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Addressing hospitalisations 
with non‑error‑free data 
by generalised SEIR modelling 
of COVID‑19 pandemic
Jorge M. Mendes* & Pedro S. Coelho

Successive generalisations of the basic SEIR model have been proposed to accommodate the 
different needs of the organisations handling the SARS-CoV-2 epidemic. These generalisations have 
not been able until today to represent the potential of the epidemic to overwhelm hospital capacity 
until today. This work builds on previous generalisations, including a new compartment for hospital 
occupancy that allows accounting for the infected patients that need specialised medical attention. 
Consequently, a deeper understanding of the hospitalisations rate and probability as well as of the 
recovery rates for hospitalised and non-hospitalised individuals is achieved, offering new information 
and predictions of crucial importance for the planning of the health systems and global epidemic 
response. Additionally, a new methodology to calibrate epidemic flows between compartments is 
proposed. We conclude that the two-step calibration procedure is able to recalibrate non-error-free 
data and showed crucial to reconstruct the series in a specific situation characterised by significant 
errors over the official recovery cases. The performed modelling also allowed us to understand how 
effective the several interventions (lockdown or other mobility restriction measures) were, offering 
insight for helping public authorities to set the timing and intensity of the measures in order to avoid 
the implosion of the health systems.

In December 2019, a new coronavirus named severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), 
causing severe acute respiratory disease emerged in the region of Wuhan, China1,2. SARS-CoV-2 is an acute 
respiratory infectious disease that spreads through the respiratory tract by droplets, respiratory secretions, and 
person-to-person contact3,4.

At the time of the writing of this introduction, a “second wave” of new COVID-19 infections is striking some 
European countries, while in South America and North America a first wave is spreading at an alarming rate. 
Its transmissibility is high (reproductive number, R0 , estimated to be between 2 and 35–8), indicating that a large 
proportion of the world population can be infected. As a significant number of patients have severe symptoms 
and need dedicated medical care (around one in every five people who are infected), the potential to overwhelm 
our health care systems and intensive care units is a real threat9. In Portugal, after an incidence spike in early 
April (cf. Fig. 1a), the lockdown measures had been easing in early May, resulting in an increase of the daily 
incidence of new cases (cf. Fig. 1a). Although the Portuguese national health system limits (dashed horizontal 
lines in Fig. 1b,c) have never been reached, the current course of the epidemic raises critical management issues, 
in particular, because the more significant growth of the second wave is threatening to overcome hospitalisation 
capacity in the short term.

Much work has been done so far on the COVID-19 outbreak course using the so-called compartmental 
models10–12. The origin of compartmental models dates back to the early 20th century with the seminal work of 
Kermack and McKendrick (in 1927)13. Compartmental models simplify the mathematical modelling of infectious 
diseases. The population is assigned to compartments and may progress between compartments. Compartmental 
order usually shows the flow patterns between the compartments; for example, SIS means susceptible, infectious, 
and then susceptible again14. The models are most often run with ordinary differential equations (which are 
deterministic), but can also be used with a stochastic framework, as it is the case here14.

Compartmental models allow predicting how a disease spreads out through the total number infected, the 
duration of an epidemic, and infection reproductive number ( R0 ), among other important epidemic course 
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parameters. Moreover, such models can show how different public health interventions (e.g. vaccination, limited 
social contacts, lockdown) may affect the outcome of the epidemic.

The basic compartmental model is the SIR model, and other more complex variations are derivatives of the 
basic SIR model13. The SIR model comprises three compartments: S for the number of susceptible, I for the 
number of infectious, and R for the number of removed (recovered, deceased, or immune) individuals at a par-
ticular time. This model assumes incidence grows exponentially, which is not in agreement with the observed 
epidemic course, as the measures adopted by public health authorities at different moments, as well as the change 
of human behaviours tend to flatten the parabolic incidence curve. Therefore, its predictive value for infectious 
diseases that are transmitted from humans to humans, without any change on the constant transmission rate is 
of limited usefulness.

To represent that the number of susceptible, infectious and removed individuals may vary over time (even 
if the total population size remains constant) a time index, t, might be added: St , It and Rt . For a specific disease 
within a particular population, these functions may be worked out to predict possible outbreaks and bring them 
under control.

For infections with the characteristics of SARS-CoV-2, there is a significant incubation period during which 
individuals have been infected but are not yet infectious themselves9,15–19. During this period the individual is 
in compartment E (for exposed), resulting in the so-called SEIR model. The SEIR model’s basic version is still 
short for our current needs, especially regarding the burden put in the health system. Indeed, the basic version 
of the SEIR model is unable to distinguish between deceased and recovered people and provide any helpful 
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Figure 1.   Course of the COVID-19 epidemic in Portugal. (a) Daily incidence of COVID-19 cases in Portugal, 
(b) Daily hospital occupancy due to COVID-19 in Portugal, (c) Daily ICU occupancy due to COVID-19 in 
Portugal. Data collected from the daily bulletins issued by Direção-Geral de Saúde (Directorate-General of 
Health, DGS), the Portuguese health authority. The dashed horizontal lines show the generally accepted national 
health system limits.
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information on the daily burden put on a health system by individuals in need of medical care. Therefore suc-
cessive generalisations of the basic SEIR model have been proposed to accommodate either the different needs of 
the different organisations handling epidemic-related problems or the need to account for public health data not 
specifically used in the basic SEIR model. This work seeks to pursue these needs and extend such generalisations. 
For public health officers, the number of confirmed cases is the part of the iceberg that is visible as many more 
people are infected but still not infectious because the virus is still in the replication phase (incubation period). 
Indeed, these people would come up as confirmed cases a few days ahead. Knowing in advance how the number 
of confirmed cases might evolve is of crucial importance for planning reasons.

Moreover, it is of unquestionable value for health system officers to know the share of confirmed COVID-19 
confirmed cases who are going to need for specialised medical care and how many of them will recover or die. 
Additionally, for researchers with no access to micro-data files (due to unavailability or lack of data quality) it 
is impossible to know some of the flows between some compartments of the SEIR model’s generalisations. This 
work also addresses this problem, establishing a methodology to calibrate epidemic flows between compart-
ments, that is relevant to recalibrate non-error-free data. To accomplish these goals, we build on the work of20 
and decided to propose several extensions and restrictions, including the consideration of a new compartment 
representing hospital occupancy.

This work is organised as follows: “The SEIQRHD model” section describes the classic SEIR model summar-
ily and its proposed generalisation to meet our aims. It also des-cribes our proposals for accommodating some 
of the characteristics already mentioned as well as others suggested by the empirical analysis of the Portuguese 
epidemic course; “Data and empirical analysis” section describes the used data and the major data processing 
tasks prior to modelling using a Bayesian framework and, finaly, “Bayesian hierarchical modelling” section pre-
sents the hierarchial Bayesian framework used for parameters estimation. “Results” and “Discussion” sections 
respectively present and discuss, respectively, the achieved results for the case of Portuguese epidemic course 
and the main implications for managing and controlling the course of the outbreak.

