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a Dataset for Evaluating 
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Models
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Due to the complexity of the biomedical domain, the ability to capture semantically meaningful 
representations of terms in context is a long-standing challenge. Despite important progress in the past 
years, no evaluation benchmark has been developed to evaluate how well language models represent 
biomedical concepts according to their corresponding context. Inspired by the Word-in-Context (WiC) 
benchmark, in which word sense disambiguation is reformulated as a binary classification task, we 
propose a novel dataset, BioWiC, to evaluate the ability of language models to encode biomedical 
terms in context. BioWiC comprises 20’156 instances, covering over 7’400 unique biomedical terms, 
making it the largest WiC dataset in the biomedical domain. We evaluate BioWiC both intrinsically and 
extrinsically and show that it could be used as a reliable benchmark for evaluating context-dependent 
embeddings in biomedical corpora. In addition, we conduct several experiments using a variety of 
discriminative and generative large language models to establish robust baselines that can serve as a 
foundation for future research.

Background & Summary
Biomedical corpora, such as scientific articles and patient reports, contain a wealth of knowledge and informa-
tion that can be used to enable high-quality research. However, the extraction of knowledge from these free-text 
sources is a challenging task as it requires the ability to understand the meaning of natural language and the 
idiosyncrasies of the biomedical domain but also due to the volume of the data1. Biomedical natural language 
processing (NLP) techniques have been used to analyze information from free-text sources at scale, enabling 
the extraction and synthesis of biomedical information, and transforming unstructured data into a structured 
format2,3.

Compared to general corpora, NLP models face three main challenges for semantic representation of bio-
medical data4–7. First, the number of biomedical entities is extremely high. For example, the SNOMED-CT 
ontology8 defines more than 300’000 medical concepts while the UniProt Knowledgebase (UniProtKB)9 con-
tains more than 550’000 curated proteins. Combined, the number of concepts described in these two knowledge 
organization systems is higher than the number of terms defined in dictionaries for many natural languages. 
Second, biomedical concepts have many synonyms and alternative expressions for the same concept. For 
example, in Fig. 1 the concept “C0007134” defined in the Unified Medical Language System (UMLS) thesau-
rus can be represented with at least four terms: “Renal Cell Carcinoma”, “RCC”, “Nephroid Carcinoma”, and 
“Adenocarcinoma”. Third, biomedical corpora are notorious for their overabundance of abbreviations and acro-
nyms10. These abbreviations and acronyms are often polysemous, e.g., the acronym “RCC” in Fig. 1 belongs to 
two concepts – “C2826323” and “C0007134” – making their semantic representation even more challenging.
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Entity linking11 and word sense disambiguation (WSD)12 are two NLP tasks trying to address the issue of 
semantic representation in the biomedical field. Entity linking systems aim to connect terms mentioned in a 
text with corresponding concepts in a knowledge organization system13,14. For instance, the abbreviation “CA” in 
biomedical contexts can stand for either “calcium”, an essential mineral in the human body, or “cancer”, a group 
of diseases characterized by abnormal cell growth. An ideal entity linking system would employ contextual 
cues to correctly map“CA” to its standardized form in a chosen knowledge base, e.g., UMLS. This proper align-
ment assists in reducing ambiguity, enhancing the understanding of biomedical corpora15,16. In the biomedical 
domain, a wide array of datasets exists for entity linking, each employing distinct text corpora as their primary 
contextual resource. For instance, MedMentions17 and BC5CDR18 focus on biomedical abstracts, N2C2 201919 
on clinical notes, and COMETA20 on social media content. These datasets are also differentiated by their tar-
get ontologies. For instance, MedMentions17 aligns with UMLS, BC5CDR18 connects to MeSH, and SMM4H21 
links with the MedDRA ontology. Each dataset serves a unique purpose within the biomedical entity linking 
landscape.

