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The importance of the urinary 
output criterion for the detection 
and prognostic meaning of AKI
Jill Vanmassenhove1,6, Johan Steen1,2,3,5,6, Stijn Vansteelandt2,3,4, Pawel Morzywolek2,3, 
Eric Hoste5, Johan Decruyenaere3,5, Dominique Benoit5 & Wim Van Biesen1,3*

Most reports on AKI claim to use KDIGO guidelines but fail to include the urinary output (UO) 
criterion in their definition of AKI. We postulated that ignoring UO alters the incidence of AKI, 
may delay diagnosis of AKI, and leads to underestimation of the association between AKI and ICU 
mortality. Using routinely collected data of adult patients admitted to an intensive care unit (ICU), 
we retrospectively classified patients according to whether and when they would be diagnosed 
with KDIGO AKI stage ≥ 2 based on baseline serum creatinine (Screa) and/or urinary output (UO) 
criterion. As outcomes, we assessed incidence of AKI and association with ICU mortality. In 13,403 
ICU admissions (62.2% male, 60.8 ± 16.8 years, SOFA 7.0 ± 4.1), incidence of KDIGO AKI stage ≥ 2 was 
13.2% when based only the SCrea criterion, 34.3% when based only the UO criterion, and 38.7% 
when based on both criteria. By ignoring the UO criterion, 66% of AKI cases were missed and 13% 
had a delayed diagnosis. The cause-specific hazard ratios of ICU mortality associated with KDIGO AKI 
stage ≥ 2 diagnosis based on only the SCrea criterion, only the UO criterion and based on both criteria 
were 2.11 (95% CI 1.85–2.42), 3.21 (2.79–3.69) and 2.85 (95% CI 2.43–3.34), respectively. Ignoring 
UO in the diagnosis of KDIGO AKI stage ≥ 2 decreases sensitivity, may lead to delayed diagnosis and 
results in underestimation of KDIGO AKI stage ≥ 2 associated mortality.

Abbreviations
AKI  Acute kidney injury
CKD  Chronic kidney disease
EHR  Electronic health records
ICIS  Intensive care information system
ICU  Intensive care unit
KDIGO  Kidney disease improving global outcomes
MDRD  Modification of diet in renal disease
SCrea  Serum creatinine
SOFA  Sequential organ failure assessment
UO  Urinary output

Acute Kidney Injury (AKI) is an important clinical condition with substantial impact on morbidity and mortal-
ity. The lack of a common universally accepted definition for AKI has for a long time hampered research and 
 progress1. As a synthesis of different  initiatives2–6, the KDIGO criteria became the standard for defining AKI. 
However, most reports, studies and automated detection and risk prediction tools still use a truncated version of 
the KDIGO definition based only on a serum creatinine (SCrea) criterion and neglect the urinary output (UO) 
criterion to define their ground truth definition for  AKI7–13. In addition, just as is the case for the selection of a 
baseline creatinine measure, UO criteria can be implemented in different  ways14. As a result, despite the unified 
definition as proposed by KDIGO, substantial cross-study and cross-model differences remain in what exactly 
is reported or predicted as  AKI7,8,15–18.
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So far, the problem of variable meanings of the AKI label was deemed to be only relevant for  epidemiology19. 
It could however also have an important impact for the correct interpretation and transportability of clinical trial 
results. In addition, with the advent of electronic health records within the last decade, algorithms to automati-
cally diagnose and predict AKI will be implemented in the everyday care of individual  patients20,21. Such auto-
mated detection algorithms or risk prediction models could be used in early recognition and timely management 
of  AKI22,23 and are considered a highly promising breakthrough for  medicine24,25. These algorithms and models, 
however, are trained on databases which may contain different ‘ground truth’ labels of AKI, all loosely defined 
within the confines of the KDIGO guidelines, but mostly neglecting the UO criterion. This is problematic for 
interpretation and external validation because the gold standard against which their performance is assessed 
may be either different or simply missing in external databases, potentially leading to unsensible or misleading 
performance assessments.

