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Easy computation of the Bayes 
factor to fully quantify Occam’s 
razor in least‑squares fitting 
and to guide actions
D. J. Dunstan*, J. Crowne & A. J. Drew

The Bayes factor is the gold-standard figure of merit for comparing fits of models to data, for 
hypothesis selection and parameter estimation. However, it is little-used because it has been 
considered to be subjective, and to be computationally very intensive. A simple computational 
method has been known for at least 30 years, but has been dismissed as an approximation. We show 
here that all three criticisms are misplaced. The method should be used to complement and augment 
all least-squares fitting, because it can give very different, and better outcomes than classical 
methods. It can discriminate between models with equal numbers of parameters and equally good fits 
to data. It quantifies the Occam’s Razor injunction against over-fitting, and it demands that physically-
meaningful parameters rejected by classical significance testing be included in the fitting, to avoid 
spurious precision and incorrect values for the other parameters. It strongly discourages the use of 
physically-meaningless parameters, thereby satisfying the Occam’s Razor injunction to use existing 
entities for explanation rather than multiplying new ones. More generally, as a relative probability, 
the Bayes factor combines naturally with other quantitative information to guide action in the 
absence of certain knowledge.

“If your experiment needs statistics, you ought to have done a better experiment.”—attributed to E. Rutherford. 
Nevertheless, almost every practising scientist, engineer, economist, etc., uses least-squares (LS) statistical meth-
ods to fit analytic expressions to data. This is done for parameter estimation (uncertainties as well as values) and 
for hypothesis or model selection1. However, LS fitting poses questions. How to know if the fit is as good as may 
be? How to choose between models which all fit well? How to detect over-fitting and under-fitting? These ques-
tions require quantitative tests based on statistical theory. There are well-known statistical tools—significance 
tests—such as the traditional p value or the 3 − σ test, and the more recent AIC and BIC (Akaike and Bayesian 
Information Criteria). Such tools are however inadequate, because they do not use the prior knowledge that we 
have2. The Bayes factor, derived from Bayes’ theorem, does do this, and so has been described as the gold-standard 
figure-of-merit for comparing models. However, it is rarely used, not least because it can be computationally very 
demanding. Here we present an easy way of calculating it so that it can be routinely used with all least-squares 
fitting to complement and augment other figures of merit. We demonstrate its use—and usefulness—on three 
datasets from the literature. Outcomes can be very different from those both of significance testing and of the 
BIC. Moreover, when considering not merely whether a theory—a model—is true or not, but, as a practical mat-
ter, deciding what action should be taken given the outcomes of the fitting, the Bayes factor can quantitatively 
support intuition.

Bayes’ Theorem explicitly includes prior knowledge in its calculation of the probability of a hypothesis given 
data. It was an unexceptionable part of probability theory in the nineteenth century. However, the increasing 
formalisation of probability theory and statistics in the twentieth century led to its sidelining, on the grounds 
that it introduces a subjective element, our state of knowledge, or grounds for belief, about future events. It was 
considered that probabilities should be purely objective. Jeffreys’ seminal book in 1939 began the rehabilitation 
of Bayesian statistics3. This has been slow and controversial. For an entertaining historical survey, see the article 
by Leonard4, and for a non-technical discussion see Jaynes5. For an early technical account, see Kass and Raftery6.

Occam’s Razor (“Entities should not be postulated without necessity”), in the context of least-squares fitting, 
demands that we should not use more fitting parameters than are necessary. That is, we should not overfit data. 
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Classical—twentieth century—statistics scarcely quantifies this. In 1974, Akaike introduced the AIC to quantify 
this issue by preferring the model with the highest log-likelihood [see Eq. (1) in "Methods" section] less a penalty 
of n, the number of parameters7. The AIC can be applied directly to least-squares fitting, where the preferred 
model is the one with the lowest sum of the squares of the residuals (the SSR) after applying the AIC penalty. 
The AIC has now been largely supplanted by the BIC or Schwartz criterion8 (SBIC), like the AIC except that the 
penalty for n parameters is ½nlnm where m is the number of data points. (Both the AIC and the BIC are usually 
presented after multiplication of these definitions by − 2; we do not do that here, to make comparison of the 
figures of merit easier. We indicate this by referring to the SCBIC.) The BIC is now widely used9–11. Thousands 
of papers per year now cite BIC values to justify the choice of one model rather than another, e.g. in ecology12. 
However, the AIC and the BIC and many related criteria (DIC, FIC ... WAIC) are gross approximations to the 
Bayes factor. Indeed, despite its name, the BIC is not Bayesian, and nor are the various related criteria. This is 
because they do not take into account the prior probabilities of the models. The Bayes factor does. In so doing, it 
quantifies two further intuitions, or corollaries, of Occam’s razor. The first is that fits to data that use physically-
meaningful parameters are preferable, if they fit, to fits that use physically-meaningless parameters such as 
coefficients in a polynomial or Fourier series. The latter introduce new entities while the former use entities 
that already exist. The second, closely related intuition, is that a model that is not capable of fitting all possible 
datasets (that does not span the data space) yet does fit the actual dataset is preferable to a model that could fit 
any data presented (that does span the data space).