Given a word in context, the objective of WSD is to associate the word with its correct meaning in a sense 
inventory22,23. For example, in the sentence “The patient has been suffering from a cold.”, the sense for the word 
cold should be associated with its medical meaning as opposed to temperature or literature (i.e., James Bond novel 
by John Gardner) meanings. Two of the most prominent biomedical WSD datasets are MSH WSD24 and NLM 
WSD25. The MSH WSD dataset, created by the National Library of Medicine, comprises 37’888 instances across 
203 ambiguous terms and abbreviations from the Medical Literature Analysis and Retrieval System Online 
(MEDLINE) 2010 baseline, each linked to the MeSH ontology. Similarly, the NLM WSD dataset, also developed 
by the National Library of Medicine, includes 5’000 instances for 50 ambiguous biomedical terms, with each 
instance linked to UMLS. Despite the steps forward in this promising research direction, the main limitation 
of the current approach to the WSD task lies in the restriction on the range of word and sense representations 
defined by the predefined sense inventories26,27.

To bridge this gap, the Word-in-Context (WiC) benchmark26 presented a novel perspective on WSD, drop-
ping the requirement of traditional formulation of WSD task to the fixed sense inventory27. WiC formulates 
WSD as a binary classification task, where a polysemous word appears in two different sentences, and the 
task is to infer whether the word holds the same meaning or not. WiC has been integrated as a component of 
SuperGLUE28, a comprehensive evaluation framework designed to assess the performance of natural language 
understanding systems. XL-WiC27 and TempoWiC29 are two recent extensions of WiC adapting it to 12 different 
languages and targeting the detection of meaning shifts in Twitter, respectively. The WiC-TSV (Target Sense 
Verification of Words in Context) dataset30 is closely related to WiC and focuses on a binary disambiguation 
task, determining if the contextually intended sense of a word aligns with a pre-defined target sense. This data-
set comprises general domain instances in its training and development sets, but the test set is distinctively 
composed of instances in the general domain as well as three domain-specific subsets: cocktails, medicine, and 
computer science. For all instances, the primary context source is the Wikilinks dataset31. For the biomedical 
domain instances in WiC-TSV specifically, the target sense definitions are sourced from the MeSH ontology. 
The main limitation of this dataset is the small number of biomedical instances it offers — 205 instances repre-
senting 8 unique biomedical terms. Moreover, the dataset’s scope is limited as it only includes target terms and 
definitions from the MeSH ontology. These constraints could potentially limit the effectiveness of the dataset in 
the development and evaluation of comprehensive WSD systems in the biomedical domain.

Despite significant progress both in WSD and entity linking tasks in the biomedical domain15,31–34, there 
exists no benchmark that specifically targets the semantic representation of biomedical terms as a WiC-style 
task. To bridge this gap, we present the BioWiC35 benchmark, a novel dataset that provides high-quality annota-
tions for the evaluation of contextualized term representations in the biomedical domain. Inspired by the WiC26, 
we formulate BioWiC as a binary classification task, whose aim is to identify whether two target terms in their 

Fig. 1 Illustration of concept ambiguity in the biomedical domain. Left: Example of the UMLS 2021AB data 
structure, where one term refers to different concepts as well and one concept may be represented with different 
mentions. Right: Example of a paragraph with numerous polysemous acronyms and abbreviations from a 
biomedical journal52. Acronyms and abbreviations are highlighted in bold.
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respective contexts have the same meaning. In addition to its focus on biomedical concepts, BioWiC differs from 
WiC in several ways. First, in contrast to WiC which focuses on single token words, as targets, BioWiC allows for 
terms that can be single words, phrases, or multiword expressions. Second, BioWiC terms may be represented 
not only by the same terms in different contexts but also by different term forms referring to the same concept 
(or not). The dataset is named “BioWiC”, reflecting its design for the biomedical domain while showcasing its 
relation to the WiC task.