Data and model
The SEIQRHD model.  Assuming the vital dynamics (birth, deaths and migration) may be neglected (which 
is not a hard assumption given the short period of the pandemic) the basic SEIR model is defined as in Fig. 2.

The boxes represent the compartments (or states) and arrows represent transitions from one compartment 
to another. St is the number of people susceptible at time t, Et is the number of people exposed to the infection 
at time t (people that become infected but not infective), It is the number of infective people infected at time t 
and Rt : number of people removed (recovered or deceased) at time t. The parameter β denotes the transmission 
rate (the expected amount of people an infected person infects per day and is the result of the contact rate—the 
number of people an average person enters into contact with each day—and the probability that a contact pro-
vokes the transmission of the disease). It is multiplied by the ratio S/N to avoid counting contacts between two 
people who cannot infect each other (e.g., because one of them has already recovered and immune, or because 
both are infective21). The parameter δ is the disease incubation rate (the inverse of the incubation period in days), 
and γ is the removal rate (the inverse of the removal period in days). When some of these three parameters are 
considered fixed, they do not, in general, fit the observed course of the current epidemic. For example, the social 
distancing measures or even the lockdown damp the transmission rate down by reducing the daily contacts one 
person regularly has; or the improvement and gained experience of the health care system pull the removal rate 
up by lowering the recovery period or the death rate. Making these two parameters, βt and γt , functions of time, 
with user-defined functional forms, is the solution to describe the course of the disease spread appropriately. As 
already mentioned, for epidemics that last for a short period (some months, for instance) it does not worth to 
account for demographics dynamics (births, migration, deaths by other causes) as the population can be con-
sidered fixed. Nonetheless, for the cases whenever the demographics may impact other transitions might also 
be considered also to account for those dynamics.

Based on the SEIR model, many measures of the epidemic development measures might be assessed15,21–24. We 
refer to25 as an excellent review of the recent work done in this area. The SEIR model was also used to compare 
the effects of the Hubei province’s lockdown on the transmission dynamics in Wuhan and Beijing16.

As the SEIR model can generate interpretable results, wave derivatives are being developed25 (a) to simulate 
the processes of transmission from infection source; (b) to assess the transmission risk and prediction of patient 
number based into two subpopulations of infected people, those the quarantined and unquarantined; (c) to 
simulate the incubation period and the period before recovery.

Many of these works consider different generalisations of the basic SEIR model as those four compartments 
are often insufficient to describe a much more complex reality. First, considering only one compartment to 
account for removed people, R, is not enough to describe the evolution of patients that recover from the infection 
and the share that deceases. Secondly, the compartment I does not match the observed amount of the infected 
people in many situations as many infected people are asymptomatic or only experience mild symptoms (and 
they are not accounted for by the figures released out by the health authorities) or it does not account for the 

Figure 2.   Basic SEIR model.
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isolation (quarantine) usually imposed by health authorities making these people no longer infectious. Indeed, 
the daily number of “confirmed infections” corresponds to people who are isolated (quarantined) to avoid new 
infection chains. As a solution, many authors20,25 have been proposing generalisations of this basic SEIR model 
by splitting the compartment, R into two compartments, one to account for the infected people that genuinely 
recover from the disease, R, and a second one to account for the mortality induced by the infection, D. Moreover, 
to precisely match the observed number of confirmed cases, one additional compartment, Q, has been considered 
immediately after the I compartment20. Building on the work of25 we propose an additional compartment to 
account for hospital occupancy, H. Figure 3a reproduces the generalisation of the SEIR model used in this work. 
Figure 3b describes schematically the temporal evolution between compartments E, I and Q.

Figure 3a contains two additional compartments to keep track of the cumulative number of COVID-19 infec-
tions, C, and the current number of ill individuals, the so-called “active cases”, A. This models includes other 
not yet described parameters. Further ahead, we elaborate on the potential functional forms to describe their 
temporal evolution and use the opportunity to define them.

The following differential equations describe this is generalisation of the SEIR model (SEIQRHD):

The discussion on whether the parameters are fixed is done further ahead; therefore, the subscript t in the 
parameters is omitted for the time being. Some of the model coefficients might be considered fixed ( δ , κ , α ), but 
others ( β , η , h, γ and µ ) vary in time according to some specific functional form.

The parameter δ is the inverse of the average incubation period and governs the lag between having undergone 
an infectious contact and showing symptoms. It is generally considered fixed because it depends mainly on the 
the infectious agent’s characteristics.

The parameter κ is the inverse of the average period taken to isolate a symptomatic person, which usually 
happens after the person has been tested positive. Therefore, the quarantined compartment matches the “active 
confirmed cases” in many official data sources in most of the developed countries and the quarantined indi-
viduals are excluded from the infectious compartment (I) because they are supposed to be isolated. The time 
required to isolate a person with symptoms depends mainly on the protocol followed by the health authorities 

(1)

∂St/∂t = − βSt
It

N

∂Et/∂t = βSt
It

N
− δEt

∂It/∂t = δEt − κIt
∂Qt/∂t = κIt − ηhQt − γQt (1− h)Qt

∂Ht/∂t = ηhQt − γH (1− µt)Ht − µαHt

∂Rt/∂t = γQt (1− h)Qt + γH (1− µ)Ht

∂Dt/∂t = µαHt

∂Ct/∂t = δEt
∂At/∂t = κIt − γQt (1− h)Qt − γH (1− µ)Ht − µαHt

N = St + Et + It + Qt + Rt +Ht + Dt

Figure 3.   The SEIQRHD model used in this work. (a) SEIQRHD model. (b) Schematic representation of 
temporal evolution between compartments E, I and Q.
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which with some minor adjustments is constant. As explained further ahead, we consider this parameter fixed 
after an initial period of adaptation, and use an empirical estimate, jointly with a literature-based value of δ to 
estimated the flows between compartment S and E and E and I. Within the hierarchical Bayesian model they 
are even considered fixed.

As the lockdown and social distancing measures impact on the number of individuals a person comes in 
contact with on a daily basis, the parameter β should not be considered constant.

The parameters γQ and γH are the recovery rate for hospitalised and quarantined people. They correspond to 
the inverse of the average time required for an active case (quarantined/hospitalised) to be classified as recovered. 
They provide precious information about how fast the people may recover from the disease (in days, in general). 
We believe that both γQ and γH are related to how a health system can improve its capability to treat people over 
time (e.g., with the introduction of a new therapeutic strategies). However, γQ is much more dependent on recovery 
confirmation protocols and therefore, much more susceptible to increase over time.