Despite being the gold standard, the Bayes factor is little known and less used. It has been considered to be 
computationally massively intensive6,8–11. Except in simple problems of models with one fitting parameter, evalu-
ating the Bayes factors of the models has required multi-dimensional integrals over parameter space. Fitting, for 
example, a multi-peak spectrum with tens of parameters, this requires computationally-heavy techniques such 
as Markov-chain Monte-Carlo integration or related sampling methods (see, e.g. Gronau et al.13). Because of the 
taint of subjectivism, in its use of what we know, many Bayesians have preferred to avoid prior knowledge and 
use in its place information obtained from the data, such as unit information priors6,14,15. Yet this concern is mis-
placed. What we know before analysing data is as objective, in the usual scientific sense, as the data themselves.

Here we present a formula for easy calculation of the Bayes factor after every LS fit with much less compu-
tational effort than the fit itself. This formula has been known since at least 199215, and perhaps earlier. Its use 
in routine LS fitting has not been widely advocated. This is perhaps because of the subjectivity issue, or perhaps 
because it bypasses the computational difficulties of the Bayes factor by the Laplace approximation16. However, 
McKay already in 1992 recognised this as exact in most situations15. Perhaps also there has not been sufficient 
appreciation of the value of the Bayes factor in quantifying the two further intuitions of Occam’s razor mentioned 
above, and its value as a guide to action. We present the method in "Methods" section. In "Theory" section we 
briefly discuss the underlying theory, and in the Supplementary Information (SI §5) we give a derivation of the 
formula which we hope makes the underlying ideas clearer than they were in the older literature. In "Examples of 
fitting data" section we apply it to three examples of data-fitting in which the use of the Bayes factor leads to very 
different—and better—outcomes than traditional methods. Finally, in "Discussion and conclusions" section, we 
discuss the main outcomes, and consider the relevance of the Bayes factor to two live controversies. On signifi-
cance (p values etc.) in fitting, we find that reliance on significance and the rejection of physically-meaningful 
parameters that do not pass significance tests will normally give incorrect results. On the controversial question 
of vitamin D and Covid-19, there is evidence that does not pass significance tests. We see how the Bayes factor can 
combine with this evidence to provide quantitative support for actions that otherwise are considered unjustified.

Methods
A least-squares fitting routine normally returns the parameter fitted values and their uncertainties, the fit residu-
als ri and their standard deviation σr, and perhaps the parameter covariance matrix Covp, the BIC, etc. The 
formula we apply uses the marginal likelihood integral (MLI) calculated for each LS fit. See "Theory" section. 
Calculating the MLI is done by,

where n is the number of parameters, the �pi are their ranges, and Lmax is the maximum likelihood15. Then the 
Bayes factor between two models is the ratio of their MLI values. The first step in applying it is to calculate Lmax, 
which is the value of the likelihood L at the fitted parameter values whether LS or ML fitting is used. L is the 
product of the probability densities of all the m datapoints given the fit. If it is not returned by an LS routine, it is 
readily calculated (see SI §S2). With perhaps hundreds of datapoints, L can be a very large or a very small number, 
depending on the value of the standard deviation of the residuals, σr, so it is more convenient to work with the 
log-likelihood, lnL. Equation (S1) in the SI shows that for a Gaussian distribution of residuals, maximising lnL 
is equivalent to minimising the SSR. If the LS routine returns the SSR, then it is particularly easy to calculate lnL.

Next, we need Covp. With software such as Mathematica, Matlab, or Origin, this is returned by the LS routine. 
If it has to be calculated, we show how in SI §S3.

The remaining term in Eq. (1) is the product of the n parameter ranges, �pi , which gives the prior probability 
of the model. The ranges have to be decided upon and input by the user. There is nothing subjective about this, 
determined as they should be objectively (or evidentially) by our prior scientific knowledge. They are open to 
reasoned debate and justification like any scientific knowledge or data. See SI §S4, and the examples in "Examples 
of fitting data" section.

(1)MLI = (2π)n/2Lmax

√

det Covp
∏n

i=1 �pi
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When we have the MLI values for two or more fits, their ratios give the relative probabilities for the models 
given the data—the Bayes factors (BF) between the models. It is more convenient to work with the logarithms, 
and then it is the difference of the lnMLI values, lnBF, which matters. Jeffreys3 and many subsequent authors 
have given verbal descriptions of the meaning of values of lnBF, in terms of the strength of the evidence in favour 
of the model with the higher lnMLI. These range from lnBF < 1—barely worth considering, 1–2—substantial, 
2–5—strong evidence, > 5—decisive3,6. More important than the verbal descriptions is that the Bayes factor 
simply expresses the relative probabilities of the models. The lnBF values correspond to odds of elnBF to 1 on the 
preferred model, or against the other model. The descriptions and the odds also apply to comparing models by 
differences in lnLmax between models with the same of parameters, and by the Schwartz BIC (SBIC = − ½BIC, 
which we use here for easy comparison with lnL, lnMLI and lnBF). It is important to note that debate or dispute 
over the exact values of the parameter ranges is rarely germane, since it is their logarithms that enter into the 
lnBF. So a factor of two on a range shifts the lnBF by only ln2, or 0.7.

