsible for streaming video. The other, con-
nected to display and speaker, is responsible for playback of sound and image. A third Raspberry Pi 3 is placed 
on top of the cage responsible for polling the perch sensor at 20 Hz and emitting state changes as events. It also 
measures temperature and humidity in the box and emits those as events every minute. The multi-channel 
microphone array is placed outside the isolator box with a microphone placed in each cage. All computers on the 
network are synchronised to within milliseconds using the Network Time  Protocol63 implemented with  chrony64.

Data is streamed to IPv6 multi-cast groups following the publish-subscribe  pattern65. A PC in the bird room 
acts as historian, saving the data streams. Data is offloaded to a  Ceph66 persistent storage cluster placed in our 
data centre. Several event processors continuously analyse the data streams, producing events. These are running 
in a docker  swarm67 cluster also in our data centre.
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The two-layered architecture is based on data streams and event  streams40. An event is an association between 
a specific time and a specific property, in this case a behaviour. A data stream contains sampled data from sensors 
such as cameras and microphones while an event stream consists of events produced by data stream processors 
or by asynchronous sensors such as contacts.

The continuous audio stream is analysed real-time to produce the power and entropy events. This analysis is 
based on estimating the power by squaring the sample values and the entropy as the ratio of the geometric mean 
to the arithmetic mean. The analysis is implemented as plug-ins to the media-streaming framework  gstreamer68. 
The estimates are thresholded with  hysteresis40 and published as kafka  events69. Hysteresis was used to prevent 
so-called switch bouncing between on and off when the input signal was close to the noise  level70. A perch sen-
sor installed in the cage directly generates a perch event every time the bird changes location in the cage. Based 
on those three events, three complex events are generated, namely bout, contact and directed song. The bout 
event is active when both power and entropy events are active, and the contact event is active when both birds 
are perched in front of the screen. The directed song event is active when the bout and contact events are active 
(Fig. 1D). Event processing was implemented as microservices in docker  containers67 for high modularity and 
was running in our data centre.

Animals and husbandry. Adult male and female zebra finches (Taeniopygia guttata) were kept pairwise in 
breeding cages at the University of Southern Denmark, Odense, Denmark on a 12 h light:dark photoperiod and 
given water and food ad libitum. All experiments were conducted in accordance with the Danish law concerning 
animal experiments and protocols were approved by the Danish national ethics committee, the Danish Animal 
Experiments Inspectorate (Copenhagen, Denmark). The reporting in the manuscript follows the recommenda-
tions in the ARRIVE guidelines.

We used adult zebra finches ( > 100 days post hatch) that were established breeding pairs (meaning that they 
had produced at least one clutch of offspring together) in the animal-animal communication experiments and 
additionally also single males for the animal–computer experiments. All animals were naive to the experimental 
conditions. When not in experiment, the birds were kept pairwise in breeding cages or in aviaries containing 
200-300 individuals. Under experiment the birds were isolated in sound-attenuated boxes for a maximum of 
ten days before returning to their usual surroundings. The birds had access to food and fresh water ad libitum 
served at the bottom of the cage and from feeders at the side of the cage. In the virtual environment, the birds 
were kept on a 12 h light:dark photoperiod. The temperature was kept between 22 and 28 ◦ C and the relative 
humidity at 50–60%. The temperature difference between the position in front of the screen (front perch) and 
behind the blind (back perch) was measured with the system fully on to be 0.4 ◦C ( ±0.3% accuracy). The isola-
tor boxes attenuated sounds in the 200–8000 Hz range by 40dB (measured by playing back sound in the isolator 
and record sound levels both inside and outside the box. A fan ensured air flow in the box and provided cooling 
for the equipment located inside.