The outer flows from compartment Q depend on γQ , already discussed, η and h. The rate at which quarantined 
individuals are hospitalised, η ( η−1 is the average period spent in compartment Q), mainly depends on the illness 
severity and health system capacity to accept ill individuals, whilst the share of people in need of specialised medi-
cal care, h, mainly depends on the population health conditions, as well as the mix of the quarantine compartments 
regarding demographic characteristics as gender and age. Whilst the former might be considered fixed to some 
extent, the latter, due to the mentioned reasons cannot be. Indeed, recent empirical analysis shows that after the 
epidemic spike in late April 2020, the share of COVID-19 patients admitted to a hospital decreased from almost 
100%, in the early days of the epidemic, to a tiny constant value, in late July. This phenomenon might be explained 
by the uncertainty and lack of knowledge of the disease course in the early days of the epidemic. However, as time 
goes by, the medical practitioners learn and become more selective about the patients to be admitted to a hospital. 
Moreover, as the prevalence curve increases, the health systems tend to avoid the intolerable burden and become 
more demanding on the hospitalisation requirements. Therefore, there is enough evidence to consider η a constant 
parameter and ht a time-varying parameter.

The parameter µ is the fatality rate and provides information on the proportion of hospitalised individuals who, 
unfortunately, die. It depends either on the resilience of the patients and the severity of the disease. As this variation 
is not time-related we consider it to be fixed. It is worth mentioning here that any transition from the quarantined 
Q to the death D compartments is not considered at all, as any ill and quarantined individual that gets worse is, at 
some point in time, admitted to a hospital and eventually recovers or dies. The parameter α denotes the transition 
rate between H and D. Its inverse corresponds to the time a hospitalised individual takes to die. We anticipate 
these parameters to be highly variable as, in the ultimate analysis, it depends on the individuals themselves, more 
than the quality of the health care provided, but we do not see any reason to consider it a time-varying parameter.

Many infected people experience mild or no symptoms at all and are not accounted for (ascertained). Therefore, 
the Infection Fatality Rate (IFR), i.e. the number of deaths as a proportion of all persons infected with the SARS-
CoV-2 novel coronavirus is expected to be much lower than the Case Fatality Rate (CFR), the proportion among 
confirmed cases. Some works have reported values for the ascertainment rate between 0.4 and 14% in Wuhan7,26–30, 
28.4% in Italy16 and just 0.23% in Iran31. Unfortunately, the available data does not allow the estimation of this 
ascertained rate24, that account for an increased number of people in each compartment than the actual figures.

For modelling and empirical data analysis performed hereafter one uses a discrete-time approximation to 
the stochastic continuous-time SEIQRHD model defined in Eq. (1). Consider a time interval (t, t + h) , where h 
represents the length between the time points at which measurements are taken, here h = 1 day. Let dSEt denote 
the daily number of susceptible individuals who become infected, dSIt the number of cases by date of symptom 
onset, dIQt the daily number of confirmed cases, dQRt the daily number of quarantined cases who recover, dHRt 
the daily number of hospitalised cases who recover, dQHt the daily number of quarantined cases admitted to 
a hospital for more specialised care and dHDt the daily number of cases who decease. Given initial conditions 
S0 = s0 , E0 = e0 , I0 = i0 , Qt = q0 R0 = 0 , Ht = 0 and D0 = 0 , and the population size N, the discretised stochastic 
SEIQRHD model is specified by:
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This set of equations, jointly with the initial conditions, define the SEIQRHD model used in this work.

Data and empirical analysis.  We collected the epidemic data from the Direção-Geral de Saúde (Direc-
torate-General of Health, DGS), the Portuguese health authority. Using the SEIQRHD model described in the 
previous section we propose to disclose either the course of the Portuguese SARS-CoV-2 epidemic curves at 
the country level on a daily basis as long as the analysis of the information provided by model parameters. The 
results of the work based on a simplified version of the model can be found on https://​insig​hts.​cotec.​pt/ on the 
mosaic Modelos epidemiológicos. Data collection and analysis has taken into consideration guidelines of good 
practices (e.g.32).

Since the beginning of the pandemic, DGS releases daily data on its course (https://​covid​19.​min-​saude.​pt/​
ponto-​de-​situa​cao-​atual-​em-​portu​gal/). The key released variables are number of confirmed cases, number of 
deaths (nationwide and by health region), number of recovered cases, hospital occupancy, intensive care unit 
occupancy (nationwide), as well as the characterisation of the positive cases by origin, gender and age group. 
The figures released by DGS are used for modelling purposes as explained below. By September 11th, 2020, the 
course of the epidemic is as Figs. 1 and 4 describe.

The epidemic started on March 2nd, 2020 with the first two cases. Some unexpected spikes of daily recovered 
cases can be observed between May 14th and 24th 2020. This information corresponds to the release of recovered 
cases than have recovering during the previous weeks but have not been accounted for before as the recover 
notifications issued by the primary health care system were not included in the released figures. Moreover, it is 
globally clear that the released data about recoveries does not reflect the actual daily number of cases as some 
of these cases tend to be accumulated and only released later on. Therefore, we decided to proceed to a calibra-
tion on the number of recovered cases. This calibration impacts the hospital occupancy ( Ht ) and quarantined 
individuals ( Qt ) and the two flows of recovered cases coming into the compartment Rt . Only the series of daily 
new quarantined ( dIQt ), and the daily states of the active ( At = Qt +Ht ), recovered ( Rt ), hospitalised ( Ht ), and 
death ( Dt ) cases are released by DGS, but the fact that the number of recoveries is released with some delay, also 
leads to inaccuracies over the stock of quarantined cases and consequently on the active cases. To account for 
the mentioned dependencies we decided to calibrate the unknown flows ( dSEt , dEIt , dQHt , dQRt , dHRt ), using 
the available data: (a) the daily number of new confirmed cases, dIQt , (b) the daily number of new deaths, dHDt , 
and its daily stock Dt , (c) the daily number of new recovered cases, dHRt + dQRt and is stock Rt (d) the daily 
number of hospitalisations, Ht and (e) the daily number of quarantined cases Qt = At −Ht.

