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Mode‑assisted joint training 
of deep Boltzmann machines
Haik Manukian* & Massimiliano Di Ventra

The deep extension of the restricted Boltzmann machine (RBM), known as the deep Boltzmann 
machine (DBM), is an expressive family of machine learning models which can serve as compact 
representations of complex probability distributions. However, jointly training DBMs in the 
unsupervised setting has proven to be a formidable task. A recent technique we have proposed, called 
mode‑assisted training, has shown great success in improving the unsupervised training of RBMs. 
Here, we show that the performance gains of the mode‑assisted training are even more dramatic for 
DBMs. In fact, DBMs jointly trained with the mode‑assisted algorithm can represent the same data 
set with orders of magnitude lower number of total parameters compared to state‑of‑the‑art training 
procedures and even with respect to RBMs, provided a fan-in network topology is also introduced. 
This substantial saving in number of parameters makes this training method very appealing also for 
hardware implementations.

One of the most influential models in Artificial Intelligence (AI) and deep learning in particular is the Boltzmann 
machine (BM). It was  constructed1,2 as a powerful stochastic generalization of Hopfield  networks3 that possess 
a simple expression for their log-likelihood gradient. However, they remained impractical to train due to their 
reliance on high-dimensional sampling to calculate that gradient. A relatively efficient learning algorithm, called 
contrastive divergence (CD), was discovered for BMs with a simplified topology called restricted Boltzmann 
machines (RBMs)4, which have since gone on to see success in various  domains5. However, the extension of RBMs 
to deep Boltzmann machines (DBMs) has been  difficult6, and as such, DBMs are now mostly overshadowed by 
their deep feedforward  cousins7 in generative applications.

This is not due to DBM’s lack of ability, but rather the absence of effective means to train these models. There 
remain quite a few reasons to search for better learning algorithms for DBMs, as they are a versatile computa-
tional medium. A principle use is as compact generative models for complex probability distributions in unsu-
pervised settings, considered a critical component of the forthcoming “third-wave” of  AI8. Trained DBMs can 
also serve as an informed prior for feedforward networks, leading to better generalization in supervised  tasks9. 
In the physical sciences, DBMs serve as powerful variational representations of many body wavefunctions, 
more  efficiently10 than  RBMs11,12, and have potential applications in condensed matter physics and quantum 
 computing13.

Various attempts have been made to climb the summit of DBM  training14–18. Most approaches rely on pre-
training by breaking up layers into RBMs and training them sequentially, after which the DBM is fine-tuned 
jointly. Correlations between layers are ignored during pre-training, minimizing the potential advantages of the 
deep architecture which can be disruptive to joint  training18. Recently, the authors introduced mode-assisted 
 training19,20, which combines CD with samples of the model distribution mode. This stabilizes training, allows 
the learning of very accurate densities, and strikes a better tradeoff between accuracy and computational cost 
compared to CD. As the method is agnostic to the connectivity of the network, we can apply mode-assistance 
to DBMs with the hope of capturing the model capacity missed by other approaches.

In this work, we find that the benefits of mode-assisted training are even more dramatic in the case of DBMs. 
In fact, it produces more accurate models without requiring pre-training while also utilizing orders of magnitude 
less parameters, compared to pre-trained14 or centered  DBMs18. The role of the network topology is also dis-
cussed, where we discover that DBMs are easier to train if the size of the layers decreases with depth. We evaluate 
the density modeling performance of mode-assisted DBMs by computing exact log-likelihoods achieved on small 
data sets and approximating the likelihood on the MNIST data set. The approach we propose can be extended 
to other types of neural networks, and is relevant also for the hardware implementation of these models, where 
a much smaller number of parameters directly translates into components and energy savings.

To see how mode-assisted training can be extended to deep architectures, we give a quick overview of DBMs 
and the basic approach to their training. DBMs are undirected weighted graphs that differentiate between nv 
visible nodes, and ℓ layers of nℓ latent, or ‘hidden’, nodes, not directly constrained by the  data14. We assume that 
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ℓ > 1 as ℓ = 1 recovers the RBM, and like an RBM, there are no connections within a layer. A graphical example 
of a two layer DBM is shown in Fig. 1. Each state of the machine corresponds to an energy of the form

where the biases a ∈ R
n0 , bℓ ∈ R

nℓ , and weights Wℓ ∈ R
nℓ−1×nℓ are the learnable parameters. The energy func-

tion in Eq. (1) induces a Boltzmann-Gibbs distribution over states,

where x = (v, h(1), . . . , h(ℓ)) . The partition function, Z =
∑

{x} e
−E(x) , involves the sum of an exponentially 

growing number of states, making the exact computation of its value infeasible for most data sets.
During learning, a DBM is tasked to match its marginal distribution over the visible layer, p(v) =

