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The switching mechanisms of social 
network densification
Teruyoshi Kobayashi1,2* & Mathieu Génois3,4*

Densification and sparsification of social networks are attributed to two fundamental mechanisms: a 
change in the population in the system, and/or a change in the chances that people in the system are 
connected. In theory, each of these mechanisms generates a distinctive type of densification scaling, 
but in reality both types are generally mixed. Here, we develop a Bayesian statistical method to 
identify the extent to which each of these mechanisms is at play at a given point in time, taking the 
mixed densification scaling as input. We apply the method to networks of face-to-face interactions 
of individuals and reveal that the main mechanism that causes densification and sparsification 
occasionally switches, the frequency of which depending on the social context. The proposed method 
uncovers an inherent regime-switching property of network dynamics, which will provide a new 
insight into the mechanics behind evolving social interactions.

Network representation of complex interactions among elements is an overarching framework heavily used in 
many fields of  science1–3. For social systems, the dynamics of interactions between individuals (whether elec-
tronic, online or face-to-face) can be represented as time-varying networks, often called temporal networks, in 
which nodes come and go and edges are activated or deactivated as time goes  on4,5. Many essential features of 
human behaviour encoded in the representation of temporal networks have been revealed over the past decade, 
such as  burstiness6–8, circadian/diurnal  rhythms9, temporal  communities10, higher-order  interactions11,12, etc.

While the studies of temporal networks shed light on the time-varying nature of interactions between nodes, 
dynamics in social systems emerge not only at the local  level13, but also at the global level. In a wide variety of 
social contexts, network size (i.e., the number of active nodes) and the number of edges observed at a given 
point in time are very often not constant, and accordingly the average degree increases or  decreases14,15. In fact, 
the numbers of aggregate nodes and edges have been shown to have a scaling relationship known as the densi-
fication power law or densification  scaling14. In temporal networks (i.e., a sequence of snapshot networks), any 
variation in the number of active nodes N and the number of edges M can be a priori attributed to changes in 
(i) the population in the system (e.g., the number of students present in a school, the number of attendees in a 
conference, etc); (ii) the probability of two nodes being connected; or (iii) both. With a constant probability of 
edge creation, N and M will increase if more nodes enter the system, since each node will have a higher chance 
of finding partners. Likewise, for a given population, if the probability of two nodes being connected increases, 
M will surely increase, and N will rise as well as isolated nodes, if they exist, will be more likely to get connected.

These two mechanisms are fundamental factors that bring about the dynamics of N and M, yet separating 
their contributions based on the dynamical behaviour of N and M is a challenging problem. In a wide variety of 
social and economic systems, network dynamics are likely to be driven by a mixture of these two mechanisms, 
and moreover their relative importance may occasionally change as the network  evolves15. In theory, each of 
these two mechanisms leads to a distinctive type of densification scaling; The first one, generated by the evolu-
tion of population, is a scaling behaviour similar to the typical densification scaling in which the number of 
edges M scales with the number of active nodes N with a constant exponent α , i.e., M ∝ Nα14. The second one 
is an accelerating growth of M, which is caused by the evolution of the probability of edge  creation15. In fact, for 
the human contact networks we study, neither of these two types of scaling is observed in their original form. 
Rather, we observe a “mixed” scaling behaviour which appears to be a composite of the two types and therefore 
cannot be explained by a single scaling law.

Here, we develop a Bayesian statistical method to identify the source of dynamics generating network den-
sification and sparsification based on the sequence of N and M. To take into account possible changes in the 
source of dynamics, we derive two specifications (i.e., “regimes”) for the solution of a simple generative model, 
namely a dynamic hidden variable model, each of which capturing one of the two fundamental mechanisms. By 
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fitting the two specifications simultaneously to the observed mixed scaling relationship using a unified estimation 
framework, known as the Markov regime-switching  model16,17, we are able to estimate the probability that the 
dynamical source of densification or sparsification at a given point in time is attributed to a particular mechanism. 
At the same time, the Bayesian inference also allows us to trace the paths of the time-varying parameters directly 
related to the dynamical source, i.e., the population in the system and the activity level of nodes. An important 
advantage of the regime-switching model is that it allows the “true” model specification to occasionally switch, 
possibly depending on the social context.