The calibration methodology is a two-step procedure. In the first step we calibrate the series of exposed ( dSEt ) 
and infected ( dEIt ) based on the incubation period of COVID-19 and the time from symptom onset to labora-
tory confirmation (based on the analysis of COVID-19 micro-data file provided by DGS). Table 1 summarises 
the distribution parameters used to calibrate the daily incidences of dSEt and dEIt as described in Figs. 5 and 
6. The median incubation period of SARS-Cov-2 has been estimated at approximately 5–6 days, with a range 
between 1 and 21 days9,15–18,33–35. We used the value provided by35 for the gamma distribution. We assume that 
the mean time from symptom onset to diagnosis confirmation in Portugal decreased from 5.34 days (with a 
standard deviation of 4.8 days) in the early period of the epidemic (early March) to 4.74 days (standard deviation 
of 6.5 days) in early April. These values are based on empirical analysis of microdata file provided by DGS. The 
file provides information for positive cases on the dates of symptom onset and test results. The latter is used to 
start counting the isolation period. The time necessary to isolate an individual has decreased steeply the in early 
days of the epidemic to a steady value, achieved one April 2nd, around 1 month after the epidemic started. To 
reflect the above, we modelled the time between case reporting and symptom onset with a Gamma distribution 
with µX/σX parameter of 5.34/4.80 on March 2, decreasing linearly to 4.72/6.45 on April 2 and after (Fig. 5a). 
Similarly the time between case exposure (infection with SARS-CoV-2) and diagnosis confirmation (based on 
empirical analysis DGS provided microdata) was modelled with a Gamma distribution with µX/σX parameter 
of 11.84/7.4 on March 2, decreasing linearly to 11.23/9.1 on April 2 and after (Fig. 6a).

The calibrated series dEIt and dSEt are shown is Figs. 5b and 6b.
In the second step, as the available data provide no information on the daily flows from the Q compartment 

to the H and R compartments ( dQHt , dQRt ), and from the H compartment to the R compartment, ( dHRt ), we 

(2)

St+1 = St − dSEt
Et+1 = Et + dSEt − dEIt
It+1 = It + dEIt − dIQt

Qt+1 = Qt + dIQt − dQHt − dQRt
Ht+1 = Ht + dQHt − dHRt − dHDt

Rt+1 = Rt + dQRt + dHRt
Dt+1 = Dt + dHDt

Ct+1 = Ct + dSEt
At+1 = At + dIQt − dHDt − dHRt − dQRt

dSEt = βSt
It

N
dEIt = δEt
dIQt = κIt
dQHt = ηhtQt

dQRt = γQ(1− ht)Qt

dHRt = γH (1− µ)Ht

dHDt = µαHt

N = St + Et + It + Qt + Rt +Ht + Dt ,

https://insights.cotec.pt/
https://covid19.min-saude.pt/ponto-de-situacao-atual-em-portugal/
https://covid19.min-saude.pt/ponto-de-situacao-atual-em-portugal/
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decided to use the discrete-time approximation to the stochastic continuous-time SEIQRHD model defined in 
Eq. (1) with the following assumptions: 

1.	 dQRt = γQQt−1 , t ≥ 12

2.	 dHRt =
ω

1− ω
dQRt , t ≥ 12

3.	 dQHt = (Ht −Ht−1 + dHDt + dHRt)I(Ht−Ht−1+dHDt+dHRt≥0) , t ≥ 13 ;

where I(Ht−Ht−1+dHDt+dHRt≥0) is an indicator function taking the value 1, if the argument 
Ht −Ht−1 + dHDt + dHRt ≥ 0 is true, and zero otherwise, γQ > 0 and 0 < ω < 1.

The first assumption originates from the fact, already mentioned, that the recovery rate is roughly constant for 
small time intervals. The second assumption originates from the empirical evidence that about 80% of COVID-19 
patients recover from the disease without needing special treatment, and for the majority—especially for children 
and young adults—illness due to COVID-19 is generally minor. However, for some people it can cause serious 
illness (20%)—difficulty in breathing requiring hospital care—which is particularly true for people who are aged 
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Figure 4.   Course of the COVID-19 epidemic in Portugal. (a) Confirmed infected cases (cumulative). (b) 
Recovered cases (cumulative). (c) Deaths (cumulative).

Table 1.   Mean time and corresponding standard deviation for calibration of distribution of daily incidences of 
non-observed series.

Estimate Mean Std deviation

Incubation period (in days) of SARS-Cov-2 6.50 2.60

Time (in days) from symptom onset to case confirmation (prior April, 2nd) 5.34 4.80

Time (in days) from symptom onset to case confirmation (post April, 2nd) 4.73 6.45
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over 60 years and people who have underlying medical conditions such as diabetes, heart disease, respiratory 
disease or hypertension. Therefore, assuming that 0 < ω < 1 of the total outgoing flows from Qt go to Ht we have:

The third assumption relies on the fact that, having calibrated the values of dHRt and using the observed 
values of Ht , dQH is calibrated by difference, provided that results in a non-negative flow.

The flows described in the assumptions are only used for t ≥ 13 , and t ≥ 12 , because the number of hospi-
talised individuals, Ht , is equal to the observed cumulative number of quarantined cases in the first 12 days of 
the epidemic, ht =

∑t
i=1 dIQi , t = 1, ..., 12 and we assume no recoveries in the first 11 days of the epidemic.

Day 84th of the epidemic corresponds to May 24th, 2020, the time point where 9844 recovered cases were 
released regarding recoveries that happened prior to May 24th, 2020. To calibrate the aforementioned flows the 
following algorithm is implemented as: 

1.	 For the period t = 1 to t = 84 (May 24th 2020):

•	 Initialise Ŝ1 = s1 , Ê1 = e1 , Î1 = i1 , Q̂1 = q1 , Ĥ1 = 0 , R̂1 = 0 , D̂1 = 0.
•	 for t = 2 to T

	 1.	 Ŝt = Ŝt−1 − d̂SEt
	 2.	 Êt = Êt−1 + d̂SEt − d̂EIt
	 3.	 Ît = Ît−1 + d̂EIt − d̂IQt
	 4.	 d̂QRt = round(γ0Q (1− exp(−ργQ t))Q̂t−1)I(t≥13) + 0
	 5.	 d̂HRt = round(ω exp(−ρωt)d̂QRt)I(t≥12) + 0
	 6.	 d̂HDt = dDt

	 7.	 d̂QH
(1)

t = (Ht −Ht−1 + d̂HDt + d̂HRt)I(Ht−Ht−1+d̂HDt +̂dHRt≥0)
I(t≥13) + 0

	 8.	 Q̂t = Q̂t−1 + d̂IQt − d̂QHt − d̂QRt

(3)

dHRt =ωdRt , 0 < ω < 1 ⇔

dHRt =ω(dHRt + dQRt) ⇔

dHRt =
ω

1− ω
dQRt ,

0 5 10 15 20
0.

00
0.

10
0.

20
0.