∑

{h} p(v, h) , 
to an unknown data distribution, q(v) , represented by a data set, D . Training a DBM amounts to a search for the 
appropriate weights and biases that will minimize the quantity known as the Kullback-Leibler (KL) divergence 
between the two distributions,

or, equivalently, maximizing the log-likelihood of the dataset, LL(p) =
∑

v∈D log p(v) . The optimization of 
the non-linear, and typically high dimensional Eq. (3) (or log-likelihood), is often done via stochastic gradient 
descent with respect to the DBM parameters, which leads to weight updates of the  form21,

For every gradient update in Eq. (4), nodal statistics must be computed under two different distributions. The 
first one on the RHS of Eq. (4) is called the “data term”, and is an expectation over the data induced distribution, 
q(v)p(h|v) , with the network’s visible layer fixed to the data. The second term on the RHS of Eq. (4) is called the 
“model term” which is an expectation over the entire model distribution in Eq. (2). In the case of RBMs, the data 
term can be sampled from exactly, but the model term must be approximated. With DBMs, the data term must 
also be approximated, most popularly with an iterative mean field procedure (see Methods).

In both cases, model statistics are collected via a Markov Chain Monte Carlo (MCMC) procedure dubbed 
‘contrastive divergence’ (CD)4. CD-k is a form of Gibbs sampling that initializes chains of length k from elements 
of the dataset. Trouble arises when the model distribution contains ’spurious’ modes where the data distribution 
has negligible probability. In these cases, ergodicity breaks down, and mixing times become prohibitively long, 
frequently resulting in CD becoming biased enough to cause training to  diverge22. Training a DBM jointly with 
CD has proven to be a formidable task. Even a two-layer DBM on MNIST has not seen success without some 
kind of  modification6,14,18,23.

Here, instead, we use mode-assisted training in the joint and unsupervised learning of DBMs. The essence of 
mode-assisted training is the replacement of gradient updates in Eq. (4) with ones of the form,

Here, u is a random variable sampled from the uniform distribution over the unit interval, U[0, 1]. The nota-
tion [f (x)]q represents f (xmode) , evaluated at xmode , the mode of some distribution, q(x) . One may employ any 
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Figure 1.  Schematic of a deep Boltzmann Machine with a visible layer, v, and hidden layers, h(j) , with 
j = 1, 2, . . . . Connections between nodes are symmetric and undirected, in contrast to typical directed 
feedforward networks.
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optimization solver to sample the mode of the above distributions. Due to its proven efficiency, here we employ 
a memcomputing one as reported in our previous  work20.

The weight updates driven by the mode are incorporated in a probabilistic way, with the probability of a 
mode driven update, Pmode , following a sigmoid, starting low in the initial phases of the training and reaching 
a maximal value at the end of training:

Here, n is the current epoch, and α , β , Pmax control the shape of the sigmoid. Throughout the work we set, 
α = 20/N (N is the total number of epochs), β = −6 and Pmax = 0.1 . This schedule was introduced in Ref.20, 
based on the empirical observation that the mode samples work best when the support has been ‘discovered’ 
by CD.

The mode-assisted update can be thought of as a saddle-point approximation of an  expectation24. This tech-
nique, also known as Laplace’s method, is commonly employed to approximate integrals (expectations) of the 
form,

The key insight of mode assisted training is not to explicitly improve the mixing time of CD, but rather 
directly prevent spurious modes from appearing in the model distribution. This allows the inexact but efficient 
approximation of CD-k to minimize the KL divergence (or maximize the log-likelihood) without diverging. 
Searching for the mode with a highly specialized optimizer results in a better trade-off between log-likelihood 
performance and computation time.

Results
To illuminate the effectiveness of mode assistance on DBMs, we first evaluate performance on two differently 
sized synthetic shifting bar data sets. In Fig. 2, the mode-assisted algorithm on a two-layer DBM is compared 
to two baselines, CD on the same DBM and to CD on an RBM with the same number of hidden nodes. The 
converged log-likelihoods are reported, and results are shown as a function of the total number of hidden nodes. 
Overall, mode-assisted training almost always converges to more accurate densities than CD alone on a DBM, 
and in most cases also does better than the corresponding RBM with CD. Mode assistance is also seen to prevent 
the divergence sometimes seen with Gibbs sampling, as well as reducing the variance of the converged models, 
resulting in smaller error bars. Past a certain point, all methods expectedly incur a loss in performance as the 
number of hidden nodes increases for a fixed number of training iterations. However, mode-assisted training 
suffers the least in this regard.