Theory
Equation (2) for the marginal likelihood integral has been given by many authors. Following Gull17 we consider 
it first for a problem involving just one parameter λ distinguishing two versions of a theory (The Story of Mr A 
and Mr B, proposed originally by Jeffreys3 and discussed by many authors). Mr A advocates the null hypothesis, 
A, in which this parameter does not appear. Mr B advocates the hypothesis, B, in which λ appears; least-squares 
fitting to the data D yields the fitted value λ0 ± δλ. Occam’s razor tells us that the extra parameter λ should only 
be included if it is necessary. Then Bayes’ theorem gives for the value of the Bayes factor, BF, for B against A,

where Gull explains the first term in the RHS, Pr(B)/Pr(A), as having nothing to do with the theories or the data; 
it will normally be unity. Perhaps slightly tongue-in-cheek, Gull proposed that it could be adjusted to reflect 
the past performances of Mr A and Mr B. We take this term as unity here but we return to it in "Discussion and 
conclusions" section. The second term in the RHS is the ratio of the maximum likelihoods (or of the SSRs from 
LS fitting), which will normally favour B because adding fitting parameters will normally improve the fit to data. 
For B, it is the likelihood evaluated at the fitted value, λ0. The third term in the RHS is the Occam factor, which 
will provide the penalty for the extra parameter in B. As Gull explains it, Mr B had to spread his probability 
Pr(B) over the prior range that he will have specified of possible values of λ from λmin to λmax, with some pdf, that 
is usually assumed to be flat from λmin to λmax and zero elsewhere6,15,17. When the data are given, the probability 
of the model becomes the integral (the MLI) of the product of this pdf and the function L(λ). Most of these 
possible parameter values perish and only a range around the fitted value λ0 survive. The shape of L(λ) around 
is approximated by a Gaussian. The width of this Gaussian, σλ, is the uncertainty or error δλ returned by the LS 
routine for λ2,17. This is the Laplace approximation6,14,15. Evaluation of the integral thus requires no more than 
taking the area of the Gaussian times the flat value of Mr B’s prior pdf, 1/(λmax − λmin).

For models differing from the null hypothesis in more than one extra parameter, one might think that Eq. (3) 
could be generalised by multiplying the Occam’s factors (the third term) for all the extra parameters together. 
That, however, normally grossly overestimates the MLIs, because of correlation or covariance between the param-
eters in the fits. The remedy is to use the square-root of the determinant of the parameter covariance matrix in 
place of the product of the uncertainties of the fitted parameter values, as in Eq. (1). This is again the Laplace 
approximation; see SI §5 for an explanation.

The ranges define a volume in the n-dimensional parameter space, known as the prior parameter volume. 
Similarly, the square-root of the determinant of the covariance matrix defines another, smaller volume in the 
same space, the posterior parameter volume. The ratio of these two volumes is termed the Occam Factor17–19.

Our Eq. (1) is well-known in the literature, for example, it is Eq. (6) of MacKay’s 1992 paper15, Eq. (10.123) 
of Gregory’s 2005 book20. And Eq. (4.137) of Bishop’s 2006 book21. However, in the rest of McKay’s paper and in 
most of the subsequent literature, the prior parameter volume in the denominator is not determined from our 
knowledge of the parameters and what values are physically realistic. Instead, it is determined from the data and 
the outcome of the fit, the posterior parameter distributions (e.g. unit information priors). Indeed, that is the key 
step in using Eq. (1) to derive the BIC15,20, and is the reason the BIC treats all parameters alike. Gull17 discusses 
the selection of the volume in the special case of one fitting parameter only, where the covariance matrix is not 
needed. Sivia and Skilling2 also consider it but in the context of maximum likelihood fitting and apparently 
much more complicated calculations, in which our Eq. (1) is their Eq. (4.20). Much of the discussion of choice 
of priors is on mathematical, not physical grounds13,20–22. For a very recent survey, see Rougier and Priebe19. The 
SI §5concludes with a comparison of what we do here and what is standard in the Bayesian literature.

It is worth noting that Eq. (1) is never analytically exact, because of the truncation of the integrals of the 
Gaussian functions L(pi) at the edges of the parameter prior volume, and eventually if L(pi) are not Gaussians. It 
is not difficult to check whether these issues are significant, nor to make reasonable corrections to the MLI when 
they are. See Example 3 in "Background in fitting a carbon nanotube Raman spectrum" section, and SI §8Fig. S3.

These methods are applicable to Maximum Likelihood (ML) fitting. In contrast to LS fitting, ML fitting can 
easily handle the simultaneous fitting of multiple data sets, and datasets with different uncertainties σi on differ-
ent residuals ri, and it can handle outliers in a rigorous and respectable way23–25. See Example 2 ("Discriminating 
between models for the pressure dependence of the GaAs bandgap" section and SI §7) for both these issues.
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Examples of fitting data
How many parameters best describe data in muon spectroscopy?  Here we find that the Bayes 
factor demands the inclusion of more physically-meaningful parameters than the BIC or significance tests. Fig-
ure 1a presents some data that might reasonably be fitted with as few as three or as many as 22 physically-mean-
ingful parameters. We find that the Bayes factor encourages the inclusion of all these parameters until the onset 
of over-fitting. Even though many of them have fitted values that fail significance tests (i.e. are consistent with 
zero), their omission distorts the fitting results severely.