Sound segmentation. Segmentation was based on the silence between syllables and was calculated from 
the amplitude of the signal (Fig. 4B). We used two threshold values applied on two different metrics for discrimi-
nating between sound and silence. The input signal (Fig. 4A) was normalised to range [−1;1] but otherwise not 
pre-processed. The high threshold was 0.5 and the metric that had to pass this threshold was the absolute value of 
the signal. The low threshold was also 0.5 but the metric having to go below this threshold was the peak-to-peak 
amplitude over 325 samples. Both threshold values were determined experimentally based on initial recordings. 
Starting from the ion th sample where the absolute value of the sample si surpasses the on-threshold ton (0.5)

we searched backwards in time to find the onset sample number ionset defined as the sample where the peak-to-
peak amplitude over w samples (325) was below the off-threshold toff  (0.5).

Similarly we searched for the offset sample number ioffset as new samples arrived.

As soon as the last sample was received the segment was passed on to the next stage of the pipeline. Segments 
shorter than 30 ms or longer than 300 ms were discarded since the duration of zebra finch syllables is expected 
to be within that range. We implemented both an online and offline version of this segmentation algorithm and 
used it for all the experiments presented in this paper.

Perch preference protocol. The same data was used for all the animal-animal communication experi-
ments. The virtual environment was powered down for at least 2 h before the birds were moved to the isolator 
box (day 0) and left off for at least 24 h before it was turned on for another full day (day 1). Experiments ran on 
the following days starting when the cage lights were turned on and for 2 h thereafter. Day 2 was always with 
black screen and no sound and the following days the system cycled through perturbations of two speaker states 
(off, on) and two screen states (off, on) in randomised order. After the experiments the birds were returned 
to their home cages. To investigate the motivation for using the virtual environment, we looked at the perch 
preference in different states of the system. Based on the perch sensor, an event was emitted every time the bird 
changed position in the cage and summing the duration of the events gives a measure of the proportion of time 
spent in each position (Fig. 1E).

(1)ion : |si| > ton

(2)ionset : max(si−w : si)−min(si−w : si) < toff

(3)ioffset : max(si : si+w)−min(si : si+w) < toff
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Call‑timing protocol. The audio was segmented as described above and combined into one big dataset 
covering 12 h a day for all 12 pairs. To provide training data, we then hand-annotated for each bird the first 
30 min with both video and audio on. To ease annotation, we used pre-clustering based on cross-correlation, so 
the observer was presented with oscillograms, spectrograms and sound from 1 min at a time that had already 
been clustered into groups of sounds with high cross-correlation maximum. To prevent false negatives we used 
very low threshold to ensure we detected all sounds. The observer then had to name the groups and correct 
mistakes made by the pre-clustering algorithm. The classes found were song, “stack” calls, distance calls, echo 
(loud sounds from the other bird triggering the segmentation), wing flapping and noise. Classification of vocali-
sations followed the descriptions  in25. We did not observe “tet” calls. Based on the annotations a random forest 
 classifier71 with 100 estimators was trained for each bird ranging in mean accuracy (10% hold out) from 0.82 to 
0.96. To investigate call timing, we measured the time difference from the playback of a stack call (onset + delay) 
to the next stack call emitted by the animal of interest up to a maximum of 2 s. Histogram of the time differ-
ences were constructed (200 bins) and plotted with Gaussian Kernel Density Estimates (KDE, bandwidth=100, 
Fig. 2B).

Directed song protocol. To confirm directed song in the animal-animal communication experiments, 
we selected videos with potential female directed song based on the definition that both birds were on the front 
perch and the male was vocalising. The videos were then scored by experienced observers (IA, CPHE) for the 
display of hopping, jumping, beak wiping, looking at the mate and fluffing plumage (see Fig. 3D for examples). 
As a quantitative measure, we calculated the coefficient of variance of the fundamental frequency, which is lower 
in DS compared to  US45. However, this measure is extracted from stack syllables without frequency modulation 
such as the one shown in Fig. 3B. The motif of five birds contained a suitable syllable. From spectrograms of the 
motifs identified by the motif detector, we manually selected the same place in the stack syllable (Fig. 3B) in 30 
motifs from each individual. The fundamental frequency (FF) was estimated from 2048 ( ̃42 ms) samples using 
the YIN  algorithm72. Because the reduction of CV of FF during directed song has only been established during 
harmonic  stacks45, one male that did not have a harmonic stack in its motif was excluded from this analysis.