In this work we analyse networks of face-to-face human interactions collected by the SocioPatterns 
 collaboration18. We focus on four datasets: contact networks in two scientific conferences, a hospital and a 
workplace. Such networks can indeed be affected by the two fundamental mechanisms at the same time, because 
(i) individuals can always enter and exit the system, and (ii) presence of a time schedule could facilitate or inhibit 
face-to-face interactions (e.g., attendees of a conference are more likely to have interactions during coffee breaks 
than during keynote talks). In particular, using data on academic conferences has an important advantage, as it 
allows us to compare the dynamical regimes detected by the proposed method with the “ground-truth” confer-
ence time schedules. We find indeed that during keynote talks, parallel sessions and coffee breaks, the temporal 
densification and sparsification in the contact networks formed by conference attendees are mainly related to 
shifts in the chance of contacts being made between attendees present at the venue. On the other hand, shifts 
in the population are the main driving force of densification and sparsification during registration and poster 
sessions. This result is consistent with our intuition that the number of attendees in the middle of the program 
would be mostly constant, while it may be more likely to change during registration, which is held in the morn-
ing, and poster sessions in which not all of the attendees participate. For contact networks in a hospital and a 
workplace, this kind of comparison with a prespecified time schedule is not possible because there is no such 
rigorous time constraints to follow. Nevertheless, in all the systems we examined, the proposed method reveals 
that the main driving force of network densification and sparsification is occasionally switching, suggesting that 
the formation of social ties in physical space generally involves multiple dynamical sources.

Results
Empirical evidence on mixed densification scaling. We focus our analysis on temporal contact net-
works taken from the following four datasets:

• WS-16: Contacts between participants of the Computational Social Science Winter Symposium 2016 at 
GESIS in Cologne on November 30,  201619.

• IC2S2-17: Contacts between participants of the International Conference on Computational Social Science 
2017 at GESIS in Cologne on July 12,  201719.

• Hospital: Contacts among patients, nurses, doctors and staffs in a Hospital in Lyon on December 8,  201020.
• Workplace: Contacts between workers in a office building in France on June 27,  201521.

These data consist of contacts between individuals collected every 20 seconds using RFID  sensors18,22. A “con-
tact” is here defined as a physical, face-to-face proximity event. The datasets thus give us temporal networks in 
which nodes are individuals and edges encode the contacts occurring between them. All datasets exhibit large 
and abrupt fluctuations of the number of edges that are typical in these non-stationary systems (see Fig. 1, lower 
panels). In these particular contexts of social interactions, these transitions between high an low activity periods 
are often related to specified schedules: from talk sessions to coffee breaks in the conferences, changes in shifts 
in the hospital, from desk work to meetings in the workplace.

In many social and economic dynamical networks, the numbers of aggregate edges and nodes have a super-
linear scaling relationship called the “densification power law”14,23,24, in which the average degree is increasing 
with the number of nodes, i.e., “densification”. For temporal networks, where there is a sequence of network 
snapshots, a similar type of scaling emerges from the dynamics of the population, in which nodes enter and leave 
the system, keeping the chance of two nodes being connected  constant15,25. However, another type of scaling 
emerges in real-world systems for which the population is fixed. In such systems densification is “explosive”, with 
the scaling exponent increasing with N15. While these two classes of scaling could be differentiated and identi-
fied from data if we observe a specific type of  scaling15, in general there may exist a mixture of them that cannot 
be easily classified as one of the two classes. Indeed, in the four datasets we study, no clear scaling relationship 
appears (Fig. 1, upper panels). In the following we show that the mixed shape of empirical densification behavior 
reflects a mixing of both classes of scaling.

Two dynamical regimes in the dynamic hidden-variable model. To explore the temporal dynamics 
of densification and sparsification, we consider a dynamic version of the hidden variable model. The probability 
that two nodes i and j are in contact within a given time window t is:

where ai is the “fitness” that represents the intrinsic activity level of node i26–28, and T denotes the last time window 
in the data. There are two time-varying parameters in the model. The first one is κt > 0 , which modulates the 
overall activity rhythm of nodes. A variation in κ would reflect the time-schedule of a conference or a school, 
working hours in an office or a hospital, or the circadian rhythm of  individuals9,22,29,30. The second time-varying 
parameter Np,t denotes the potential number of active nodes at time t, i.e., the total of active and inactive nodes 
that are in the room or the building. It should be noted that although the number of active nodes (i.e., nodes 