30

(a)

D
en

si
ty µX=5.34 σX=4.8

µX=4.73 σX=6.45
March, 2nd to April, 1st
April 2nd onwards

Mar Apr May Jun Jul Aug Sep

20
0

60
0

10
00

(b)

Time (days)

N
um

be
r o

f p
eo

pl
e/

da
y

Figure 5.   Distribution of time from symptom onset to case confirmation and reporting and the resulting 
curve of the estimated curve of daily infective people. (a) Distribution of time from symptom onset to case 
confirmation and reporting. (b) Estimated infectious ( dEIt ) cases in Portugal.
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	 9.	 Ĥt = Ĥt−1 + d̂QHt − d̂HRt − d̂HDt

	 10.	 d̂QH
(2)

t = (d̂QHt − (Ĥt −Ht)I(Ĥt−Ht>0))I(d̂QHt−(Ĥt−Ht )I(Ĥt−Ht>0))>0)
I(t≥13) + 0

	 11.	 R̂t = R̂t−1 + d̂QRt + d̂HRt

	 12.	 D̂t = D̂t−1 + d̂HDt

	 13.	 Ĉt = Ĉt−1 + d̂SEt
	 14.	 Ât = Ât−1 + d̂IQt − d̂HDt − d̂HRt − d̂QRt

2.	 For the remaining period ( t = 85 to t = T ) we run the previous algorithm for every disjoint time frame of 
7 consecutive days, initialising the values of each compartment with the final values of the previous period, 
allowing for different estimates of γQ and ω across time.

The “hat” in the above notation denotes calibrated figures (either on the first or the second procedure steps) 
whilst the figure with no “hat” are currently observed. The calibrated value d̂QH

(1)

t  (7th step) is submitted to a 
second verification in the 10th step of the algorithm to avoid flows into compartment H that are higher than 
actually observed. Indeed, if the calibrated value Ĥt is higher than the observed value Ht we reduce the inflow 
into Ht , d̂QH

(1)

t  , by the difference Ĥt −Ht , provided this reduction produces a non-negative value, d̂QH
(2)

t .
In evolutionary computation, differential evolution (DE)36 is a method that optimises a problem by iteratively 

trying to improve a candidate solution with regard to a given measure of quality. Such methods are commonly 
known as meta-heuristics as they make few or no assumptions about the problem being optimised and can search 
very large spaces of candidate solutions. DE is used for multidimensional real-valued functions but does not use 
the gradient of the problem being optimised, which means DE does not require the optimisation problem to be 
differentiable, as is required by classic optimisation methods such as gradient descent and quasi-Newton meth-
ods. Therefore, DE can also be used on optimisation problems that are not even continuous, are noisy, change 
over time, etc.. DE optimises a problem by maintaining a population of candidate solutions and creating new 
candidate solutions by combining existing ones according to its simple formulae, and then keeping whichever 
candidate solution has the best score on the optimisation problem at hand. Using a DE algorithm (provided by 
“R” package “DEoptimR”), for the first period ( t = 1 to t = 84 ) we minimise the loss function:
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Figure 6.   Distribution of time from infection to case confirmation and reporting and resulting curve of 
estimated curve of daily infective people. (a) Distribution of time from infection to case confirmation and 
reporting. (b) Estimated infections ( dSEt ) in Portugal.
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and for the remaining sets of 7-day periods we minimise the loss function:

The first row of loss function (4) ensures the calibrated daily hospital occupancy is equal to the observed daily 
hospital occupancy. The second row ensures that the calibrated number of recovered individuals on the correction 
(day 84th) matches the observed and reliable figure as closely as possible. The third row ensures the accumulated 
number of recovered individuals originated on the quarantined compartment, R(Q)

t =
∑t

i=1 dQRi , is equal to the 
number of recovered individuals recorded by the Portuguese primary health care system, but released at once on 
May 24th, 2020 (9652 individuals). The second loss function (5) ensures the calibrated daily hospital occupancy 
is equal to the observed daily hospital occupancy and the daily accumulated number of recovered individuals is 
equal to the daily accumulated number of recovered individuals.

This procedure allows the calibrations of the flows dQHt , dQRt and dHRt , conditional to the flows dSEt and 
dEIt calibrated in the first place, as described above.

The upper and lower limits of the hypersquare where the best solution is searched for are:

•	 (γ
(u)
Q , η(u), h

(u)
0 , h

(u)
1 , ρ

(u)
h , τ (u)) = (1/10, 0.999) and

•	 (γ
(l)
Q , η(l), h

(l)
0 , h

(l)
1 , ρ

(l)
h , τ (l)) = (1/120, 0.001).

The initial conditions are the two calibrated values in step one, e1 = dSE1 and i1 = dEI1 and the observed value 
q1 = dIQ1 and s1 = N − e1 − i1 − q1.

The calibrated values H, R, and D compartments resulting from the second step of the calibration procedure 
along with the original observed data are represented in panels (H), (R) and (D) of Fig. 7. The calibrated flows 

(4)L1(θ) =

tf∑

t=1

(Ht − Ĥt)
2 + (R84 − R̂84)

2 + (R
(Q)
84

− 9652)2.

(5)L2(θ) =

tf∑

t=1

(
(Ht − Ĥt)

2 + (Rt − R̂t)
2
)
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d̂QRt , d̂HRt and d̂R = d̂QRt + d̂HRt are represented in Fig. 7 (dR) along with the observed total flow dR (the 
deviation between the observed and calibrated dR on 2020-09-27, the last day under analysis, is red 0.3%). As 
expected, the accumulated number recovered individuals on May 25th (day 85) is interpolated, back-casting the 
excess of recovered cases released on May 24th (day 84), accordingly to the interdependence model dynamics. 
As such, the curve of calibrated quarantined individuals reproduces almost exactly its course after May 24th and 
flattens before this day, reproducing the calibrated recovered flows ( dQRt ). This last flow, jointly with the flow of 
recovered individuals from the hospitalised compartment, dHRt are calibrated resulting in reliable courses both 
for accumulated recovered individuals and daily recovered individuals.

Bayesian hierarchical modelling.  Using the discrete-time approximation to the stochastic continuous-
time SEIQRHD model (2) defined above we set up a Bayesian hierarchical model where the incidence vari-
ables are assumed stochastic. The transitions of individuals from the one compartment to the next one of the 
SEIQRHD model are considered stochastic movements between the corresponding population compartments. 
In each period an individual either stays in or moves on to the next compartment. In reliability analysis life-time 
is usually considered to follow an exponential distribution. By analogy, here the time length that an individual 
spends in a compartment is exponentially distributed with some compartment-specific rate �t . Therefore, the 
probability of extending the stay by a further period of length h is exp(−�th) and the probability of leaving is 
therefore 1− exp(−�th) . The summation over the individual Bernoulli trials assuming they are independent 
and identical for all members of a compartment would result in binomial distributions37. Due to the scale we are 
working with, we found it useful to take advantage of the approximation of the binomial to the Poisson distribu-
tion. Therefore incidences are assumed to follow the distributions:

where the transition probabilities are given by:

assuming the time unit h is 1 day.
Conditional on all information up to time t, the Poisson random variables dSEt , dEIt , dIQt , dQHt , dQRt , dHRt 

and dHDt are independent. The model further assumes that the population size N remains constant and that 
individuals mix homogeneously. In order to account for the effects of control measures such as lockdown and 
social distancing, we assume that the transmission parameter β is constant up to the time point when the control 
measures are introduced and after that decays exponentially at a constant rate. During the SARS-CoV-2 epidemic 
in Portugal four distinct periods can be distinguished. The first one, between the beginning of the epidemic and 
the declaration of the state of emergency, the first hard lockdown control measures (on March 18th 2020) where 
the transmission parameter is assumed to be constant. The second one, between March 18th, 2020, and the dec-
laration of the situation of calamity when the lockdown measures started easing (May 4th, 2020). A third period 
from May 4th onwards and until August 18th, corresponding to the traditional Portuguese holidays time and 
the beginning of the school year and finally, from August 18th onwards. This is formulated as:

where τ0 , τ1 and τ2 correspond to those three intervention dates (March 18th, May 4th, and August), β0 is the ini-
tial transmission rate, and ρβ0 , ρβ1 , ρβ2 > 0 are the rates at which β0 , β1 and β2 decay on τ0 ≤ t < τ1 , τ1 ≤ t < τ2 
and t ≥ τ2 , respectively.