Figure 1a shows an anti-level-crossing spectrum observed in photo-excited muon-spin spectroscopy26 from an 
organic molecule27. The data are presented in Fig. 2a of Ref.27 and are given in the SI. These spectra are expected 
to be Lorentzian peaks. Theory permits optical excitation to affect the peak position, the width and the strength 
(photosensitivity). In the field region over which the measurements are carried out, there is a background from 
detection of positrons, which has been subtracted from the data presented27. Wang et al.27 did not attempt to fit 
the data rigorously; they did report a model-independent integration of the data, which demonstrated a change 
in area and position.

The model that we fit hypothesises one or more Lorentzian peaks, with optional photosensitivity on each 
fitting parameter and with optional linear backgrounds y = a + bx underlying the peaks, described by the full 
equation given in the SI, equation (S3). To do a single LS fit to all the data, we extend the data to three dimen-
sions, (x gauss, y asymmetry, z) where z = 0 for data in the dark and z = 1 for photoexcited data. Including all the 
data in a single LS fit in this way, rather than fitting the dark and photoexcited data separately, simplifies both 
setting up the fit and doing the subsequent analysis.

Figure 1b shows the evolution of the SBIC and the lnBF as the number of fitting parameters in the model is 
increased. Starting with a single Lorentzian peak, three parameters are required, peak position P, width W and 
intensity A. Three photosensitivity parameters ΔLP, ΔLW and ΔLA are then introduced successively to the fit, 
(open and small data points for n = 3–6). The SBIC decreases and the lnMLI scarcely increases. It is only with 
the inclusion of one background term (n = 7) that any figure of merit shows any substantial increase. There is no 
evidence here for photosensitivity. The weak peak around 7050 G does not seem worth including in a fit, as it is 
evidenced by only two or three data points and is scarcely outside the error bars. However, a good fit with two 
peaks (P1 ~ 7210 G, P2 ~ 7150 G, the subscripts 1 and 2 in accordance with the site labelling of Fig. 2a of Ref.27) 
can be obtained with just five parameters (P1, P2, A1, A2, W). This gives substantial increases in the SBIC and 
lnMLI, further increased when W1 and W2 are distinguished and then when the single background term and the 
three photosensitivity parameters ΔLP2, ΔLW2 and ΔLA2 are successively included (solid or large data points for 
n = 5–10 in Fig. 1b). The SBIC reaches its maximum here, at n = 10, and then decreases substantially when the 
other three photosensitivity parameters and the other three background terms are included. These additional 
parameters fail significance tests as well as decreasing the SBIC (Fig. 1b). Conventionally, the n = 10 fit would be 
accepted as best. The outcome would be reported as two peaks, with significant photo-sensitivities ΔLP2, ΔLW2 
and ΔLA2 for all three of the 7150 G peak parameters, but no photosensitivity for the 7210 G peak (Table 1).

The Bayes factor gives a very different outcome. From 10 to 16 parameters, the Bayes factor between any two of 
these seven models is close to unity (Fig. 1b). That is, they have approximately equal probability. The Bayes factor 
shows that what the conventional n = 10 analysis would report is false. Specifically, it is not the case that ΔLP2, 
reported as − 14 ± 4 G, has a roughly 2/3 probability of lying between − 10 and − 18 G. That is not consistent with 

a b

Figure 1.   Muon-spin spectroscopy. Data from an experiment, muon polarisation as a function of magnetic 
field27, is shown in (a). Error bars on the data are estimated at ± 0.015. Linear background functions due to 
positrons have already been subtracted from the data. The blue solid-circle datapoints (•) were recorded in 
the dark, while the red open-square datapoints (□) were photo-excited. The blue and red solid lines show 
19-parameter fits of three Lorentzian peaks and two linear backgrounds, separately for the data in the dark 
(bluesolid line) and photo-excited (red chain-dotted line). In (b), the evolution of the figures of merit of the fit 
with the number n of fitting parameters is shown (■ SBIC,×lnMLI,•  lnL with the last four points shifted down 
by 30). The open or small data points from three to seven parameters are for a single peak. The solid or large 
datapoints from five to 16 parameters are for two peaks, and from 17 to 20 parameters for three peaks. (Figure 
prepared using Mathematica 12.0, www.​wolfr​am.​com/​mathe​matica/).

http://www.wolfram.com/mathematica/
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the roughly equal probability that it lies in the n = 16 range (− 24 ± 8 G). Table 1 shows that at n = 16, ΔLP2 is the 
only photosensitivity parameter to pass significance tests. ΔLA2, which had the highest significance level at n = 10, 
is now the parameter most consistent with zero. The other four are suggestively (about 1 1/2 σ) different from zero.