(1)Pij,t = κtaiaj , i, j = 1, . . . ,Np,t , t = 1, . . . ,T .
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having at least one edge) Nt is always observable from the data, the potential number of nodes Np,t is not. We 
do not usually know how many people were actually in the room at a given time because people could enter 
and exit the room at any time without being interacting with any other individual. We can observe the number 
of active nodes that appear in the record of contacts, but in many cases there is no record of nodes without any 
interaction. We assume that activity ai is uniformly distributed on [0, 1], because (i) we do not have any prior 
information about the full distribution of the activity levels of all nodes including isolated ones, and (ii) intro-
ducing a more general distribution prohibits us from obtaining an analytical solution, which makes it difficult 
to implement parameter estimation.

The average numbers of active nodes N and edges M are analytically given as (see "Analytical expression for 
N and M" section in Methods for derivation):

where we drop time subscript t for brevity. From these expressions, it is clear that the two parameters κ and Np 
play different roles in the determination of N and M, but it is not clear how N and M correlate. To see the direct 
relationship between N and M, we eliminate one of the two parameters in Eq. (2), using Eq. (3). By doing this, 
we can effectively endogenise either κ or Np . Depending on whether we endogenise κ or Np , we obtain different 
functional forms that connect N and M.

Regime 1: Np‑driven dynamics. First, let us consider the case of time-varying Np . This is a situation in which 
the dynamics of N and M are fully driven by changes in the population. We call this system as being in “Regime 
1” or “state 1”:

Definition 1. A system is in Regime 1 if Np is time-varying and κ is constant, in which case the dynamical 
relationship between N and M is given by:

where the time-varying Np value is expressed as a function of Mt and κ : Np(Mt , κ) ≡ 1+
√
1+32Mt/κ
2  (see, Eq. 3).

For the purpose of parameter estimation, we introduce an error term as Nt = h1(Mt; κ̂)+ ε1,t , where κ̂  
denotes the estimated value of κ , and ε1t  is a residual term following a normal distribution with mean zero and 
standard deviation σ1 . Estimated value of Np,t when the system is in Regime 1 leads to:
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[
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2

κNp

(
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Figure 1.  Dynamical behaviour of number of active nodes N and number of active edges M. In upper panels, 
dynamical relationship between N and M is shown. Each dot represents a snapshot network created over a 
10-min time window. Gray dashed and dotted lines respectively denote N/2 (i.e., the lower bound for M) and 
N(N − 1)/2 (i.e., the upper bound for M). Lower panels show the behaviour of M over time.
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where St = 1 denotes the fact that the system is in Regime 1 at time t. In Regime 1, network dynamics is totally 
driven by the time-varying nature of the population, what we call “ Np-driven” dynamics. For a given κ , the slope 
of densification scaling is close to constant, while different κ yield different slopes (Fig. 2, lower left).

Regime 2: κ‑driven dynamics. Next, let us consider the case of time-varying κ . This corresponds to a situation 
in which the dynamics of the system is fully driven by changes in the overall activity of individuals. We call this 
system as being in “Regime 2” or “state 2”:

Definition 2. A system is in Regime 2 if κ is time-varying and Np is constant, in which case the dynamical 
relationship between N and M is given by

where the time-varying value of κ is expressed as a function of Mt and Np : κ(Mt ,Np) ≡ 8Mt
Np(Np−1) (see, Eq. 3).

For estimating, we add an error term as Nt = h2(Mt; N̂p)+ ε2,t , where N̂p denotes the estimated value of Np , 
and ε2,t is a residual term following a normal distribution with mean zero and standard deviation σ2 . Estimated 
value of κ at time t when the system is in Regime 2 leads to:

In Regime 2, network dynamics is fully driven by the individuals’ time-varying activity levels, what we call “ κ
-driven” dynamics, and the slope of densification scaling in fact increases with N (Fig. 2, lower middle). This kind 
of accelerating growth of M naturally happens when edges are created in a fixed-population system, in which 
case the network tends to be denser as the number of inactive nodes vanishes.

(5)N̂p,t |St=1 =
1+

√
1+ 32Mt/κ̂

2
,

(6)
N = Np

[
1−

2

κ(M,Np)Np

(
1−

(
1−

κ(M,Np)

2

)Np
)]

≡ h2(M;Np),

(7)κ̂t |St=2 =
8Mt

N̂p(N̂p − 1)
.