The basic reproduction number R0 is defined as the average number of secondary cases generated by a primary 
case over his/her infectious period when introduced into a large population of susceptible individuals38. The 
constant R0 thus measures the initial growth rate of the epidemic and for the model above is R0 =

β0

κ
39. 

Furthermore40, define the time dependent effective reproductive number R0(t) =
βt

κ

St

N
 as the number of second-

ary cases per infectious case at time t. Because St ≈ N , it follows that R0(t) =
βt

κ
 is a function proportional to 

(6)

dSEt ∼ Pois(St × pdSE(t)),
dEIt ∼ Pois(Et × pdEI ),
dIQt ∼ Pois(It × pdIQ),
dQHt ∼ Pois(Qt × ht × pdQH ),
dQRt ∼ Pois(Qt × (1− ht)× pdQR(t)),
dHRt ∼ Pois(Ht × (1− µ)× pdHR),
dHDt ∼ Pois(Ht × µ× pdHD),

(7)

pdSE(t) = 1− exp
(
−β It

N

)
,

pdEI = 1− exp (−δ),
pdIQ = 1− exp (−κ),
pdQH = 1− exp (−η),
pdQR(t) = 1− exp

(
−γQ(t)

)
,

pdHR = 1− exp (−γH ),
pdHD = 1− exp (−α)

(8)β(t) =





β0, t < τ0

β0e
−ρβ0 (t−τ0), τ0 ≤ t < τ1,

β1e
−ρβ1 (t−τ1), τ1 ≤ t < τ2,

β2e
−ρβ2 (t−τ2), t ≥ τ2
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the time-varying transmission rate in (8). The time point at which R0(t) assumes values smaller than 1 indicates 
when control measures have become effective in controlling the epidemic.

The parameter κ governs the passage from the infective to the quarantined compartment, as explained before. 
An infected individual is not automatically quarantined, because the authorities are often unable to test enough 
people while keeping pace with the spread. This measure is especially difficult because many people do not 
develop symptoms at all, but can transmit the infection to others. So, we believe that κ also contains some 
information about the percentage of the detected infective people. A study by40 proposed the introduction of an 
additional parameter to understand this issue better. Despite all these considerations, we used values estimated 
from a microdata file provided by DGS in the first step of data calibration (as explained before). Therefore, we 
decided to move on a parsimonious parameterisation for κ , considering it fixed and equal to 1/4.73 days (see 
Table 1). Similarly, the incubation period, δ−1 is considered fixed and equal to 6.5 days (see Table 1). Accordingly 
to what we have discussed before, we assume η is constant, and ht follows the model:

The parameters γQ and γH govern the passage from the Q and H compartments to the R compartment. As 
already mentioned, we assume γQ is much more dependent on protocols for recovery confirmation and therefore 
much more susceptible to increase over time than γH . Therefore, γQ follows an exponential trend, whilst γH is 
considered fixed. The assumption is that the recovery rate, γQ(t) converges towards an asymptotic value:

The value of γ0Q is the final asymptotic value of the recovery rate. It depends on ργ which represents how fast the 
health system learns to respond to the disease and the protocol on recovery confirmation evolves.

Finally, the parameter µ , which governs the passage from the H compartment to the D compartment, cor-
responds to the share of the hospitalised people who dies due to the disease. Again, we believe µ is related to how 
a health system can improve its capability to treat people over time. Nevertheless, for parsimonious reasons and 
given the residual hospitalised fatality rate of COVID-19 we decided to assume µ is fixed. Evoking the aforemen-
tioned reasons, the parameter α is also considered fixed, but highly variable between individuals.

The epidemic model specified in (2), (6) and (7), together with the transmission rate model 
(8) and models (9) and (10) and the parameters δ , κ , η , γH  , µ and α has parameter vector 
θ = (β0,β1, ρβ0 , ρβ1 , δ, κ , η, h0, h1, ρh, τ , γ0Q , ργ , γH ,µ,α) , which we would like to estimate from the knowledge 
of initial conditions S0 = s0 , E0 = e0 , I0 = i0 , Qt = q0 R0 = 0 , Ht = 0 and D0 = 0 , population size, N, and from 
observed values of dSEt , dEIt , dIQt , dQHt , dQRt , dHRt , dHDt.

Gamma and uniform priors are assigned to each of the parameters in θ as

where Ga(a, b) refers to a gamma distribution with parameters shape a and rate b, mean a/b, and variance a/b2 
and Unif(a, b) to a uniform distribution between a and b with a mean (a+ b)/2 and variance 1/(12(b− a)).

Let dSE = {dSEt , t = 1, 2, ...,T} be the daily observed (calibrated) counts of susceptible individuals who 
become infected. We define similarly the other vectors: dEI , dIQ , dQH , dQR , dHR and dHD . Because the series 
are conditionally independent the likelihood of the data is:

where p(·|·) stands for the Poisson transition probabilities specified in (6) conditioned on θ and on all the infor-
mation up to time t. Given the hierarchical representation presented above and using the same notation, one can 
evaluate the posterior distribution of all of the parameters, given the observed counts:

One cannot evaluate this posterior distribution analytically and must resort to numeric simulation methods. 
We use the special case of MCMC known as Gibbs sampling41 and implement the algortithm using the “R” pack-
age “JAGS” (all code used in this paper can be obtained from authors upon request).

Results
After a burn-in period of 10,000 iterations by which we believe convergence has been achieved, a sample of size 
250 taken every 500 iterations (to avoid serial correlation, especially for parameters where identification problem 
may arise, such as η and h and µ and α ) of the chain was used to obtain marginal posterior distributions for all 
model parameters.

(9)h(t) = h0 exp(−ρht).

(10)γQ(t) = γ0Q (1− exp(−ργ t)).