Within the confines of the KDIGO definition, it can be hypothesized that omitting the UO criterion in the 
applied definition of AKI substantially downplays the importance of the AKI label if 1/neglecting UO in the 
ground truth substantially alters the incidence of AKI and leads to missed cases; 2/ neglecting the UO criterion 
often delays AKI diagnosis; 3/ the UO criterion has an independent association with ICU mortality and may 
therefore have added prognostic value compared to single use of the SCrea criterion. Several studies have pro-
vided evidence that is mostly in line with this  hypothesis15,26,27. However, none of these studies has adequately 
accounted for the time dynamics of AKI diagnosis or documented the number of potentially missed cases or 
delayed diagnoses induced by ignoring the UO criterion as they evolve over time. Failure to account for the 
timing of diagnosis may moreover have introduced immortal time bias in assessing the association with adverse 
outcomes, which may have led to underestimation of these  associations28. In this paper, we address these short-
comings with the aim to add to and strengthen the evidence base of the aforementioned hypotheses.

Methods
All 52 beds of the Gent University Hospital (tertiary care) adult intensive care units (ICU) dispose of a commer-
cially available Intensive Care Information System (ICIS) (Centricity Critical Care, GE Healthcare, Germany) 
to collect granular longitudinal patient data in real time. All data from monitors, ventilators, pumps, radiology 
results and laboratory results and administered medication are automatically uploaded in the system. In addition, 
a wide variety of pre-defined items are routinely entered manually by medical staff.

For all patients (aged 16 or older) admitted to our ICU from January 2013 to December 2017, we have 
included their first ICU episode during this study period for analysis. Raw data relevant for our study were 
extracted in a pseudonymized way from the ICIS database. Daily serum creatinine (SCrea) and all urinary out-
put (UO) measurements during ICU stay were extracted from the ICIS, along with their corresponding sample 
times. For SCrea, this information originates from the lab information system directly linked to the ICIS. The 
study data set was complemented with all available SCrea values available to the lab information system up to 
365 days before ICU admission. UO was periodically measured and entered into the ICIS by nursing staff who 
recorded the reading, mostly from a drainage container of a urinary catheter or from spontaneous urination in 
a scaled recipient. In addition, for each included patient, time from ICU admission to discharge, vital status at 
ICU discharge, gender, age, weight, comorbidities and Sequential Organ Failure Assessment (SOFA) score on 
the day of ICU admission were extracted.

Ethical approval was obtained from the Ethical Committee of Ghent University Hospital (EC nr 201-0705) and 
informed consent was obtained according to applicable regulations. All methods were performed in accordance 
with the relevant guidelines and regulations and the declaration of Helsinki.

The KDIGO criteria for AKI stage ≥ 2 diagnosis hinge on two different parameters: 1/ absolute or relative 
increase in SCrea as compared to a baseline measurement (Screa criterion) and 2/ oliguria during a 12-h period 
(UO criterion). As primary endpoints we considered (cumulative) incidence of AKI stage ≥ 2 diagnosis during 
ICU stay as defined by the KDIGO  guidelines29, based on either criterion, or both, and the association between 
diagnosis by each of these criteria and ICU mortality, as a crude reflection of their prognostic value.

We intended to mimic a system in which automated computer code incorporated in an intensive care infor-
mation system is applied to detect or alert for AKI in real-time. For each patient, we assessed whether and when 
any Screa measurement was found during their ICU stay that either exceeded 4.0 mg/dl or indicated a > twofold 
increase relative to one of the following baseline Screa measurements, selected in the order listed below, accord-
ing to availability:

• Screa-1 A baseline Screa measurement as manually entered in the ICIS by the treating physician at ICU 
admission. Physicians have to enter a (documented) Screa measurement before the current hospitalization 
and no older than 365 days or, if not available, the lowest measurement of the current hospitalization.