A key attribute of BioWiC35 is its flexibility and scalability. Unlike WSD and entity linking that is restricted 
to concepts covered by existing knowledge graphs, BioWiC can be expanded independently of such resources. 
This is because expanding the dataset for a novel concept can be accomplished by annotating instances where 
two sentences contain the target concept, regardless of whether or not it is included in any existing knowledge 
organization resource. This flexibility allows for continual evolution and improvement, independent of updates 
to standardized resources, providing a more comprehensive and up-to-date resource for research in the bio-
medical field.

Methods
In this section, we present BioWiC35 – a novel benchmark dataset for evaluating in-context biomedical concept 
representations. First, we explain the resources we used to create the corpus and the pre-processing steps. We 
then provide an overview of the methodology used to create the dataset and discuss the processes for instance 
generation, dataset splitting, and quality assessment.

BioWiC resources. As shown in Table 1, BioWiC35 instances were built using annotations from the following 
manually curated biomedical entity linking datasets:

MedMentions17: this is the largest entity linking dataset in the biomedical domain. It includes 4’392 PubMed 
abstracts and over 350’000 mentions linked to UMLS. The full MedMentions version covers 128 UMLS seman-
tic types. However, as stated by17, the concepts can be either too expansive (e.g., “Group, South Asia”) or cover 
peripheral and supplementary topics (e.g., “Rural Area, No difference”). Thus, we follow36,37 and focus on the 
officially released subset of MedMentions called ST21pv (21 Semantic Types from Preferred Vocabularies), 
which contains 203’282 biomedical mentions from 21 UMLS semantic types.

BC5CDR18: introduced in the BioCreative challenge, this dataset comprises 1’500 PubMed abstracts and 
13’343 mentions linked to Medical Subject Headings (MeSH) concepts. The dataset covers a wide range of bio-
medical entities, including 4’409 chemicals, 5’818 diseases, and 3’116 instances of chemical-disease interactions.

NCBI Disease38: developed by the National Center for Biotechnology Information (NCBI), this dataset 
includes biomedical information derived from 793 PubMed abstracts. It comprises 6’892 disease mentions, 
each associated with their relevant standardized forms in the MeSH or Online Mendelian Inheritance in Man 
(OMIM) terminologies.

Data pre-processing. To have homogeneous word-in-context instances from different resources, we unified 
their format using the following steps:

•	 Sentence segmentation: Each BioWiC35 instance is composed of a pair of target terms together with their 
respective sentences. We use the PySBD library39, version 0.3.4, to determine sentence boundaries in the 
initial source texts (i.e., abstracts of publications). We parse documents and keep only sentences that contain 
mapped mentions.

•	 Label unification: The source datasets of BioWiC35 map mentions (i.e., terms) have different target knowl-
edge organization resources, i.e., MeSH, OMIM, and UMLS. This results in concept codes, i.e., unique iden-
tifiers in the target ontology, that cannot be directly comparable. To address this issue, we used UMLS as 
the main reference and transferred the concept identifiers from MeSH and OMIM to UMLS using available 
ontology mappings in UMLS 2021AB. To avoid ambiguity, MeSH or OMIM concepts with multiple mappings 
in UMLS 2021AB were removed.

BioWiC construction. BioWiC35 instances follow a similar format to WiC, where each instance involves a 
pair of biomedical terms (w1 and w2) and their corresponding sentences (s1 and s2). The task is to classify each 
instance as True if the target terms carry the same meaning across both sentences or False if they do not. We rep-
resent each instance as a tuple pair t = [(s1,w1),(s2,w2)]: y where w1 and w2 are the target terms, s1 and s2 are the cor-
responding sentences, and y is the associated binary label. Table 2 presents some examples of BioWiC instances. 
In contrast to WiC, where both target terms of each instance always share the same lemma, BioWiC allows for 
variations such as abbreviations, synonyms, identical terms, and terms with similar surface forms.