(11)

β0 ∼ Ga(2, 10), β1 ∼ Ga(2, 10),
β2 ∼ Ga(2, 10), ρ0 ∼ Ga(10, 100),
ρ1 ∼ Ga(10, 100), ρ2 ∼ Ga(10, 100),
h0 ∼ Unif(0, 1), ρh ∼ Ga(1, 10),
γ0Q ∼ Ga(10, 100), ργ ∼ Ga(1, 10),
η ∼ Ga(2, 10), γH ∼ Ga(10, 100),
µ ∼ Unif(0, 1), α ∼ Ga(10, 100)

(12)

L =p(dSE|·)p(dEI|·)p(dIQ|·)p(dQH|·)p(dQR|·)p(dHR|·)p(dHD|·)

=

T∏

t=1

p(dSEt |·)p(dEIt |·)p(dIQt |·)p(dQHt |·)×

p(dQRt |·)p(dHRt |·)p(dHDt |·),

(13)�(θ |dSE, dEI, dIQ, dQH, dQR, dHR, dHD).
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Convergence of the Markov chain was assessed using a series of runs for four different chains with different 
starting values and also inspecting the autocorrelation function (cf. Figures 15, 16, 17 and 18 in Supplementary 
Material). In all cases the Markov chain appeared to have converged after the burn-in period.

Analysing the fit of the model against real data is relevant as a tool of external validation. Therefore, the model 
fit is assessed by plotting the available data against the estimated expected values of the compartments. The fit 
of the model is evident from Fig. 8 for the period corresponding to the used data. Among the model variables 
represented, the flow of positive cases that are isolated, dIQt, is of essential importance, as is the one that drives 
the course of the epidemic and captures most of the attention of the health authorities. Thus, we have assessed 
the predictive relevance of the model by calculating the root mean square error of prediction (represented in the 
percentage of the mean of dIQt). The resulting value of 7% allows to confirm the validity of the model. Moreover, 
it is possible to assess the daily number of people in need of medical care through the flow dQH which is not 
released by the health authorities.

Table 2 presents the main results for the model parameters.
The mean of the basic reproduction number ( R0 ) is 3.434 with a 95% credible interval of (3.312–3.535) and 

varies between 3.250 and 4.165. The distribution of the basic reproduction number is depicted in Fig. 9a. The 
temporal evolution of the effective reproduction number is represented in Fig. 9b. The imposition of the lock-
down and social distancing measures were effective in pulling the reproduction number down to a value below 
the epidemic control of one. Nevertheless, easing those measures implied a significant increase on the infection 
transmission in early May. Still, the level that was reached kept the disease’s spread under control and additional 
restrictions made it possible to bring it to levels close to the threshold, although the end of the epidemic cannot 
be anticipated yet.

The posterior mean of transmission rate before first intervention ( β0 ) is 0.724 with a 95% credible interval of 
(0.700–0.747). These values are consistent with the values published in the literature (see, for example,20). By the 
time the second intervention takes place, the value of β(t) is only 0.027 (0.025–0.029). This explains the benefits 
of imposing lockdown measures to bring the transmission rate down from 0.724 to 0.027. As already mentioned, 
on May 4th the lockdown measures started to be eased and the transmission rate raised to 0.252 (0.243–0.262) 
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Figure 8.   Results of SEIQRHD model. Means of the posterior predictive distributions of the most important 
flows for pandemic course management are represented in blue lines. Red lines represent compartments or flows 
for which observed values exist. The percentual root mean square error (PRMSE) is indicated in panel dIQ for 
the central flow that drives the course of the epidemic.
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Table 2.   Posterior statistics of SEIQRHD model parameters.

Parameter Description Units Prior mean (std) Posterior mean (std) Days (95% CrI)

R0 Basic infection reproduction number No. – 3.424 (0.0610) –

β0 Contact rate before first intervention days−1 0.2 (0.1414) 0.724 (0.0130) –

β1 Contact rate on second intervention days−1 0.2 (0.1414) 0.252 (0.0051) –

β2 Contact rate on third intervention days−1 0.2 (0.1414) 0.402 (0.0174) –

ρβ0 Rate of decay of β0 days 0.1 (0.0316) 0.007 (0.0012) –

ρβ1 Rate of decay of β1 days 0.1 (0.0316) 0.006 (0.0004) –

ρβ2 Rate of decay of β2 days 0.1 (0.0316) 0.016 (0.0038) –

η Hospitalisation rate days−1 0.2 (0.1414) 0.636 (0.1349) 1.13–2.69

h0 Initial probability of hospitalisation % 0.5 (0.2887) 0.067 (0.0116) –

ρh
Rate at which probability of hospitalisation 
decreases % 0.1(0.1) 0.018 (0.0002) –

γ0
Final (asymptotic) recovery rate of quarantined 
people days−1 0.01 (0.0032) 0.016 (0.0001) 62.89–64.43

ργ
Rate at which recovery rate of quarantined people 
incresases days 0.1 (0.0316) 0.081 (0.0106) –

γH Recovery rate of hospitalised individuals days−1 0.01 (0.0032) 0.180 (0.0051) 5.24–5.85

µ Hospitalised case fatality rate % 0.5 (0.2887) 0.26 (0.0177) –

α Rate of death days−1 0.01 (0.0032) 0.07 (0.0052) 12.12–16.31
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Figure 9.   Infection reproduction number. (a) Basic Reproduction Number distribution, R0 . (b) Effective 
reproduction number, R0(t).



15

Vol.:(0123456789)

Scientific Reports |        (2021) 11:19617  | https://doi.org/10.1038/s41598-021-98975-w

www.nature.com/scientificreports/

starting a new downward path. Nevertheless, the end of the Portuguese traditional holidays period and (second 
half of August) and the beginning of the academic year push the transmission rate up again from 0.141 to 0.402 
due to the natural increase of daily contacts. The distribution of ρβ0 , ρβ1 , and ρβ2 are Gaussian-like with posterior 
means 0.07 (0.068–0.072), 0.006 (0.005–0.006), and 0.016 (0.009–0.024). The rate of decay of β1 is very minimal. 
Indeed, the value of β(τ2 − 1) (the day before of the third intervention) is 0.14 indicating the transmission rate 
after the second intervention (0.24) has a small decay. Actually, although the current mobility levels (cf. Google 
Mobility Reports) are below the pre-pandemic recorded figures, from early May onwards they started to catch up 
and are currently close to the pre-pandemic levels from early May onwards, potentially inducing a large number 
of daily infections. The posterior distribution of the transmission rates, β0 , β1 and β2 are represented in Fig. 10a–c. 
The temporal evolution of the transmission rate is represented in Fig. 10d.

The posterior mean of the hospitalisation rate ( η ) is between 0.636 (0.371–0.888) corresponding to a mean 
period of 1.13–2.69 days between case confirmation and hospital admittance. The posterior mean of the initial 
hospitalisation probability h0 is 6.71% (5.12–9.89%). Confirming what is currently known about the severity 
of the disease this figure indicates that only a small proportion of the quarantined individuals need specialised 
medical care. The posterior distributions of the hospitalisation rate, η , and initial hospitalisation fraction, h0 
are represented in Fig. 11a,b. The temporal evolution of the hospitalisation fraction is represented in Fig. 11c.