Since the Bayes factor has already radically changed the outcome by encouraging more physically-meaningful 
parameters, it is appropriate to try the 7050 G peak parameters in the fit. With only 28 data-points, we should be 
alert to over-fitting. We can include P3 and A3 (n = 18), and ΔLP3 (n = 19), but W3 and ΔLA3 do cause overfitting. 
Figure 1b shows substantial increases of both the SBIC and the lnMLI for n = 18 to n = 20, where the twentieth 
parameter is in fact ΔLA3. The symptom of over-fitting that we observe here is an increase in the logarithm of the 
Occam Factor (lnMLI − lnL), the values of which decrease, − 26.9, − 33.5, − 34.8, and then increase, − 33.4, for 
n = 16, 18, 19 and 20 respectively. Just as lnL must increase with every additional parameter, so should the Occam 
factor decrease, as the prior parameter volume should increase more with a new parameter than the posterior 
parameter volume. So we stop at n = 19. The outcome, Table 1, is that the uncertainties on the n = 16 parameters 
have decreased markedly. This is due to the better fit, with a substantial increase in lnL corresponding to reduced 
residuals on all the data. The 7210 G peak 2 now has photosensitivities on all its parameters, significant to at 
least the 2σ or p value ~ 0.05 level. And the photosensitivities ΔLW2 and ΔLA2, both so significant at n = 10, and 
already dwindling in significance at n = 16, are both now taking values quite consistent with zero. In the light 
of Table 1, we see that stopping the fit at n = 10 results in completely incorrect results—misleading fitted values, 
with certainly false uncertainties.

Discriminating between models for the pressure dependence of the GaAs bandgap.  The main 
purpose of this example is to show how the Bayes factor can be used to decide between two models which have 
equal goodness of fit to the data (equal values of lnL and BIC, as well as p values, etc.). This illustrates the distinc-
tion it makes between physically-meaningful and physically meaningless parameters. This example also shows 
how ML fitting can be used together with the Bayes factor to obtain better results. For details, see SI §7.

Figure 2 shows two datasets for the pressure dependence of the bandgap of GaAs (data given in the SI). The 
original authors published quadratic fits, Eg (P) = E0 + bP + cP2 , with b = 10.8 ± 0.3 meV kbar−1 (Goñi et al.28) 
and 11.6 ± 0.2 meV kbar−1 (Perlin et al.29). Other reported experimental and calculated values for b ranged from 
10.02 to 12.3 meV kbar−130. These discrepancies of about ± 10% were attributed to experimental errors in high-
pressure experimentation. However, from a comparison of six such datasets, Frogley et al.30 were able to show that 
the discrepancies arose from fitting the data with the quadratic formula. The different datasets were reconciled 
by using the Murnaghan equation of state and supposing the band-gap to vary linearly with the density (see SI, 
§7, equations (S4) and (S5)30. The curvature c of the quadratic is constant, while the curvature of the density, 
due to the pressure dependence Bʹ of the bulk modulus B0, decreases with pressure—and the six datasets were 
recorded over very different pressure ranges, as in Fig. 2. So the fitted values of c, c0, were very different, and the 
correlation between b and c resulted in the variations in b0.

Here, using the Bayes factor, we obtain the same result from a single dataset, that of Goñi et al.28 The two 
fits are shown in Fig. 2. They are equally good, with values of lnL and SBIC the same to 0.01. The key curvature 
parameters, c and B′ , are both returned as non-zero by 13.5σ (SI, §7, Table S1), consequently both with p-values 
less than 10−18. However, c is a physically-meaningless parameter. The tightest constraint we have for setting 
its range is the values previously reported, ranging from 0 to 60 μeV kbar−2, so we use Δc = 100 μeV kbar−2. In 
contrast, B′ is known for GaAs to be 4.4931. For many other materials and from theory the range 4–5 is expected, 
so we use �B′ = 1 . The other ranges are same for both models (see SI §7). This difference gives a lnBF of 3.8 in 
favour of the Murnaghan model against the quadratic, which is strong evidence for it. Moreover, the value of B′ 
returned is 4.47 ± 0.33, in excellent agreement with the literature value. Had it been far out of range, the model 
would have to be rejected. The quadratic model is under no such constraint; indeed, a poor fit might be handled 
by adding cubic and higher terms ad lib. This justifies adding about 5 to lnBF (see "Background in fitting a carbon 
nanotube Raman spectrum" section), giving a decisive preference to the Murnaghan model, and the value of b 
it returns, 11.6 ± 0.3. Note the good agreement with the value from Perlin et al.29 If additionally we fix B′ at its 
literature value of 4.4931, lnBF is scarcely improved, because the Occam factor against this parameter is small, 
but the uncertainty on the pressure coefficient, Ξ/B0, is much improved.

When we fit the Perlin data, the Murnaghan fit returns B′ = 6.6 ± 2.4. This is outside range, and indicates that 
this data cannot give a reliable value—attempting it is over-fitting. However, it is good to fit this data together with 
the Goñi data. The Perlin data, very precise but at low pressures only, complement the Goñi data with their lower 
precision but large pressure range. We notice also that the Perlin data has a proportion of outlier data points. 
Weighted or rescaled LS fitting can handle the different precisions, but it cannot handle the outliers satisfactorily. 

Table 1.   Photosensitivity results of fitting the data of Fig. 1a with 10, 16 and 19 parameters. Parameter units as 
implied by Fig. 1a.