To evaluate challenging scenarios for semantic representation, such as synonymy, polysemy, and abbrevia-
tions, BioWiC35 is divided into four main groups of instances. Group A (term identity) contains instances where 

Dataset Ontologies Semantic types Documents Sentences Mentions

Medmentions UMLS 21 UMLS types 4392 44903 203’282

BC5CDR MeSH Disease, Chemical 1500 11562 13’343

NCBI Disease MeSH, OMIM Disease 792 3891 6’892

Table 1. General statistics of BioWiC35 resources. The sentence count in each source is determined using the 
PySBD library39, version 0.3.4.
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the target terms w1 and w2 are identical. In group B (abbreviations), either w1 or w2 could represent the abbrevia-
tion of the other one. Group C (synonyms), consists of instances where w1 and w2 could be synonyms (according 
to UMLS). Lastly, group D (label similarity) includes instances where w1 and w2 share similar surface forms. We 
employed the following five steps to generate the BioWiC instances:

 (i) Sentence collection: We first gathered all the sentences from the source datasets manually annotated 
with terms M(W,C) = {(w1, c1), (w2, c2), …, (wn, cn)}, where w ∈ W is a term and c ∈ C is a concept defined 
in UMLS. Then, we created a set S = {s1, …, sn}, where each sentence s ∈ S has at least one mention w ∈ W 
linked to c ∈ C.

 (ii) Tuple creation: For each sentence s ∈ S, we randomly chose one of the annotated mentions w and created 
a set of sentence-term tuples P = {(s1, w1), (s2, w2),…,(sn, wn)}, where for each (si, wi) ∈ P, si includes wi. We 
then paired the tuples of P and created a collection of tuple pairs:

T s w s w s w s w s w s w{[( , ), ( , )] , [( , ), ( , )] , , [( , ), ( , )]}m m n n1 1 2 2 1 1 3 3= … .

 (iii) Instance definition and labeling: We considered each pair t = [(si,wi), (sj,wj)] ∈ T as a potential BioWiC35 
instance, where wi and wj serve as target terms and si and sj are their corresponding sentences, respectively. 
Each instance is labeled as y = True if the target terms wi and wj were linked to the same or synonym UMLS 
concept, and as y = False if they were not. We then added the label y to each tuple pair to create the dataset 
of possible BioWiC instances t = [(si,wi),(sj,wj)]: y.

 (iv) Tuple selection: We categorized each instance t: y to one of the main groups of BioWiC35. Group A includ-
ed instances for which wi and wj are identical. Group B included instances where wi is the abbreviated form 
of wj or vice-versa. Group C included instances where wi and wj could be synonyms. Group D included 
instances where wi and wj are not identical but share similar surface characteristics.

 (v) Dataset splitting: We divided the instances into three parts: training set, development set, and test set, 
providing a consistent and reliable framework for model training and evaluation.

For clarity, in Fig. 2 we provide an example of building BioWiC35 instances for the target term “delivery”. 
Initially, we preprocess the resource data and extract all sentences in which “delivery” is linked to UMLS. We 
transform each sentence to the sentence-term tuple (si,w) format where si represents a sentence containing 
the term w = “delivery”. Subsequently, we permute all possible combinations of tuples (si,w) identified in the 
preceding step to generate BioWiC instances t = [(si,w),(sj,w)], where “delivery” serves as the target term in both 
sentences. Finally, we classify each instance as True when “delivery” is mapped to the same CUI code in both 
sentences and as False when it is not.

Instance generation. To build the BioWiC35 instances, we considered two main challenges of biomedical 
texts: semantic and lexical ambiguities. The presence of semantically ambiguous terms, that is, terms that can have 
multiple meanings in different contexts, is one of the most difficult aspects of biomedical text processing3. For 
instance, the term staph can be used either as a type of disease (usually followed by infection) or bacteria in other 
contexts. In addition, one concept can be used in different domains to represent meaning. To assess the capability 
of language models to provide context-sensitive representations for a term across different contexts, we included 
a group of instances (group A) in BioWiC in which a target biomedical term appears in two different contexts. 
Another key challenge in the biomedical domain is that terms can be expressed in various forms or using different 
lexical formats, even if they refer to the same biomedical concepts. To account for this challenge, we developed 
three other groups of BioWiC instances to measure language models’ ability to use context and produce similar 
representations for synonym terms with different surface strings. We categorize synonyms into three different 
groups: i) abbreviations, ii) synonyms, and iii) concepts with similar surface characteristics. Each instance in 
these groups contains two target terms with different surfaces, each occurring in a different context and the mod-
els should identify whether these terms refer to the same biomedical concept or not.