Although the DBMs in Fig. 2 possess the same total number of hidden nodes as the RBMs, they contain fewer 
total parameters. This means that a better trained DBM takes advantage of abstract features composition afforded 
by the depth of the network, mirroring similar gains found in deep feedforward neural networks compared to 
single layer  perceptrons5.

Note, however, that this parameter efficiency in DBMs is not present when training jointly with CD. In fact, 
they perform systematically worse than an equivalently sized RBM in terms of log-likelihood. Mode assisted 
DBMs on the other hand perform as well as RBMs or better, all the while maintaining parameter efficiency.

(6)Pmode(n) = Pmaxσ(αn+ β).

(7)�f (x)� =

∫

e−E(x)f (x)dx
∫

e−E(x)dx
≈ f (xmode).
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Figure 2.  Average converged log-likelihood performance (lower bound) between RBMs trained with CD-1, 
mode-assisted DBMs (MA), and unassisted DBMs with CD-1. The DBMs have two hidden layers. The networks 
were trained on the shifting bar data set with nv = 24 (left plot) and nv = 12 (right plot) for 200,000 and 100,000 
gradient updates respectively, following a linearly decaying learning rate schedule from ǫ = 1 → 0.001 . For the 
DBMs the hidden layer ratio was fixed at α = nh(2) /nh(1) = 0.2 . Performance is shown as a function of total 
number of hidden nodes, nh = nh(1) + nh(2) . The solid lines are the median obtained across an ensemble of 50 
networks, and the shaded regions enclose the 95th and 5th percentiles.
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To quantify this efficiency gain, let us consider the case of a DBM with two hidden layers. If the total number 
of hidden nodes is fixed, nh = nh(1) + nh(2) , then a measure of parameter efficiency compared to an RBM with 
the same number of nodes is captured by the parameter α = nh(2) /nh(1) . The total number of parameters (weights 
and biases) in an RBM with nv visible nodes and nh hidden nodes is,

A DBM with the same total number of hidden nodes would have the following number of parameters

Considering typical training scenarios of a large visible layer, nv ≫ nh ≫ 1 , the fraction of total parameters 
used in the DBM compared to the RBM (the parameter efficiency) can be simplified as,

The smaller e, the fewer parameters a DBM possesses with respect to an RBM with the same number of 
nodes. We then see that a naïve interpretation of Eq. (8) would suggest that the DBM parameter efficiency 
becomes more significant with increasing α , meaning the resulting DBM has more neurons in the deeper layers 
(fans out). However, this assumes equal log-likelihood (performance) of the two models, which is not obvious. 
In fact, for DBMs we expect that a redistribution of the relative number of nodes in the different hidden layers 
plays a significant role in their performance. This tradeoff between parameter efficiency and performance merits 
further investigation.

This is shown in Fig. 3, where DBMs trained with and without mode assistance are compared as a function of 
α . For all cases, the mode-assisted algorithm performs better than its unassisted counterpart, which is nothing 
other than the confirmation of the results of Fig. 2. Importantly, however, we also observe that the log-likelihood 
performance increases as the network becomes less parameter efficient compared to an RBM (α → 0) , namely 
when it has a fan-in topology. We find that a balance is reached around α ∼ 0.15 , namely the second hidden layer 
has only about 15% of nodes than the first hidden layer. The message here is that for a fixed number of hidden 
nodes, it is best to organize the network as a fan-in DBM rather than an RBM, if one has a method to train the 
DBM close to capacity in the first place.

Finally, to show the substantial improvements provided by the mode-assisted training of DBMs, we compare 
it to the training of centered  DBMs18 and pre-trained  DBMs14 using CD on the MNIST data set. In Fig. 4, we 
report similar trends we observed in the smaller data sets, but scaled to more dramatic results. As the number 
of hidden nodes increases, small mode-assisted DBMs surpass the performance of significantly larger standard 
DBMs, centered DBMs and eclipse the performance of much larger pre-trained DBMs. In fact, with a DBM of 
only 120× 18 hidden nodes (and no pre-training), trained with our mode-assisted approach, we reach the same 
log-likelihood of a DBM with 500× 1000 hidden nodes and pre-training—a parameter savings of two orders 
of magnitude.