• Screa-2 The lowest available pre-ICU measurement up to 365 days before ICU admission as extracted from 
the lab information system. This could be a value from before or during the index hospitalisation but before 
admission to ICU.

• Screa-3 A back-calculated baseline Screa using the simplified 4-variable Modification of Diet in Renal Disease 
(MDRD) Study equation assuming an estimated glomerular filtration rate (eGFR) of 75 ml/min/1.73  m2 for 
every  patient30.

In the interest of space, we only provide results for automated AKI diagnosis based on implementation of 
the Screa criterion relative to a baseline selected by this stepwise approach (henceforth labelled Screa). Readers 
are referred to the supplemental material for results relative to each of these listed and two additional baseline 
measurements separately.
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To identify patients with AKI stage ≥ 2 based on the UO criterion, UO measurements were first converted to 
ml/kg/h. Patients’ weight was entered into the ICIS by nursing staff based on recent weight registrations when 
available in the hospital information system, self-report from the patient, from relatives, or an estimated clinical 
guess. In line with the KDIGO guidelines, we assessed for each patient whether and when any UO registration 
was found during their ICU stay at which

• UO-1 total UO during the last 12-h period was ≤ 6 ml/kg
• UO-2 total UO during each of the last 12 consecutive 1-h periods was ≤ 0.5 ml/kg

UO was calculated in X-hour time windows according to the rules described in Supplementary Material S1 
(section “Data preprocessing”).

In addition, to assess the relative impact of ignoring either of these criteria, two composite definitions of AKI 
stage ≥ 2 were postulated:

• Screa-UO-1 which indicates whether a patient is diagnosed based on either the Screa criterion or the UO-1 
criterion (as defined above)

• Screa-UO-2 which indicates whether a patient is diagnosed based on either the Screa criterion or the UO-2 
criterion (as defined above).

Cumulative incidence curves were obtained to assess the dynamics of how the number of incident AKI 
stage ≥ 2 cases, as diagnosed by each of the aforementioned criteria, accumulates over time. Comparison of these 
curves enables to retrospectively assess, at each time point, the percentage of cases that were either missed or 
diagnosed with delay by ignoring either the SCrea criterion or the UO criteria. Additional details on calcula-
tion of number of cases missed or diagnosed with delay can be found in Supplementary Material S1 (section 
“Cumulative incidence curves”).

The associations between diagnosis by each of the aforementioned criteria and ICU mortality, as captured by 
cause-specific hazard ratios comparing patient time at risk of ICU mortality with versus without diagnosis, were 
estimated using a series of extended Cox proportional hazards models for time from admission to ICU death. 
By including AKI stage ≥ 2 diagnosis as a time-varying rather than a time-fixed covariate (coded 1 from the time 
of AKI diagnosis and 0 otherwise) in the Cox models, the time of diagnosis can be accounted for and immortal 
time bias can be  eliminated31. In these Cox models, ICU discharge was treated as a censoring event, such that 
the exponentiated coefficient estimates could be interpreted as cause-specific hazard ratios. Unadjusted hazard 
ratios were estimated using Cox models which included a single time-varying indicator for whether a specific 
criterion had been reached. In addition, to assess the independent contribution of the SCrea and UO criteria, 
adjusted Cox models were fitted including separate time-varying indicators for each of these criteria. Finally, 
to assess the conditional association between diagnosis by each of the criteria and ICU mortality, accounting 
for other prognostic risk factors, a series of Cox models were fitted adjusted for gender, age and SOFA score on 
admission. The concordance index was reported for each fitted Cox model to enable a crude comparison in terms 
of (added) prognostic value of each of the (combined)  criteria32. Additional details on statistical methods can be 
found in Supplementary Material S1. All analyses were conducted in R (version 3.6.0).

Our reporting of this study followed the STrengthening the Reporting of OBservational studies in Epidemiol-
ogy (STROBE) reporting guidelines (supplementary material).

Ethics approval and consent to participate. The Ghent University Hospital Ethics Committee 
approved the study (EC nr 201-0705) and waived informed consent since all analyses were performed retrospec-
tively on pseudonymized records.