Figure 2.  Schematic of the identification method. Empirical densification is fitted to the regime switching 
model in which the model switches from Regime 1 to Regime 2 (resp. from Regime 2 to Regime 1) with 
probability p12 (resp. p21 ). Then, the estimated parameters are used to infer the probability of the system being 
in Regime 1 at a given time t. For panels at lower left and lower middle, different colours denote different Np , 
and different symbols denote different κ (see Eqs. 2 and 3). Solid line in the bottom left (resp. bottom middle) 
denotes the Np-driven (resp. κ-driven) scaling with κ = 0.3 (resp. Np = 126 ). If the scaling is Np-driven (resp. κ
-driven), the time variation of N and M is fully caused by shifts in Np (resp. κ).
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Analysis of switching dynamics behind temporal densification and sparsification. A Markov 
regime switching model. In real-world networks, the mechanism of densification and sparsification may oc-
casionally change depending on the context, such as working schedule, coffee breaks, lunch time, etc. To in-
corporate such a possibility, we propose a unified framework based on the Markov regime switching model 
in which the hidden state of a system can switch from Regime 1 to Regime 2 (respectively from Regime 2 to 
Regime 1) with probability p12 (resp. p21)16,17. An important advantage of the regime switching model is that 
it allows us to calculate the probability of a system being in Regime s ∈ {1, 2} at time t for a given parameter 
set θ = {Np, κ , σ1, σ2, p11, p22} . This probability of the system being in Regime s can then be interpreted as the 
relevancy of each mechanism in explaining the densification dynamics at a given time (Fig. 2). We employ a 
Bayesian approach for the estimation of the parameters, using the Markov chain Monte Carlo (MCMC) to ob-
tain posterior distributions (see, Methods “Bayesian estimation” for the estimation method). It should be noted 
that θ does not contain Np,t |St=1 and κt |St=2 since θ only contains constant parameters to be directly estimated 
by the Bayesian method.

In the following, we use the smoothed probability Pr(St = s|ψT ; θ) which is calculated conditional on all 
the information available at time T, denoted by ψT (see, Methods “Smoothed probability” for full derivation) 31. 
Validation analyses using synthetic networks show that the proposed method correctly detects the switching of 
regimes and estimates the model parameters quite accurately (Table S1, Figs. S1 and S2 in Supporting Information 
(SI)). Given the probability of being in Regime s ∈ {1, 2} , we can estimate the dynamical parameters Np,t and κt as:

where θ̂  denotes the set of estimated parameters, which is summarised in Table 1 in Methods.

Classification of network dynamics. The Bayesian estimation of the parameters suggests that the empirical sys-
tems’ dynamics are indeed occasionally switching between Np-driven and κ-driven (Fig. 3, upper panels). For the 
conference data, a common feature is that the probability of being in Regime 1 is almost 1 prior to the first ses-
sion and after the last keynote session of the day, and mostly zero in between (see Fig. 4 for the correspondence 
between the dynamics and the schedule of the conferences). For WS-16, we see further fluctuations between the 
two regimes, one linked to the lunch break, the other to the poster session which closed the day. This suggests 
that the dynamics during the oral sessions, keynote talks and breaks are mainly driven by changes in the activ-
ity level of participants, while in the “opened” time slots, such as registration, closing and poster session, their 
dynamics are explained by time-varying population. The same patterns linked to the schedule are found on the 
other days of the conferences (see S3a–c).

For the Workplace data we see a roughly similar pattern (Fig. 3, top right). The dynamics in the early morn-
ing and evening are driven by a variation in Np , as well as around lunch time and coffee break, and changes in 