For a fair comparison, the total training iterations were set to 100 epochs in each case, and the log-likelihood 
results with our approach are shown as a function of total number of hidden nodes at a fixed ratio, α = 0.15 . 
The partition function was approximated using Annealed Importance Sampling (AIS) (see Methods), identical 

nRBM = nvnh + nv + nh.
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Figure 3.  Average Log-Likelihood achieved on an nv = 24 dimensional shifting bar data set as a function of 
DBM shape, α . The total number of hidden nodes are kept fixed at nh(1) + nh(2) = 22 . An ensemble of 50 DBMs 
were trained with CD-1 and MA, where the solid line shows the median average log-likelihood achieved after 
105 gradient iterations with a linearly decaying learning rate ǫ = 1 → 0.01 , and shaded regions delineate the 
95th and 5th percentiles.
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to the other referenced  results18. It’s worth noting that AIS tends to under-approximate the partition function, 
leading to an over-estimate of the log-likelihood. This effect is exaggerated in larger models. Even with this 
negative impact, a mode-assisted DBM with a total of 138 nodes without pre-training achieves about the same 
performance as one with 1500 that was pre-trained.

Discussion
We conclude by providing an intuitive understanding of the dramatic performance improvement of the mode-
assisted training over Gibbs sampling (CD). The standard method of pretraining DBMs initializes weights at a 
greedy starting point but critically ignores correlations within the system. The end result is a dramatic loss of 
parameter efficiency compared to mode-assisted joint training of DBMs. Even training methods like centering, 
with more advanced sampling techniques like parallel  tempering25, fail to train the DBM near its capacity. The 
issue is the reliance on Gibbs-like sampling to explore the states of the DBM, and using only these statistics to 
compute the likelihood gradient. The breakdown occurs when Gibbs chains fail to explore adequately the states 
of the system.

Because of its random-walk nature, the local dynamics of Gibbs sampling suffers long auto-correlation times 
when equally likely states are separated by an extensive number of variables flips. As a consequence of long 
mixing times between such states, statistics become heavily biased. In the initial phase of DBM training, when 
weights are small and randomly distributed, these issues are minimized. Interactions between nodes in this ‘high 
temperature’ regime are weak, and are well approximated by a mean-field  theory26. In this phase, CD works well 
without much bias, and is the reason mode-assistance is really not necessary early on in the training.

However, as training continues, the DBM is effectively ‘cooled’ as weights learn from the data and grow 
larger in magnitude. Correlations between nodes become significant, and can no longer be ignored or averaged 
over: mean-field theory is inadequate to describe this phase. Gibbs sampling can then dramatically fail in these 
conditions, that is why mode-assistance is primarily applied in this phase. During mode updates, information 
is propagated from the ground state, the most ‘collective’ or ‘coordinated’ state of the DBM, to all the weights. 
This prevents probability mass density from accumulating far away from the current state of the chain, keeping 
Gibbs sampling in its effective regime.

Aside from mode-assistance, we have discovered that the topology of a DBM plays a major role in its perfor-
mance as well as its parameter efficiency. Too many hidden nodes act as a noise source during training, slowing 
down learning. Too few hidden nodes reduce the capacity of the network. For the network sizes considered, a 
‘sweet spot’ was found where these two effects are in balance. At this stage, it is not clear if this is particular to 
DBMs, or there are deeper reasons why this is the case, and further work in this direction would be interesting.

Finally, mode training relies on an efficient search for the mode of a DBM, which is an NP-hard computational 
problem on its own. On this front, we employ a novel dynamical systems based optimization technique called 
memcomputing, which has shown great promise in efficient optimization of non-convex energy landscapes like 
the  DBM20,27. Since the DBM energy landscape can be represented within the optimizing dynamics, a path exists 
to extend these systems to (learning) samplers. In doing so, the need for CD would be entirely eliminated. We 
leave these avenues of research to be explored in future work.
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Figure 4.  Average log-likelihood on the MNIST data set achieved after 100 epochs with mode-assisted 
training (MA) compared to the recent best achieved results on DBMs using CD as well as pre-training. DBMs 
trained with MA used PCD-1 for all non-modal samples, matching Ref.18. Network topology was fixed to 
α = 0.15 with an increasing number of hidden nodes, nh . The learning rate was chosen to follow a linear decay, 
ǫ = 0.05 → 0.0005 and no pre-training was employed. The best log-likelihood was reported out of 10 randomly 
initialized runs.
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Methods
DBMs are powerful models in machine learning, but bring with them considerable computational burdens dur-
ing evaluation. To deal with them, we follow the procedure outlined in Ref.14. First, due to additional complexity, 
the log-likelihood is not directly maximized as in the case of RBMs. Instead, a variational lower bound to the 
log-likelihood is optimized. Second, the most common variational form chosen leads to mean-field updates for 
the data term. Finally, for evaluation of log-likelihood lower bounds, an approximation of the partition function 
is necessary. We provide a short description of all these approximations which are frequently encountered in 
DBM training scenarios.