Consent for publication. Not applicable.

Results
We included 13,403 admissions, with demographic and baseline characteristics presented in Table 1. Of note, 
84% of the cohort had an indwelling bladder catheter.

Depending on the applied criterion (or combination of criteria), incidence of AKI stage ≥ 2 diagnosis varied 
between 13.2 and 38.7% (Table 2). In Supplementary Table 2, we also list incidences based on the SCrea criterion 
depending on different choices of baseline SCrea measures, which ranged from 9.5% to 16.5%. Regardless of 
the applied criterion, patients with AKI vs no AKI were, on average, older, more likely to be male and to have 
diabetes or chronic kidney disease, and had a higher average SOFA score and weight at admission (Table 2). Of 
note, patients who were labelled as AKI based on the Screa criterium were more likely to have underlying CKD 
(40%) vs those labelled as AKI based on UO (20.3–27.0%).

Figure 1 presents the distribution of AKI diagnoses according to the different criteria and their overlap. A 
minority of diagnoses (11%) is made only based on the SCrea criterion, while the majority of diagnoses (66%) 
is made only based on the UO criterion. This is also reflected by the red shaded areas in Fig. 2A, which represent 
the fraction of cases that would be missed over time by ignoring either the UO criterion (left panel) or the SCrea 
criterion (right panel). The black curves in Fig. 2A depict the cumulative incidence of AKI diagnosis based on 
the Screa (left panel) and the UO criterion (right panel) as a function of time since ICU admission (hours). As, 
by definition, patients cannot reach the UO criterion for AKI stage ≥ 2 before 12 h, initially diagnosis of AKI is 
made only based on the Screa criterion. The purple shaded areas in Fig. 2A represent the fraction of cases over 
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time that are diagnosed with delay by ignoring either the UO criterion (left panel: about 12% of cases) or the 
SCrea criterion (right panel: about 11% of cases). Figure 2B displays the AKI incidence for patients not diagnosed 
with AKI within the first 12 h after ICU admission, which illustrates that later diagnosis (after 12 h) is almost 
exclusively made based on the UO criterion.

Table 3 displays ICU mortality incidence rates per 1,000 patient days at risk at the ICU with or without AKI 
diagnosis based on the different criteria (or combinations) and corresponding cause-specific hazard ratios (both 
unadjusted and adjusted for gender, age, and SOFA score at admission). Considering the UO criterion resulted in 
relatively higher relative hazards, as well as higher overall discriminative ability (as expressed by the concordance 
index), as compared to only considering the SCrea criterion. This pattern was found irrespective of whether the 
UO criterion was (1) strictly interpreted (UO-2) or more broadly (UO-1), (2) considered in combination with 
SCrea or not, or (3) adjusted for other risk factors or not.

Discussion
We observed in this study that incidence of AKI stage ≥ 2 diagnosis was higher and the association with ICU 
mortality stronger when the UO criterion is incorporated in the definition of AKI as compared to when it is not 
incorporated. We demonstrate the additive and independent predictive value of the UO to the Screa criterion 
with respect to ICU mortality. Accordingly, neglecting the UO criterion will result in underdiagnosis of AKI, 
may delay diagnosis of AKI and will underestimate the true relative hazard of ICU mortality associated with 
the label AKI.

To the best of our knowledge, this study is the first to take into account the time dynamics of AKI diagnosis 
by either algorithmic application of the SCrea criterion, the UO criterion, or both. Our approach of comparing 
cumulative incidence curves enabled to shed light on these dynamics and, in particular, to map, at each point 
in time, the number of potentially missed cases or delayed diagnoses by ignoring either the SCrea or the UO 
criterion. In particular, due to the time-dependent nature of the UO criterion, AKI presenting before or shortly 
after ICU admission can only be diagnosed using the SCrea criterion during the first 12 h. After 12 h, we observe 

Table 1.  Baseline demographic and clinical data.