(8)N̂p,t = Pr(St = 1|ψT ; θ̂) · N̂p,t |St=1 + Pr(St = 2|ψT ; θ̂) · N̂p,

(9)κ̂t = Pr(St = 1|ψT ; θ̂) · κ̂ + Pr(St = 2|ψT ; θ̂) · κ̂t |St=2,

Figure 3.  Identification of dynamical regime. Upper panels show the smoothed probability of being in Regime 
1 (i.e., Np-driven dynamics) at each time window. 95 % credible interval is indicated by shading. Lower panels 
show N-M plots with classified regimes being denoted by different colours and symbols. We identify a snapshot 
network as being in Regime 1 (resp. Regime 2) if the estimated probability of being in Regime 1 (resp. Regime 
2) is greater than 0.5 in more than 95 % of MCMC sampling. Otherwise, a network is considered as being in an 
undetermined “gray area”.
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activity level are the main source of dynamics in between. This is, of course, not necessarily a general property 
of contact networks in physical space. We also see that the regime remains almost constant in most of the day 
(Fig. S3e), or there might be days in which the regime constantly changes throughout the day (Fig. S3f). In the 
case of the Hospital data, there is no clear tendency for the regime-switching pattern (Fig. 3, third column and 
S3d), which seems natural for such an open environment with visitors and medical workers coming and going, 
and no general, fixed schedule for working hours.

We next attempt to classify the snapshot networks into two groups based on their probability of being in 
a particular regime. We identify a snapshot network at t as being in Regime 1 (resp. Regime 2) if more than 
95 % of samples for the value of Pr(St = 1|ψT ; θ) generated by MCMC are greater than 0.5 (resp. lower than 
0.5), i.e., in more than 95 % of parameter sampling the dynamics at t is considered to be attributed to Regime 1 
(resp. Regime 2). Otherwise, the system is considered as being in an undetermined “gray area”. As seen in the 
lower panels of Fig. 3, the location of snapshot networks in the N-M space is strongly related to which regimes 
they belong to. As expected, the snapshots in Regime 1 exhibit a scaling whose slope is almost constant (i.e., Np

-driven scaling), while the snapshots in Regime 2 exhibit accelerating growth patterns (i.e., κ-driven scaling). 
Classifying each time window according to the underlying dynamical mechanism is essentially equivalent to 
identifying patterns in the N-M space.

Temporal dynamics of population and activity level. We also examine the evolution of the dynamical param-
eters for both regimes (Fig. 4). For the two conferences (WS-16 and IC2S2-17), the estimated population size 
N̂p,t increases at the beginning of the day and decreases at the end, consistent with the dynamics of participants 
entering and exiting the venue. The estimated activity parameter κ̂t is high during these periods, and the level 
is consistent with those seen in highly active windows during social breaks. During the main program, the 
population is virtually constant and the size is consistent with the number of attendants ( ∼ 120 for WS-16, 
∼ 200 for IC2S2-17). The variation of network size is thus mainly driven by the schedule, which constrains 
the participants’ networking activity. In the case of WS-16, the fluctuation of N̂p,t during the lunch break and 
the poster session are worth noting since the variation of observed network size N seems to be driven by both 
mechanisms; we see slight reductions in the estimated population while the overall activity is still high in these 
time windows. This demonstrates the ability of the proposed method to extract mixed-regime periods in which 
both of the two mechanisms are at work (see Fig. 2, right, for schematic). Similar patterns are also found in the 
other days (see S4).

In the Hospital data, the regime-switching dynamics is much less periodic, with lots of transitions and mixed 
periods (Fig. 5a). This is however not surprising, because there is no fixed schedule regulating either the activity 
or the number of people present. For the Workplace data, we also do not expect a priori to see a clear segmenta-
tion of regimes because of the absence of a rigid schedule as in a hospital. However, the dynamics uncovered by 
our method indicates that the situation is much simpler than that for Hospital, as there seem to be less variation 
in population size, aside from the “opening” and “closing” effects and a reduction in population around the lunch 
time (Fig. 5b). The day that exhibited many regime switches presents however many episodes of small variations 
in population size (see S4), similar to the dynamics observed in a Hospital.