Likelihood Lower Bound—Since the data expectation in Eq. (4) is no longer in closed form for the DBM, data-
dependent statistics must be approximated with a sampling technique over the conditional distribution, p(h|v) , 
where h = {h(1), · · · , h(ℓ)} . In practice, a variational lower bound to the log-likelihood is maximized instead, 
which is tractable and is found to work well (as in the model term)14,28,29.

The variational approximation replaces the original posterior distribution, p(h|v) with an approximate dis-
tribution, r(h|v) , where the parameters of r follow the gradient of the resulting lower bound on the original 
log-likelihood28,

where Hr(v) = −
∑

h
r(h|v) log r(h|v) is the Shannon entropy of r. This variational loss simultaneously attempts 

to maximize the log-likelihood of the data set and minimize the KL divergence between the true conditional 
distribution, p and its approximation, r.

Data Term—A fully factorial mean field ansatz is often used in the variational approach, r(h|v) =
∏

i r(hi|v) 
with r(hi = 1|v) = µi , with µi ∈ [0, 1] randomly initialized from a uniform distribution. Maximizing the lower 
bound in Eq. (9) results in updates of the form,

Here J is a block matrix containing the weights of the hidden nodes and bi is the bias of the i-th hidden node. 
Convergence is typically fast, (in our experiments less than 30 iterations are enough) and these states are then 
used to calculate the data expectation in Eq. (4) during the Gibbs phase of the training.

Partition Function—Computing the partition function in Eq. (2) exactly is infeasible for large DBMs. Its value 
is only required to evaluate the performance of the networks and appears in the log-likelihood as a normaliz-
ing constant. Annealed Importance Sampling (AIS)30 is the procedure often used to approximate the partition 
function of large RBMs and DBMs. AIS estimates the ratio of partition functions, ZN/Z0 , using a sequence of 
probability distributions between a chosen initial distribution and the desired one. The initial distribution, p0 , 
is chosen to have an exactly known partition function and to be simple to sample from (e.g. uniform) and pN is 
the desired distribution whose partition function one wants to compute.

The sequence in the case of DBMs is parameterized by βk (inverse temperatures), giving pk(x) = e−βkE(x)/Zk . 
Markov chains are initialized uniformly according to p0 and 0 ≤ βk ≤ 1 is slowly annealed to unity according 
to a desired schedule, all the while allowing the chains to run. The ratio is then approximated by the product of 
ratios of the unnormalized intermediate distributions,

When dealing with bipartite graphs like DBMs, either all the even or all the odd layers can be analytically 
traced out, resulting in a tighter approximation. For a direct comparison with previous  work14,18, we average over 
an identical number of 100 AIS runs with 29,000 linearly spaced intermediate distributions.

Sampling the Mode—The optimization technique used to sample the mode of the data and model distributions 
of DBMs is based on the digital memcomputing (DMM)  approach31, a computing paradigm based on computing 
with and in memory. There are both hardware  designs32 as well as software  algorithms27,33 that have seen success 
on difficult optimization problems compared to standard approaches. The application to machine learning is 
based on Refs.19,20, which we briefly outline here.

Finding the mode of the DBM is equivalent to finding the ground state (or lowest energy state) of the DBM 
energy in Eq. (1). This can be written as the quadratic form, E = −x

TQx , where x is the vector collection of all 
visible and hidden variables, and the block matrix Q can be read from Eq. (1). This optimization problem can 
be mapped to a weighted maximum satisfiability problem, or MAX-SAT problem, which is a logical expression 
between clauses of Boolean variables with associated weights. A system of ordinary differential equations rep-
resenting a DMM is then constructed to find the configuration satisfying the largest weighted sum of satisfied 
clauses (which is also the ground state of the DBM). We have used the same differential equations reported in 
Ref.20. This system of equations is numerically integrated up to a fixed maximum number of time steps, and the 
state which achieved the lowest energy during the dynamics is read out. The modal update in Eq. (5) is then 
computed from this mode sample.

To account for the additional computational complexity introduced by mode sampling with DMMs, when a 
mode-sample is taken, the CD chain it is compared against is allowed to run for k = 720 iterations. This factor, 

(9)
log p(v) ≥

∑

h

r(h|v) log p(v, h)+Hr(v)

= log p(v)− KL(r(h|v)||p(h|v)),

(10)µi ← σ
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derived in Ref.20, allows for a more fair comparison between the mode-assisted and its corresponding unassisted 
algorithm.

Data availibility
The MNIST data set used in this paper is publicly available (http:// yann. lecun. com/ exdb/ mnist/ index. html). All 
other data that support the plots within this paper are available from the corresponding author (H.M.) upon 
request.
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