Age (mean ± SD) 60.8 ± 16.8

Gender (% male) 62.2

Admission SOFA score (mean ± SD) 7.01 ± 4.1

Weight, kg (mean ± SD) 76.0 ± 16.7

Median ICU length of stay (hours) (Q1, Q3) 44 (23, 93)

Baseline SCrea (mean ± SD) 1.28 ± 2.7

Urinary catheter (%) 84.2

Chronic kidney disease (%) 16.3

Diabetes (%) 16.2

Table 2.  Incidence and demographic data according to different interpretations of the criteria for KDIGO AKI 
stage ≥ 2. SCrea: serum creatinine > 4.0 mg/dl or > 2 × baseline, where baseline = SCrea-1 whenever available, 
otherwise SCrea-2, or SCrea-3 (when neither SCrea-1 nor SCrea-2 are available) with Screa-1 defined as 
baseline Screa measurement as manually entered in ICIS by the treating physician at ICU admission; Screa-2 
defined as the lowest pre-ICU measurement up to 365 days before ICU admission as extracted from the 
lab information system; Screa-3 defined as a back-calculated baseline Screa using the simplified 4-variable 
Modification of Diet in Renal Disease (MDRD) Study equation assuming an estimated glomerular filtration 
rate (eGFR) of 75 ml/min/1.73  m2 for every  patient30; UO-1: total UO during the last 12-h period was ≤ 6 ml/
kg; UO-2: total UO during each of the last 12 consecutive 1-h periods was ≤ 0.5 ml/kg; SCrea-UO-1: AKI 
stage ≥ 2 according to either the SCrea criterion or the UO-1 criterion; SCrea-UO-2: AKI stage ≥ 2 according to 
either the SCrea criterion or the UO-2 criterion.

Criterion

Incidence 
of AKI 
(%)

Age (mean ± SD)
Admission SOFA 
score (mean ± SD) Weight, kg (mean ± SD)

Baseline SCrea value, 
mg/dl (mean ± SD)

Urinary 
catheter 
(%)

Gender (% 
male)

Chronic 
kidney 
disease (%)

Diabetes 
(%)

AKI No AKI AKI No AKI AKI No AKI AKI No AKI AKI
No 
AKI AKI

No 
AKI AKI

No 
AKI AKI

No 
AKI

SCrea 13.2 62.3 ± 15.1 60.6 ± 17.0 9.2 ± 4.5 6.7 ± 4.0 79.0 ± 17.6 75.6 ± 16.5 2.73 ± 3.12 1.05 ± 2.59 66.0 61.6 43.9 12.0 22.0 15.4

UO-1 34.3 64.1 ± 15.4 59.1 ± 17.2 8.6 ± 4.3 6.2 ± 3.8 81.4 ± 17.8 73.2 ± 15.3 86.2 81.4 66.6 59.9 20.3 14.1 20.1 14.2

UO-2 14.2 63.6 ± 15.6 60.3 ± 16.9 9.0 ± 4.6 6.7 ± 4.0 82.7 ± 19.3 74.9 ± 15.9 83.4 83.8 65.1 61.8 27.5 14.4 20.7 15.5

SCrea-
UO-1 38.7 63.3 ± 15.6 59.2 ± 17.3 8.4 ± 4.3 6.2 ± 3.8 80.7 ± 17.7 73.1 ± 15.2 66.4 59.6 25.3 10.6 19.9 13.9

SCrea-
UO-2 20.9 62.4 ± 15.7 60.4 ± 17.0 8.6 ± 4.5 6.6 ± 3.9 80.7 ± 18.6 74.8 ± 15.9 65.2 61.4 35.1 11.3 20.3 15.2
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a sudden steep increase in number of incident AKI diagnoses based almost exclusively on the UO criterion. Most 
of these new diagnoses based on the UO criterion would be missed by the SCrea criterion, whereas a small num-
ber would still be diagnosed by the SCrea criterion but only later on (Fig. 2B). This emphasizes the importance 
of the UO criterion for AKI detection after 12 h of admission, and by consequence, for the potential of (early) 
intervention. In sum, our results demonstrate that ignoring the UO criterion leads to a high number of missed 
casesand more delayed diagnoses in patients who did not yet have AKI at admission.