Animal–computer communication experiments. For the driving experiments, the male was left to 
habituate to the new surroundings until he produced at least 10 motif repetitions during the first 2 h after lights 
on (day 0). On the following day (day 1) we ran the driving experiment, meaning that videos were displayed 
showing excited females. Three videos of different females were used, each 1 min long, taken from the animal-
animal communication experiments. In case of pair-bonded males, the established mates of the focal animals 
were not among the female videos. In case of single males the 60,000 training samples were recorded over three 
days prior to the experiment. The logic of the system is that every time a motif is detected, a timer is reset. If the 
timer ran out (3 min since last motif) the next video was displayed and otherwise the same video kept getting 
looped. On day 2 we recorded the control without video playbacks.

Motif detector. We trained one motif detector per individual. The feature extraction is based on summing 
the rows and columns of the spectrogram (Fig. 4D) and concatenating them to form a feature vector (Fig. 4E).

First a spectrogram of the segment is formed by applying Short-Time Fourier Transform (STFT) with FFT 
size of 1440 and stride of 25 samples. The parameters are all based on the sampling frequency of 48 kHz, the 
duration of sounds (30–300 ms) and the desired number of time bins. The smallest spectrogram we can make 
has just one time bin and thus the maximum FFT size is:

The stride parameter can then be calculated:

The spectrogram is cropped to the approximate audible range for zebra finches 200 Hz to 8 kHz (234 bins) 
and the time dimension is cropped to the first 512 time bins corresponding to 300 ms (zero-padded if the seg-
ment duration is shorter). The rows and columns of the spectrogram are summed and the two resulting vectors 
Ft and Ff  are concatenated to form a 746-dimensional feature vector F (Fig. 4E).

Each vector is normalised to have a sum of one before concatenation.
A training set is created consisting of 60,000 feature vectors from the same individual, each representing one 

sound segment. We embed each of these high-dimensional points in a two-dimensional space (Fig. 4F) using 
the t-SNE method introduced  in47. The method minimises the relative entropy between two distributions, one 
representing the high-dimensional points and one representing the low-dimensional points, so that close points 
in the high-dimensional space are also close in the low dimensional space.

(4)FFT = 30ms ∗ 48 kHz = 1440 bins

(5)stride = ((300ms ∗ 48 kHz)− 1440 bins)/512 bins) = 25.3125 ≈ 25

(6)Ft =
∑

t

STFT(t, f )

(7)Ff =
∑

f

STFT(t, f )

(8)F =
[

Ft Ff
]
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Since we are interested in stereotyped behaviour, we then followed the method described in Berman et al.49 
placing a Gaussian kernel (bandwidth = 15) on each embedded point. We then generated a density plot (Fig. 4G), 
and we detected all peaks that are separated by a distance of 15 or more. Using the watershed  algorithm48 on the 
inverted density plot, we get a set of clusters, each representing roughly a stereotyped syllable. Examples from 
three different regions can be seen in Fig. 4G. The further a point is from the peak of the region the more likely 
it is to be mis-classified and thus distance from peak could be used to indicate certainty of the classification. 
We found that some regions represent a merge of two syllables while some represent part of a split syllable. For 
higher accuracy in detecting the syllables this information could be used for post processing or better means of 
segmentation could be introduced.

After the training phase a new data point z is embedded based on the already embedded points, largely using 
the method described  in49 appendix D. The perplexity parameter of the t-SNE algorithm can be interpreted as 
a measure of the number of nearest  neighbours47 and therefore we only consider the ’perplexity’ nearest points 
X in the high dimensional space found using the ball tree  algorithm73.