Regarding recovery, we observe a mean asymptotic recovery rate of 0.016 (0.0155–0.0159). This rate translates 
in a mean asymptotic recovery period of 63.6 (62.89–64.43) days. Although it seems to be larger than expected, 
this value is affected by the speed of the reporting of recovered individuals. Indeed, it is consensual between 
epidemiologists in Portugal that recovered individuals figures released by DGS have been permanently below 
the expert expectations, given recovery time reported in the literature (around 14 days, on average) and admitted 
by clinical practitioners. Indeed, by the time we of finishing this manuscript DGS has already released a batch of 
additional 13529 recovered individuals (referring to the previous period with unspecified allocation) that would 
result in a reduction of the recovery time consistent with the usual clinical mean recovery period. The posterior 
distribution of the asymptotic recovery rate is depicted in Fig. 12a. The temporal evolution of the recovery rate 
is represented in Fig. 12c.
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On the other hand, the posterior mean of the recovery rate of hospitalised individuals is 0.18 (0.171–0.191) 
which corresponds to a period of 5.5 (5.24–5.85) days in hospital before recovery confirmation. That is a perfectly 
reasonable period despite its dependence on the health system promptness. The posterior distribution of the 
mean recovery rate of hospitalised individuals is depicted in Fig. 12b.

Finally, the posterior mean of the hospitalised case fatality rate (HCFR) ( µ ) is 26.12% (22.40–29.53%). We 
must remark that this HCFR concerns only the hospitalised individuals and should not be compared with the case 
fatality rate (CFR) only concerns the recorded number of infections. Indeed, in our model the case fatality rate 
is given by the ratio of Dt (accumulated number of deaths) to Ct (accumulated number of infected individuals). 
The course of the CFR is represented in Fig. 13. It follows a convergent path to a maximum value around 3.9% 
which is in line with the values reported by the literature, for countries that have adopted a lockdown policy for 
a significant period42,43. The posterior mean of the death rate, α , is 0.071 (0.061–0.082) which corresponds to a 
period of 14.2 (12.12–16.31) days in hospital before death. As anticipated this is highly dispersed value denoting 
a significant heterogeneity of the length of stay in hospital among individuals.

Discussion
This work adopts a generalised SEIR model, the so-called SEIQRHD model, to offer a quantitative overview of 
the complex structural analysis and prediction of the SARS-CoV-2 epidemic. The work was developed during 
the first wave of course of the epidemic. By the time we completed the manuscript, a new wave of increased 
infections was striking all over Europe.

The proposed SEIQRHD model is, to the best of our knowledge, is the first considering a specific compart-
ment to follows the hospitalised individuals who might put an intolerable burden on the national health system, 
especially now that a second wave is starting and no one can anticipates the course of the epidemic when the 
Winter arrives. This model offers to health authorities the possibility to predict of the number of individuals 
who are going to require hospitalisation, thus allowing for better planning of resources. It must be emphasized 
that the data available to calibrate the model and discover some of the necessary flows includes infirmary and 
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ICU occupancy, that is, the daily number of occupied beds. The calibration procedure allows to estimate the 
in and outflows of compartment H, thus allowing to approximate these unobserved values, whose knowledge 
is of extreme importance for the health system to allocate the necessary resources. Moreover, the set of model 
parameters (some of them ordinary in SEIR model specification), either time-fixed or time-varying, provide 
useful insights on the health authorities reaction to the daily challenges. Namely, it is possible to monitor (a) the 
time between case symptom onset and subsequently isolation, (b) the time spent in isolation, (c) the hospitalisa-
tion rate and the probability of hospitalisation and its evolution over time which provides information on the 
near future burden to the health system among other important insights as discussed in the section devoted to 
the analysis of results. It is also possible to distinguish between recovery rates and duration for hospitalised and 
non-hospitalised individuals, allowing a much deeper understanding on the recovery evolution and the efficiency 
of hospital care. Daily estimation of the SEIQRHD along with the predictions for stocks and flows between com-
partments may have strong implications on public health policy and resources allocation to control the pandemic. 
Results from the model may help health authorities to adapt their strategies and plan their resources within at 
least three action vectors: (a) monitor how fast the public health teams in the field identify and isolate positive 
cases turning possible to anticipate the number of professionals that need to be allocated to these tasks; (b) by 
following and predicting the hospitalization needs, allowing to anticipate possible stress levels in the healthcare 
provided and the reallocation of beds devoted to SARS-CoV-2 and other pathologies; (c) by better predicting the 
course of the pandemic in terms of incidence and prevalence, allowing a better planning of mitigation measures, 
including more informed decisions about the timing and intensity of confinement measures.

An additional future step over of this line of modelling is the separation between hospitalised noncritical 
patients from the ones in intensive care, which may of course offer authorities with additional insight for plan-
ning purposes.

Other researchers might use the methodology developed here to either calibrate non-error free or miss-
ing epidemic data. Indeed, as44 points out, frequently the official databases are not exempt from measurement 
errors and/or missing data that must be accounted for and fixed before any further analysis. Estimating missing 
flows or the calibrated version of observed series can be done using the rationale behind the two-step calibra-
tion procedure proposed in this paper. For Portuguese data the calibration procedure has shown to be crucial 
to cope with errors on the official recovery cases, with impact over virtually all the transition rates between 
compartments and particularly the ones related with hospital occupancy: hospitalisation rate and recovery rate 
from hospitalised patients.

Both the calibration methodology and the Bayesian model were adapted to the Portuguese case and cor-
responding available data. However, we believe the data released in Portugal, with some minor differences, are 
widely available in most of the developed countries. Therefore, the methodologies developed here might be 
successfully replicated in many other countries.

The numbers retrieved from the Portuguese data show that Portugal has been dealing with the epidemic 
promptly and the measures taken to flatten the incidence curve have proved to produce the desirable results. 
In particular, the performed modeling allowed to understand how the contact rate has evolved over time and 
more importantly, how effective several interventions were (lockdown or other mobility restriction measures). 
For example, the first Portuguese intervention allowed the transmission rate to reduce from 0.724 to 0.027, but 
the second intervention was much less effective only allowing a reduction from 0.24 to 0.14. It is important to 
notice that the first intervention corresponded to a full lockdown, while the second one corresponded to setting 
limited mobility restrictions. It also allows us to understand the price to pay when restrictions are removed or 
eased. In fact, we have observed a rapid increase of the transmission rate from 0.027 to 0.252 right before the 
second intervention and from 0.141 to 0.402 before the third one.

These results may help public authorities to set the timing and intensity of the measures in order to achieve 
the planned results and particularly to avoid the implosion of the health system.
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