Comparisons of estimated associations between diagnosis by each of the criteria (or their combination) 
and ICU mortality demonstrate that AKI stage ≥ 2 diagnosis based on both the SCrea and UO criteria is more 
strongly associated with ICU mortality and has higher prognostic discriminative ability than diagnosis based 
on the SCrea criterion alone. This holds even after adjustment for other prognostic factors such as gender, age, 
and disease severity at ICU admission. These findings add emphasis on the importance of UO based on earlier 
reports on the association of UO alone with  mortality14,33.

We used two different interpretations of the KDIGO urinary output criterion in our dataset: one more strict 
(oliguria as determined in each of 12 consecutive 1 h blocks) than the other (oliguria as determined in a moving 
total 12 h time window). Both options have previously been associated with  mortality14. None of the patients 
who fulfilled the more strict criteria failed the broad criterion.

The different scenarios for baseline SCrea retrieval in our algorithms resulted in wide variation in AKI inci-
dence (see Supplementary Table 1), confirming earlier  findings17. Back-calculated values assuming a fixed eGFR, 
e.g. 75 ml/min/1,73m2, are often  used7,34–36, but this approach leads to overestimation of AKI incidence, especially 
in the elderly and those with pre-existing  CKD37–41. As we linked our ICU data system with the lab data system, 
we were able to retrieve SCrea values before index ICU hospitalization, a more valid baseline, in more than 80% 
of ICU admissions, which is much higher than reported in most other studies. However, patients suffering from 
chronic comorbidities and intermittent acute illnesses are more likely to have historical values available than 
healthy individuals. This is of importance as AKI algorithms will be most useful in cases where AKI is missed 
because the treating physician did not consider the diagnosis of AKI. A prediction tool that relies on whether a 
physician ordered Screa, and had thus a suspicion for AKI, will perform poorly for this  purpose42. In addition, 
availability of measures may depend on local standards of care, which may contribute to poor external validity of 
the AKI  algorithm43. The poor external validity of AKI detection algorithms has recently also been demonstrated 
in other series, where AKI was however only based on Screa change according to a  baseline8.

Our findings have important implications for the interpretation of randomized as well as observational 
clinical studies or automated alert or prediction systems that use a definition of AKI that ignores UO. The use 
of such a truncated definition stands in sharp contrast with clinical reality, where many clinicians will diagnose 
AKI based on both Screa and UO. Our findings indicate that these missed cases based on omitting UO are 
clinically significant, which might be important in randomised controlled trials as opportunities for interven-
tion might be missed. The last decade has witnessed an increased interest in automated alerting and decision 

Figure 1.  Euler diagram illustrating the distribution and overlap between AKI diagnosis according to different 
AKI criteria. Numbers indicate the number of patients in that overlap zone, so who would be diagnosed by 
different criteria. SCrea: serum creatinine > 4.0 mg/dl or > 2 × baseline, where baseline = SCrea-1 whenever 
available, otherwise SCrea-2, or SCrea-3 (when neither SCrea-1 nor SCrea-2 are available) with Screa-1 
defined as baseline Screa measurement as manually entered in ICIS by the treating physician at ICU admission; 
Screa-2 defined as the lowest pre-ICU measurement up to 365 days before ICU admission as extracted from 
the lab information system; Screa-3 defined as a back-calculated baseline Screa using the simplified 4-variable 
Modification of Diet in Renal Disease (MDRD) Study equation assuming an estimated glomerular filtration 
rate (eGFR) of 75 ml/min/1.73  m2 for every  patient30; UO-1: total UO during the last 12-h period was ≤ 6 ml/kg; 
UO-2: total UO during each of the last 12 consecutive 1-h periods was ≤ 0.5 ml/kg.
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support, sparked by the hope that such systems may lead to earlier diagnosis and better tailored management 
of patients with AKI. Different algorithms for prediction and/or automated alerting for AKI are already being 
 developed44. Given that systematic reviews have highlighted the lack of uniformity and transparency in how AKI 
is defined within these  models7,9,11–13,45,46, most of which ignore UO, it is important for clinicians to be aware of 
the implications of the use of such a truncated definition of  AKI26,27,33,47,48. Current automated decision support 
systems for AKI may mislead clinicians, as they can no longer be confident on the meaning and implications 
of the diagnostic label. Our findings indicate that such automated systems should incorporate or be trained on 
databases that include the UO criterion in their AKI label, and that, accordingly, measurement and registration 
of UO in electronic health records could be an efficient way to earlier detect patients with or at risk of AKI, and 
to potentially improve outcomes. Devices that automatically monitor UO might be a worthwhile asset to improve 
the dismal outcome of AKI in ICU.