ΔLP1 ΔLW1 ΔLA1 ΔLP2 ΔLW2 ΔLA2

10-parameter fit – – – − 14 ± 4
p = 0.002

21 ± 6
p = 0.003

− 9 ± 2
p = 0.0002

16-parameter fit − 5 ± 3.5
p = 0.18

12 ± 8
p = 0.16

− 7 ± 5
p = 0.20

− 24 ± 8
p = 0.008

16 ± 13
p = 0.24

− 5 ± 6
p = 0.45

19-parameter fit − 6 ± 2.8
p = 0.07

14 ± 6.2
p = 0.05

− 9 ± 3.8
p = 0.05

− 25 ± 4.8
p = 0.0006

10 ± 9
p = 0.3

− 2.3 ± 4
p = 0.6
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Maximum Likelihood fitting handles both issues. We construct lnL using different pdfs P(r) for the two datasets, 
and with a double-Gaussian pdf for the Perlin data (see equation (S6) in the SI §7). Fixing B′ at 4.49, fitting with 
the same Ξ/B0 returns 11.42 ± 0.04 meV kbar−1. Separate Ξ/B0 parameters for the two datasets give an increase 
of lnL of 4.6, with values 11.28 ± 0.06 and 11.60 ± 0.04 meV kbar−1—a difference in b of 0.32 ± 0.07 meV kbar−1, 
which is significant at 4½σ. This difference could be due to systematic error, e.g. in pressure calibration. Or it 
could be real. Goñi et al.28 used absorption spectroscopy to measure the band-gap; Perlin et al.29 used photolu-
minescence. The increase of the electron effective mass with pressure might give rise to the difference. In any 
case, it is clear that high-pressure experimentation is much more accurate than previously thought, and that ML 
fitting exploits the information in the data much better than LS fitting.

Background in fitting a carbon nanotube Raman spectrum.  This example demonstrates how the 
Bayes Factor provides a quantitative answer to the problem, whether we should accept a lower quality of fit to 
the data if the parameter set is intuitively preferable. It also provides a simple example of a case where the MLI 
calculated by Eq. (1) is in error and can readily be corrected (see SI §8 Fig. S3).

The dataset is a Raman spectrum of the radial breathing modes of a sample of carbon nanotubes under 
pressure32. The whole spectrum at several pressures is shown with fits in Fig. 1 of Ref.32. The traditional fitting 
procedure used there was to include Lorentzian peaks for the clear peaks in the spectra, and then to add broad 
peaks as required to get a good fit, but without quantitative figures of merit and without any attempt to explain 
the origin of the broad peaks, and therefore with no constraints on their position, widths or intensities. The key 
issue in the fitting was to get the intensities of the peaks as accurately as possible, to help understand their evolu-
tion with pressure. Here, we take a part of the spectrum recorded at 0.23 GPa (the data is given in the SI.) and 
we monitor the quality of fit and the Bayes factor while parameters are added in four models. This part of the 
spectrum has seven sharp pseudo-Voigt peaks (Fig. 3a; the two strong peaks are clearly doublets). With seven 
peak positions Pi, peak widths Wi and peak intensities Ai, and a factor describing the Gaussian content in the 
pseudo-Voigt peak shape, there are already 22 parameters (for details, see SI §8). This gives a visibly very poor 
fit, with lnL = − 440, SBIC = − 510 and lnMLI = − 546. The ranges chosen for these parameters for calculating the 
MLI (see SI §8) are not important because they are used in all the subsequent models, and so they cancel out in 
the Bayes factors between the models.

To improve the fit, in the Fourier model we add a Fourier background y =
∑

cicosix + sisinix (i = 0,..) and 
in the Polynomial model, we add y =

∑

aix
i (i = 0,..) for the background. In both, the variable x is centred 

(x = 0) at the centre of the fitted spectrum and scaled to be ± π or ± 1 at the ends. In the Peaks model we add extra 
broad peaks as background, invoking extra parameter triplets (Pi, Wi, Ai). These three models all gave good fits; 
at the stage shown in Fig. 3a they gave lnL values of − 65, − 54 and − 51 and BIC values of − 156, − 153 and − 148 
respectively. Thus there is not much to choose between the three models, but it is noteworthy that they give 
quite different values for the intensities of the weaker peaks, with the peak at 265 cm−1 at 20.5 ± 1.1, 25.5 ± 1.3 
and 27 ± 1.7 respectively (this is related to the curvature of the background function under the peak). So it is 
important to choose wisely.

A fourth model was motivated by the observation that the three backgrounds look as if they are related to 
the sharp peaks, rather like heavily broadened replicas (see Fig. 3a). Accordingly, in the fourth model, we use no 
background apart from the zeroth term c0 or a0 to account for dark current). Instead, the peak shape is modi-
fied, giving it stronger, fatter tails than the pseudo-Voigt peaks (Tails model). This was done by adding to the 
Lorentzian peak function a smooth function approximating to exponential tails on both sides of the peak posi-
tion (for details, see SI §8) with widths and amplitudes as fitting parameters. What is added may be considered 
as background and is shown in Fig. 3a. This model, at the stage of Fig. 3a, returned lnL = − 62, BIC = − 146, and 
yet another, much smaller value of 15.5 ± 1.0 for the intensity of the 265 cm−1 peak.