We then choose an embedding z′ of the new point z such that conditional probabilities in the low-dimensional 
space qj|z′ are similar to those in the high-dimensional space pj|z . The conditional probability of a point xj ∈ X 
given the new point z is:

where X is the vector of nearest points in the high-dimensional space, z is the new point in the high-dimensional 
space, sigma is found by a binary search for the value that produces a conditional probability with the perplexity 
set by the user and DKL is the relative entropy given by:

The conditional probability of a point x′j in the low-dimensional embedding X ′ given the new embedding z′:

where �a,b is the euclidean distance between the points a and b. Since z′ is the only unknown, we can find it by 
minimising −DKL between the conditional probability distributions:

using the Nelder–Mead simplex  algorithm74 and a start guess being the centroid of the embedding X ′ of the 
nearest points X. If the start guess is not in the basin of attraction of the global minimum, it means that the new 
point is not like any points presented during training and the embedded point will shoot towards  infinity49.

One instance of the segmentation algorithm was running for each of the two audio channels used in the 
experiment and a new feature vector was formed for each detected segment and placed in a queue. A pool of 6 
workers (containers running in the cluster) processed feature vectors from the queue using the post-embedding 
algorithm described above and emitted events containing onset, bird ID, the low dimensional point, a letter 
representing the region it belonged to and the latency measured from the end of the segment until the event 
was emitted. The median latency over 3 million syllables was 1.089 s (percentiles: 5th = 0.356, 25th = 0.945, 
75th = 1.304, 95th = 2.500). We found that 95% of the segments were classified and the remaining 5% were 
marked as unclassified.

Sequence events were generated, by event-processors in the cluster, based on the timing of the syllable events. 
If the onset of the next segment was within a window of 0.5 s after the offset of the previous, it was added to the 
sequence and otherwise it was assigned to a new sequence. Within 3 s after the end of a sequence an event was 
emitted containing onset, offset, bird id and the sequence.

To find the motif of the bird we formed a transition probability matrix based on the training data. Since the 
transitions in the motif were by far the most frequent, the syllables in the motif already stood out. Because the 
motif was repeated several times in a bout, they formed cycles in the transition matrix (Fig. 4H). We found the 
cycle by starting from the globally most frequent transition and following the locally most frequent transitions 
until getting back to an already visited element. If the motif contained repeated syllables or if the bird sang a lot of 
introductory notes, there was a possibility for dead ends, but they could be detected and solved programmatically.

The birds often sing variations of the long motif so we found the ten most common substrings of the motif 
and looked for those in the sequence events. We counted the number of occurrences of each substring in the 
sequence and if a motif was present, we emitted a motif event (based on the most frequent substring in the 
sequence) containing onset, motif, number of occurrences and bird id. The motif detector was implemented as 
an event-processor running in the cluster. To verify the motif detector, an observer (LBL) looked at the spec-
trograms of all the motifs generated during the 2 h of experimentation for one bird (96 motifs) and confirmed 
that all of them were indeed motifs.

(9)pxj |z =
DKL(z||xj)

2/2σ 2
z )

∑

x∈X DKL(z||x)2/2σ 2
z )

(10)DKL(P||Q) =
∑

x∈X

P(x)log

(

P(x)

Q(x)

)

= −
∑

x∈X

P(x)log

(

Q(x)

P(x)

)

(11)qj|z′ =
(1+�2

j,z′)
−1

∑

x′∈X ′(1+�2
x′ ,z′)

−1

(12)z′ = arg min
z′

(−DKL(px|z ||qx′|z′))
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Data availability
Code has been uploaded as a Jupyter notebook at: https:// github. com/ LeonB ondeL arsen/ tsne_ class ifier. The 
datasets generated during and/or analysed during the current study are available from the corresponding authors 
on reasonable request.
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