Our study is based on highly granular routinely collected data from a large patient cohort, extracted from 
an operational ICIS database of a large tertiary care ICU. Because this is a single center study however, it is still 
unclear whether current findings can be extrapolated or generalized to other settings.

Panel A: 

Panel B: 

Figure 2.  Cumulative incidence of automated AKI diagnosis over time. (A) Cumulative incidence of automated 
AKI diagnosis since ICU admission, based only on KDIGO Screa criterion (left) or only on KDIGO UO 
criterion (right) (black curves). Shaded areas represent cases that were, by each time point, either missed (red) 
or diagnosed with delay (purple) by ignoring the other criterion. (Dark shades in the left panel indicate missed 
or delayed cases compared to the UO-2 criterion, while the combination of light and dark shades in the left 
panel indicate missed or delayed cases compared to the UO-1 criterion). (B) Cumulative incidence of automated 
AKI diagnosis in patients still hospitalized and without AKI diagnosis by the 12th hour since ICU admission, 
based only on KDIGO Screa criterion (left) or only on KDIGO UO criterion (right) (black curves). Shaded areas 
represent cases that were, by each time point, either missed (red) or diagnosed with delay (purple) by ignoring 
the other criterion.
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From a theoretical perspective, UO could be misleading in patients with either bladder retention or urinary 
incontinence. However, in our cohort, nearly all patients (84%) had an indwelling bladder catheter, and there 
was no difference between those with vs without AKI. In anuric patients, a bladderscan is routinely performed 
to asses eventual retention. Also, it is standard practice in our unit to provide for hygienic reasons to provide an 
indwelling bladder catheter in patients with urinary incontinence.

A further strength of our analysis is that by accounting for the timing of AKI diagnosis, our analytic approach 
eliminated immortal time bias. This type of bias may have invalidated the results of other studies that assessed 
the association between different AKI criteria and adverse  outcomes15.

For simplicity and ease of exposition, we have limited the presentation of our results to a single operational 
definition of the SCrea criterion that uses a specific order of potential choices of serum creatinine baseline based 
on their availability, as intended by the spirit of KDIGO-AKI definition. In Supplementary Tables 1 and 2 and 
Supplementary Fig. 1, we present results using a range of different choices of baseline. Many other alternative 
choices could however potentially have been investigated, such as the median of all pre-ICU creatinine values, 
or most recent Screa before hospital admission. We can thus not exclude that these other choices would lead to 
different results, although, given the wide range of considered baselines, this may be considered unlikely.

RRT initiation was not incorporated either in the SCrea criterion, nor included as endpoint because this was 
considered a rather subjectivecriterion and its incorporation would, moreover, have conflated the condition with 
its treatment. Moreover, based on daily practice in our unit, RRT would be started without AKI only in a few 
exceptional cases, such as lactic acidosis or intoxications irrespective of kidney function.

In conclusion, ignoring UO in the diagnosis of KDIGO AKI stage ≥ 2 decreases sensitivity, may lead to delayed 
diagnosis and results in underestimation of KDIGO AKI stage ≥ 2 associated mortality.