The Tails model is intuitively preferable to the other three because it does not span the data space—e.g. if 
there was really were broad peaks at the positions identified by the Peaks model, or elsewhere, the Tails model 
could not fit them well. That it does fit the data is intuitively strong evidence for its correctness. The Bayes factor 

Figure 2.   GaAs band-gap. Data for Eg(P) in GaAs from Goñi et al.28 (■) and from Perlin et al.29 (•) are shown 
after subtraction of the straight line E0 + 8.5P to make the curvature more visible. The Perlin data is expanded 
× 10 on both axes for clarity. Two least-squares fits to the Goñi data are shown, polynomial (dashed red line) and 
Murnaghan (solid blue line). (Figure prepared using Mathematica 12.0, www.​wolfr​am.​com/​mathe​matica/).

http://www.wolfram.com/mathematica/
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confirms this intuition quantitatively. At the stage of Fig. 3a, the lnMLI values are − 251, − 237 and − 223 for the 
Fourier, Poly and Peaks models, and − 211 for the Tails model. This gives a lnBF value of 12 for the Tails model 
over the Peaks model—decisive—and still larger lnBF values for these models over the Fourier and Poly models.

All models can be taken further, with more fitting parameters. More Fourier or polynomial terms or more 
peaks can be added, and for the Tails model more parameters distinguishing the tails attached to each of the 
seven Lorentizian peaks. In this way, the three background models can improve to a lnL ~ − 20; the Tails model 
does not improve above lnL ~ − 50. However, as seen in Fig. 3b, the MLIs get worse with too many parameters, 
except when over-fitting occurs, as seen for the Poly model at 35 parameters. The Tails model retains its positive 
lnBF > 10 over the other models.

The other models can have an indefinite number of additional parameters—more coefficients or more peaks, 
to fit any data set. It is in this sense that they span the data space. The actual number used is therefore itself a 
fitting parameter, with an uncertainty perhaps of the order of ± 1, and a range from 0 to perhaps a quarter or a 
half of the number of data points m. We may therefore penalise their lnMLIs by ~ ln 4 m−1 or about − 5 for a few 
hundred data points. This takes Tails to a lnBF > 15 over the other models—overwhelmingly decisive. This quanti-
fies the intuition that a model that is not guaranteed to fit the data, but which does, is preferable to a model that 
certainly can fit the data because it spans the data space. It quantifies the question, how much worse a quality of fit 
should we accept for a model that is intuitively more satisfying. Here we accept a loss of − 30 on lnL for a greater 
gain of + 45 in the Occam factor. It quantifies the argument that the Tails model is the most worthy of further 
investigation because the fat tails probably have a physical interpretation worth seeking. In this context, it is 
interesting that in Fig. 3a fat tails have been added only to the 250, 265 and 299 cm−1 peaks; adding fat tails to the 
others did not improve the fit; however, a full analysis and interpretation is outside the scope of this paper. In the 
Peaks model it is not probable (though possible) that the extra peaks would have physical meaning. In the other 
two models it is certainly not the case that their Fourier or polynomial coefficients will have physical meaning.

Discussion and conclusions
The most surprising outcome of "Examples of fitting data" section is the desirability of including in models some 
parameters that fail significance tests, and reporting the outcomes. This is relevant to the controversy about 
significance tests such as p values.

In the story of Mr A and Mr B, the two models are explicitly given equal a priori probabilities, p(A) = p(B) = ½ 
if there are no other models in contention, and before any data is considered the lnBF between them is zero. 
Suppose that the fit using model A has given a set of parameter values VA = (pi0 ± δpi), defining the posterior 
parameter volume. With model B, including the extra parameter, correlations between parameters result in 
giving VB = (p

′
i0 ± δp

′
i0, �0 ± δ�) , defining a different posterior parameter volume. The uncertainties δp′i will 

generally be larger than δpi, and the values p′i0 will generally be different from pi0. For illustration, suppose that 
λ0 is non-zero but fails significance tests, being perhaps just 1 or 2σ away from zero, and that the MLIs come 
out equal (i.e. the improvement in lnL in Model B is offset by the Occam factor, and lnBF remains at zero). Now 
to reject λ and to report only the fit to model A is to assert that the true values pi have each a 2/3 chance of lying 
within VA, within the 1σ ranges δpi. However, that assertion is conditional on λ actually having the value zero; 
that is, it is conditional on the truth of the null hypothesis A. And that is a condition that we do not know to be 
true. The failure of B to attain significance is often mistakenly described as evidence for the null hypothesis A. 
Amrhien et al. report that around half of a large number of articles surveyed in five major journals make this 
mistake33. It is not just a scientific mistake10. It can be a disastrous guide to action.

a b

Figure 3.   Carbon nanotube Raman spectrum. In (a), the carbon nanotube Raman spectrum is plotted (black 
datapoints) with a fit (cyan solid line) using the Fourier model. The residuals for four good fits are shown, × 10 
and displaced successively downwards (Fourier, Polynomial, Peaks and Tails; all at lnL about − 60, see text). 
The backgrounds are shown, × 8 (long dashed, chain-dotted, short dashed and solid, respectively. In (b), the 
evolution of the MLIs is shown against the number of parameters for these four models. (Figure prepared using 
Mathematica 12.0, www.​wolfr​am.​com/​mathe​matica/).