Figure 4.  Estimation of Np,t and κt for (a) WS-16 and (b) IC2S2-17. N̂p,t and κ̂t are shown in the upper and the 
lower panels, respectively, and the 95 % credible interval is indicated by shading. Upper panels show the number 
of active nodes (dashed blue line) at each time, thus the difference between the two lines represents the number 
of isolated nodes. Lower panels also show the number of edges at each time (dashed red line). Vertical dotted 
lines indicate the time windows of the scheduled sessions, with the labels in the middle.
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Non‑monotonic behaviour of network density. Since both types of scaling emerging from two different dynam-
ics exhibit superlinearity, the average degree is always increasing in N. However, the density of networks, defined 
by 2M/(N(N − 1)) , is not always increasing with N (Fig. 6). In fact, when the dynamics is Np-driven, the net-
work density mostly decreases as the network size N increases (Fig. 6, blue circle). So, a rise in N causes the 
density to be smaller when the engine of dynamics is changes in population. In contrast, when changes in κ play 
a dominant role, the network density may increase when the network size is sufficiently large (Fig. 6, pale-red 
cross). This is because when the number of active nodes N is close to its upper bound Np , at which the activity 
levels of remaining inactive nodes are fairly low, the overall activity κ needs to be large enough for those low-
activity nodes to get at least one edge. This would necessarily increase the total number of edges in the network 
to a large extent, which leads to a “true” densification of networks.

These properties are also confirmed by the analytical equation for the average network  density15

where q0 denotes the fraction of isolated nodes in the system (see Eq. 16 in Methods “Analytical expression for 
N and M”). If the system is in Regime 1, in which κ is constant, the density monotonically approaches κ/4 as 
Np → ∞ (i.e., q0 → 0 and N → ∞ ). On the other hand, if the system is in Regime 2, in which Np is constant, 
there is no a priori upper bound, and the density exhibits a non-monotonic behaviour. In Regime 2, a change in 
κ has two opposing effects on the network density. First, an increase in κ directly increases density through a rise 
in the probability of edges being created. Second, a shift in κ would also increase N, which reduces the density 
through the third term in Eq. 10. Since q0 → 0 as N becomes sufficiently large, the latter effect is vanishing, and 
therefore the density begins to rise with N for a sufficiently large N.

(10)
2M

N(N − 1)
=

κ

4

(
1

1− q0(κ ,Np)

)2(
1+

q0(κ ,Np)

N − 1

)
,

Figure 5.  Estimation of Np,t and κt for (a) Hospital and (b) Workplace.

Figure 6.  Density versus the number of active nodes. Classification of dynamical regimes is conducted in the 
same way as in Fig. 3.
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Discussion
Densification and sparsification of networks can occur for two reasons, namely a variation in the population Np 
and a variation in the overall activity level κ . A key finding of this work is that the relative importance of each 
of these two dynamical factors occasionally change, depending on the social context under study. By fitting the 
model to the observed scaling relations, we can detect the main factor that is relevant at a given point in time. 
Shifts in Np and/or κ affect the activity of all individuals equally, so κ could be considered as an effective “tem-
perature” and Np as an effective “chemical potential” of the system in a grand canonical approach. While in this 
work we studied face-to-face networks of individuals, by its versatility the proposed method could also be used 
for a wide variety of dynamical systems.

There are some remaining issues for future research. First, the baseline model, a dynamic hidden variable 
model, relies on a “homogeneous mixing” hypothesis, which implies that nodes are connected to each other at 
random, given their activity levels. If we look at the structural properties of networks, such as triadic closure 
and community structure, such a hypothesis—especially for social contexts—would be unrealistic. However, 
the fact that the proposed method works remarkably well indicates that, as long as we look at network dynam-
ics at a sufficiently coarse scale, keeping local properties aside, this homogeneous mixing assumption is a good 
approximation. In fact, introducing a non-random structure would easily make it impossible to obtain analytical 
expressions that would be needed for identification.

Second, we assumed that the distribution of intrinsic node activities is uniform for simplicity. Ideally, one 
would need to set this distribution based on empirical evidence. However, measuring the empirical intrinsic 
activity levels of individuals is extremely difficult because one needs activity levels of totally inactive individuals 
as well. Furthermore, this parameter might very well have its own temporal evolution. If available, such a rich 
information would allow for a refinement of the method.

Third, while the current method works well for temporal networks whose dynamical regime is occasionally 
switching, for fixed-regime systems in which the whole dynamics could be explained by either a Np-driven or a 
κ-driven regime, the proposed regime-switching model is unnecessary. In such cases, one would fit the empirical 
scaling to each of the two models separately, and then find out which model is better  fitted15.

Fourth, the parameters Np and κ could also be estimated using a numerical joint distribution of (Nt ,Mt) that 
would be obtained by simulation for a given (Np, κ) , which is considered as a likelihood function. However, since 
a particular combination of (Nt ,Mt) can be generated by different combinations of (Np, κ) , the observed combi-
nation of (Nt ,Mt) , as opposed to the whole scaling relationship, could be insufficient to accurately uncover the 
true values of Np,t and κt especially when network size is  small15. On the other hand, there will be an advantage 
of the simulated likelihood approach in that we could introduce realistic network properties such as clustering, 
community structure, homophily, etc.