Data availability
The datasets generated and/or analysed during the current study are not publicly available due to potential privacy 
concerns but are available from the corresponding author (in pseudonymized format) on reasonable request.

Table 3.  Incidence rates and hazard ratios of ICU mortality for AKI stage ≥ 2 vs no AKI stage ≥ 2 across 
different criteria. 1 Incidence rate ratios only approximate (cause-specific) hazard ratios when the survival 
distributions in each group both follow an exponential distribution. 2 Estimated by an extended Cox model 
that treats ICU discharge as a censoring event. 3 Concordance indices are displayed for the corresponding 
Cox model whose exponentiated coefficient estimates are displayed in the column on the left hand side. 
4 Estimated by an extended Cox model that treats ICU discharge as a censoring event that additionally 
incorporates gender, age (binned into 4 categories according to quartiles) and SOFA score at ICU admission 
(binned into 4 categories according to quartiles). As a reference: the concordance index for a Cox model 
including only gender, age and SOFA score at ICU admission (excl. AKI criteria) equalled 0.640. SCrea: serum 
creatinine > 4.0 mg/dl or > 2 × baseline, where baseline = SCrea-1 whenever available, otherwise SCrea-2, or 
SCrea-3 (when neither SCrea-1 nor SCrea-2 are available) with Screa-1 defined as baseline Screa measurement 
as manually entered in ICIS by the treating physician at ICU admission; Screa-2 defined as the lowest pre-ICU 
measurement up to 365 days before ICU admission as extracted from the lab information system; Screa-3 
defined as a back-calculated baseline Screa using the simplified 4-variable Modification of Diet in Renal 
Disease (MDRD) Study equation assuming an estimated glomerular filtration rate (eGFR) of 75 ml/min/1.73 
 m2 for every  patient30; UO-1: total UO during the last 12-h period was ≤ 6 ml/kg; UO-2: total UO during each 
of the last 12 consecutive 1-h periods was ≤ 0.5 ml/kg; SCrea-UO-1: AKI stage ≥ 2 according to either the SCrea 
criterion or the UO-1 criterion; SCrea-UO-2: AKI stage ≥ 2 according to either the SCrea criterion or the UO-2 
criterion. An extended version of th table is included as Supplementary Table 2.

KDIGO stage ≥ 2 
criterion

Incidence rate of ICU mortality (estimated 
number of ICU deaths per 1,000 patient days at 
risk)1 Unadjusted cause-

specific hazard ratio of 
ICU  mortality2 (95% 
CI) Concordance  index3

Adjusted cause-specific 
hazard ratio of ICU 
 mortality4 (95% CI) Concordance  index3Patient days with AKI

Patient days without 
AKI

Cox proportional hazards models including a single criterion as predictor

SCrea 31.3 16.1 2.11 (1.85–2.42) 0.568 1.81 (1.56–2.09) 0.663

UO-1 27.2 12.6 3.00 (2.55–3.54) 0.593 2.59 (2.18–3.09) 0.680

UO-2 36.6 14.1 3.21 (2.79–3.69) 0.597 2.83 (2.44–3.28) 0.688

SCrea-UO-1 26.5 12.1 2.85 (2.43–3.34) 0.604 2.54 (2.14–3.02) 0.683

SCrea-UO-2 32.8 13.2 2.93 (2.57–3.35) 0.615 2.62 (2.27–3.04) 0.695

Cox proportional hazards model including both SCrea and UO-1 as predictors

SCrea 1.67 (1.46–1.92) 0.624 1.48 (1.27–1.71) 0.693

UO-1 2.63 (2.22–3.11) 2.35 (1.97–2.82)

Cox proportional hazards model including both SCrea and UO-2 as predictors

SCrea 1.35 (1.16–1.57) 0.624 1.18 (1.01–1.39) 0.694

UO-2 2.82 (2.41–3.29) 2.63 (2.23–3.10)
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