Instance group # Sentence 1 Sentence 2 Label

Term identity
1 … clinical use of the anthracycline doxorubicin 

(DOX) is limited by its cardiotoxic effects …
… mitomycin C (MMC) has been suggested to be 
cardiotoxic, especially when combined with or given … T

2 … a wide range of key concepts and terms of PE from 
clinical and biomedical researc …

… associated with mortality in COPD patients with low-
risk PE (adjusted OR 1.11; 95% CI, 1.04-1.66) … F

Abbreviations
3 … the gene responsible for FEO to an interval of less 

than 5 cM between D18S64 and D18S51…
… affecting the signal peptide of RANK, cause familial 
expansile osteolysis. T

4 Periodontal disease has risk factors in common with 
a number of other non-communicable diseases …

… allosteric activator of mGlu7 receptors, were thus 
tested in different rodent models of PD. F

Synonyms
5 Initial low levels of IL-10 were associated with an 

increase in physical disability …
Assessment of Interleukin-17A, Interleukin-10 and 
Transforming Growth … T

6 … variations of heart period (HP), systolic arterial 
pressure (SAP) and respiration (R).

… subjects who fail ventilation with the C-E technique 
can be ventilated effectively … F

Label similarity
7 … deletion of the KIT and PDGFRA genes may 

account for the piebaldphenotype in this patient …
Piebaldism in this family thus appears to be the human 
homologue to dominant white spotting (W) … T

8 More anemic than non-anemic FDS2 patients died 
(28.7% versus 8.0%; P < 0.001) …

… observed were comparable in AZT and PHZ treated 
mice with similar degrees of anaemia. F

Table 2. BioWiC35 instances, drawn from the test split. The target terms of each instance are in bold.
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Instance groups. In what follows, we discuss how we created the instances for each group:

 (A) Term identity: To create these instances, we use the tuple pair list, built-in step 3 of the construction 
pipeline, and consider every pair t = [(si,wi),(sj,wj)] ∈ T as an instance of group A if wi and wj are identical. 
We classified each t as True if both terms were linked to the same UMLS CUI and False otherwise. Two 
instances of this type are shown in Table 2 (examples one and two). In the first example, both target terms 
refer to the same concept and have the same meaning (i.e., toxicity that impairs or damages the heart, 
UMLS CUI C0876994). So, the instance label is True. In the second instance, however, the target terms are 
mapped to different CUIs (C0032914 and C0034065), and thus the instance label is False.

 (B) Abbreviations: In this group, one of the target terms is the abbreviated form of the other one, e.g., heart 
rate and hr. From the tuple pair list, we pick up all the pairs t = [(si, wi),(sj,wj)] ∈ T if wi is the abbreviated 
form of wj or vise-versa. To verify this, we generate the abbreviated form of wi by combining the initial 
letters from each part obtained after splitting it (e.g., “FEO” is considered as the abbreviation of “familial 
expansile osteolysis”). Next, we compare whether wj is the same as the abbreviation of wi. We perform the 
same procedure for wj as well. If either of the wi or wj is the abbreviation of the other, we categorize the tuple 
pair into this group. Each tuple pair then is assigned to the label True if wi and wj are mapped to the same 
UMLS and False otherwise. As shown in example 3 of Table 2, “FEO” in sentence 1 is used as the abbrevi-
ation of “familial expansile osteolysis”. So the instance is labeled as True. In example 4, however, the target 
term PD does not have the same meaning as “Periodontal disease” and thus the instance is labeled as False.