In many cases, examining the source of network dynamics from the level of each individual would be pro-
hibitively difficult because each individual has his/her own circumstance, and privacy issues often prohibit 
researchers from obtaining enough information to reveal particular individuals’ behaviour. In contrast, global 
quantities, such as the total numbers of nodes and edges, are much more widely accessible, and therefore utilis-
ing these quantities will be inevitable when high-resolution data are difficult to collect. A contribution of this 
work is that the proposed model allows us to detect the role of the two fundamental dynamical factors just by 
using information on the global network dynamics. Any dynamical processes occurring on networks, regard-
less of whether they are micro- or macro-phenomena, would be largely affected by the underlying dynamics of 
networks. This is in particular the case for spreading processes such as epidemics. A better understanding of 
the dynamics of densification and sparsification could thus benefit public health policies, which are of central 
importance for modern social systems.

Methods
Analytical expression for N and M. In this section we derive Eqs. (2) and (3). The numbers of active 
nodes N and edges M can be expressed as functions of parameters κ and Np (we drop time subscript t for brevity):

where k(κ ,Np) denotes the average degree over all the existing nodes including isolated ones, and q0(κ ,Np) 
denotes the fraction of isolated nodes or equivalently the probability that a randomly chosen node being isolated.

Let ρ(a) be the density of node activities, and define u(a, a′) as the probability that there is an edge between 
two nodes having activity levels a and a′ . The average degree k(κ ,Np) is given by the number of possible partners 
times the average of u(a, a′) (see, section S1 in SI for a full derivation):

It should be noted that Eq. (12) is equivalent to the average degree in the standard fitness  model27 if Np − 1 is 
replaced with N, which is only asymptotically true in our model.

The fraction of isolated nodes in the system is given by (see, section S1 in SI):

Substituting ρ(a) = 1 (i.e., uniform distribution on [0, 1]) and u(a, a′) = κaa′ into Eq. (12) leads to:

(11)

{
N = (1− q0(κ ,Np))Np,

M = k(κ ,Np)Np

2 ,

(12)k(κ ,Np) = (Np − 1)

∫ ∫
dada′ρ(a)ρ(a′)u(a, a′),

(13)q0(κ ,Np) =
∫

da′ρ(a′)

[
1−

∫
u(a′, a)ρ(a)da

]Np−1

.
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Similarly, q0 is given by:

By defining a variable x ≡ 1− κa′

2  , we have:

Combining these results with Eq. (11), we have:

It should be noted that if |1− κ/2| < 1 and Np is sufficiently large, then q0(κ ,Np) ≃ 0 and thereby N ≃ Np and 
M ∝ N2 , as is shown in the study of the static fitness  model26–28.

Bayesian estimation. This section describes how we can infer the model parameters and the dynamical 
regime at a given time interval t. Let Pr(St = s|ψt−1; θ) be the probability that a network is in state s (i.e., in 
Regime s) conditional on information available at the end of time interval t − 1 , denoted by ψt−1 , for a given set 
of constant parameters θ = {Np, κ , σ1, σ2, p11, p22} . More specifically, ψt−1 is the set of variables observed from 
time 0 up to t − 1 , which represents the full history of the observed variables at the end of t − 1 . The likelihood 
function is then given by:

where {Dt} denotes the sequence of observations Dt = (Nt ,Mt) , and f is given by:

The log-likelihood function leads to:

Bayesian inference is conducted based on the relationship p(θ |{Dt}) ∝ L({Dt}|θ)p(θ) , where p(θ |{Dt}) and 
p(θ) are posterior and prior densities, respectively. For each parameter we collect 20,000 samples (four chains, 
5,000 samples after 5,000 burn-in for each chain) generated from the posterior using Markov chain Monte Carlo 
(MCMC). We implement MCMC using Pystan ver. 2.19.032, which runs the No-U-Turn sampler (NUTS)33. The 
dataset and the Python code used in this work are available from  Zenodo34. The mean parameter values are 
summarised in Table 1.