http://www.wolfram.com/mathematica/
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According to the Bayes factor, the models A and B have equal probabilities, 1/2 , and so what we know is that 
the parameters of model A have each a 1/3 chance of lying within their 1σ ranges δpi around pi and a 1/3 chance 
of lying within the 1σ ranges δp′ i around p′i . In fact, in this situation (and especially if a significant non-zero λ0 
would be an exciting result—see Ref.34 and discussion below for a current example) the usual reaction to find-
ing that λ0 is 2σ away from zero is to repeat the experiment, to take more data. Of course, that has some chance 
of finding a λ0 closer to zero, but it also has a good chance of confirming a non-zero λ0. So the Bayes factor is a 
guide to action; the significance test is not.

Truth is not within the remit of probability theory. From its origins in Pascal’s and Fermat’s advice to the gam-
bler the Chevalier de Méré (1654)35, probability is fundamentally about how to act when we do not know what 
will happen (or what is true), whether it be the turn of a card in poker, the weather forecast, or the administration 
of an untried medicament. We can write the value or profit of a potential success or win that has the probability 
P(win) as V(win) = P(win) × winnings, and similarly for a potential failure or a loss. In poker, the Expected Value 
of an action is defined as EV = V(win) − V(loss), and it is used to guide decisions how to act—whether to bet, 
or fold. The Bayes factor is the ratio of the probabilities of competing theories given the data. So it lends itself 
directly to multiplication by the financial or other quantifiable valuations of outcomes to guide actions.

Consider the current controversy about vitamin D and Covid-19. Model A (the null hypothesis) recommends 
inaction (action A), Model B recommends mass medication with vitamin D as a prophylactic (action B), and 
further research on the question (action C) may also be considered. The evidence for Model B is weak, but it is 
not insubstantial. A recent editorial in the BMJ concluded that it is strong enough to make the case for action C 
“compelling.”36 Martineau summarised the case for action B as “... it’s not the highest level of evidence. I guess 
there’s a philosophical question—if you have an intervention [action B] that has a good chance of working and 
is completely safe, why not implement it?”37.

Of course, there are answers to Martineau’s seemingly rhetorical question. There is the cost. Paying for action 
B means that something else won’t be paid for, and if that would have worked and action B does not then action 
B will—at least in hindsight—have been a poor decision. There is the question, which of perhaps an unlimited 
number of equivalent actions B′ might be chosen—intravenous bleach, homeopathy or Vitamin D? If one, why 
not all the others? Martineau’s “if completely safe” is also important, since virtually nothing is completely safe. 
These points are important complexities, but citing them does not definitively answer the question.

Using the Bayes factor, Martineau’s question can be answered quantitatively. A “good chance” implies a lnBF in 
the range 1–2 for Model B against Model A. Crudely, the benefit of taking no action, A, is the saving on the cost 
of actions B and C. Maybe some £108. The benefit of action B at once, if Model B is true, is, crudely, some £1011 in 
the avoidance of unnecessary deaths and lockdowns. The benefit of action C alone is much more complex, even 
negative, if it displaces research into other therapies, but, crudely, it delays action B so its best return is smaller. 
So the contributions of ln V(B)/V(A) to add to lnBF are about ln1000 =  + 7 for B and (less certainly) about + 5 
for C alone. A full analysis should of course refine these costs and benefits by costing the complexities. And of 
course it could use other quantitative data than financial, such as numbers of deaths. But if it were to confirm 
these outcomes, both B and C should be undertaken urgently.

The issue of bleach and homeopathy is readily dealt with. With an unlimited number of putative actions B′ 
based on models B′ to consider, their a priori probabilities should be rated as very small, except when there is 
evidence for them that is rated as not insubstantial. Then the factor p(B′)/p(A) will outweigh—negatively—the 
factor V(B′)/V(A).

For a simpler example, consider the example of Ref.33. They find evidence (from the LHCb experiment at 
CERN) for the violation of lepton universality (Model B), at the 3.1 sigma level (less than the 5-sigma level 
demanded in particles physics research), that is, a probability of 0.997, and a lnBF against the null hypothesis 
(Model A) of − ln 0.003 = 6. This is sufficient to encourage further work. It may be further increased by ln 
V(B)/V(A), if the value of physics beyond the Standard Model can be estimated, and the costs of the further 
work. The value is presumably of the order of the total cost of the Large Hadron Collider, as this is what is was 
built to find. The costs of some further work must be orders of magnitude less, so ln V(B)/V(A) may be about 5, 
increasing lnBF to 11, decisively in favour of further work.

In conclusion, calculation of Bayes factors should be a routine part of all data fitting. It gives advice that is 
the opposite of much standard practice, but which satisfies Occam’s Razor intuitions, and enables robust model 
selection and parameter estimation. Bayes factors, being the ratio of probabilities, are readily multiplied by 
financial or other quantitative data to quantify intuitive or philosophical arguments for actions.
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