Now we describe how information is updated in each period. The probability of being in state s conditional 
on information at time t is written as:

where we drop argument θ in f for brevity. Given the initial guess for Pr(S0 = r|ψ0) , we can recursively update 
the probability of being in state s.

(14)k(κ ,Np) =
κ

4
(Np − 1).

(15)q0(κ ,Np) =
∫ 1

0

(
1−

κa′

2

)Np−1

da′.

(16)

q0(κ ,Np) =
2

κ

∫ 1

1− κ
2

xNp−1dx

=
2

κNp

[
1−

(
1−

κ

2

)Np
]
.

(17)N = Np

[
1−

2

κNp

(
1−

(
1−

κ

2

)Np
)]

,

(18)M =
1

8
κNp(Np − 1).

(19)L({Dt}|θ) =
T∏

t=1

2∑

s=1

f (Dt |St = s,ψt−1; θ)Pr(St = s|ψt−1; θ),

(20)f (Dt |St = s,ψt−1; θ) =
1√
2πσ 2

s

exp

(
−
(Nt − hs)2

2σ 2
s

)
, s = 1, 2.

(21)

log L({Dt}|θ) =
T∑

t=1

log

2∑

s=1

f (Dt |St = s,ψt−1; θ)Pr(St = s|ψt−1; θ),

=
T∑

t=1

log

2∑

s=1

2∑

r=1

f (Dt |St = s,ψt−1; θ)Pr(St−1 = r|ψt−1; θ)prs .

(22)
Pr(St = s|ψt; θ) =

f (Dt |St = s,ψt−1) · Pr(St = s|ψt−1)∑
s f (Dt |St = s,ψt−1) · Pr(St = s|ψt−1)

,

=
∑

r f (Dt |St = s,ψt−1) · Pr(St−1 = r|ψt−1)prs∑
s

∑
r f (Dt |St = s,ψt−1) · Pr(St−1 = r|ψt−1)prs

,
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Smoothed probability. The probability Pr(St = s|ψt; θ) obtained in Eq.  (22) is based on information 
available at time t for a given parameter set θ . We can also obtain the probability based on all information, rep-
resented by information set ψT . Let ξ t|T ≡ [Pr(St = 1|ψT ; θ), Pr(St = 2|ψT ; θ)]′ be the vector of probabilities 
conditional on information at T. ξ t|T can be calculated by conducting backward iteration from T16:

where ⊙ and (÷) denote element-by-element multiplication and element-by-element division, respectively, and 
P = (pss) is the transition matrix. Note that all the terms in the RHS of the first equality are already known from 
the previous estimation procedure. After calculating ξT−1|T , we use it to calculate the RHS of the second line. 
We repeat this until we obtain ξ t|T.

Validation. We check the accuracy of the inference method based on synthetic network data generated by 
the regime-switching hidden variable model. For given parameters Np , κ , p11 , and p22 , and time-varying vari-
ables {Np,t} and {κt} , we generate sequences of {Nt} and {Mt} in a way prescribed in the model. When the network 
at t is in Regime 1 (Regime 2), the true Np,t ( κt ) is given by Np,t = 0.95Np,t−1 ( κt = 0.95κt−1 ), and Np,t = Np 
( κt = κ ) otherwise. We assume that the initial probability of being in Regime 1 is set at 0.5, and Np,0 = Np and 
κ0 = κ . For each parameter, we collect 20,000 samples by MCMC (5,000 samples from four chains after 5,000 
burn-in iterations).

The estimated parameters under different sets of ground-truth θ are summarised in Table S1 in SI. The esti-
mated smoothed probabilities well match the true states of the generated networks (Fig. S1 in SI). We also group 
the generated networks based on the probability of being in Regime 1; For each time period, if more than 95% of 
the sampled values for Pr(St = 1|ψt; θ̂) are higher (lower) than 0.5, then we classify the corresponding snapshot 
as being in Regime 1 (Regime 2). If it is not classified as Regime 1 or 2, the network is considered to be in a “gray 
area”. As shown in the middle and the right columns of Fig. S1, the classification of generated networks based on 
estimated parameters is consistent with the ground truth, while there are some networks that are in gray zones 
especially when the observed pairs of (Nt ,Mt) are overlapped between the two regimes. A comparison between 
the estimated and the true paths of Np,t and κt is also shown in Fig. S2.
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