 (C) Synonyms: This group refers to instances in which the target terms w1 and w2 belong to the same UMLS 
concept. Each UMLS synonym set consists of a group of biomedical synonym concepts that express the 
same meaning. As shown in Fig. 1, due to semantic ambiguity, biomedical concepts with several distinct 
meanings can be represented by several distinct synonym sets. For instance, “Adenocarcinoma” could have 
the same meaning as either “Renal Cell Carcinoma” (CUI C0007134) or “Carcinoma in adenoma” (CUI 
C0001418). Consequently, we consider these concepts as potential synonyms, which may or may not 
hold the same meaning depending on their context. To create the instances, we collect all the tuple pairs 
t = [(si,wi),(sj,wj)] from T in which wi and wj both are present in a UMLS synonym set. We then assigned 
the label True to each instance if wi and wj are linked to the same UMLS CUI code, and False if they are not. 
Two examples of this group of instances are shown in Table 2.

 (D) Label similarity: Despite broad coverage of synonyms and semantic types, UMLS synonym sets still suffer 
a lack of a large number of reformed concepts that can be used in biomedical contexts. For instance, the 
concept “chronic pseudomonas aeruginosa infection” can be reformed as “chronic PA infection”, which is 
not covered by UMLS. To deal with this and to cover a wide range of target concepts with different formats 
in the dataset, we developed the fourth group of instances in which the corresponding terms have a high 
Levenshtein distance ratio (see examples 7 and 8 in Table 2). To create such instances, we retrieve all tuple 

Fig. 2 The overall pipeline of the BioWiC35 construction process. Step 1: Pre-process the source documents to 
a consistent format. Step 2: Identify and retrieve sentences including the term “delivery” linked to UMLS. Step 
3: Pair the retrieved sentences to generate BioWiC instances. In Step 3, the green box shows an example of a 
BioWiC instance with the same target concept, while the red boxes show examples of different target concepts.
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pairs t = [(si,wi),(sj,wj)] ∈ T in which the Levenshtein distance between wi and wj surpasses the threshold of 
0.75. Each tuple t is marked as True when wi and wj correspond to the identical UMLS entry, and False in 
the other case. The main idea behind this strategy was to include instances where target terms have similar 
surface forms but refer to different medical concepts. Two instances of this group are shown in Table 2. In 
example 7, both “piebald” and “piebaldism” refer to the same concept, whereas in example 8, “anemic” and 
“anaemia” refer to two different concepts.

Data Records
BioWiC35 dataset is available on Figshare (https://doi.org/10.6084/m9.figshare.25611591.v2), HuggingFace 
(https://huggingface.co/datasets/hrouhizadeh/BioWiC), and GitHub (https://github.com/hrouhizadeh/
BioWiC). It comprises three distinct JSON files: training set, development set, and test set. Each instance within 
a JSON file includes ten parts. The first two items, term1 and term2, followed by sentence1 and sentence2, corre-
spond respectively to the two target terms and two sentences within each instance. The character-level position-
ing of target terms is defined by start1 and start2, indicating the starting positions, and end1 and end2, marking 
the end positions within their respective sentences. Furthermore, the cat attribute classifies each instance into 
one of the BioWiC groups, i.e., term_identity, abbreviations, synonyms, or label_similairty. Lastly, a binary label 
is attached to each instance, taking the value of either 1 (True) or 0 (False).

technical Validation
Dataset splits. We divided the BioWiC35 instances into three main parts i.e., training set, development set, 
and test set, thereby establishing a structured and robust framework for model development and evaluation. To 
do so, we first built the test set including 2’000 instances with three constraints: 1) only one instance for each 
unique pair of target terms, 2) no sentence repetition between instances, and 3) no overlap between sentences 
and term pairs of the test set and training or development sets. The primary objective of rules 1 and 2 was to 
ensure a diverse range of term pairs and sentences in the test set. Rule 3 was also introduced to assess the gener-
alization power of the language models, i.e., the model’s ability to adapt to new, previously unseen data. Taking 
into account the constraints mentioned, we randomly sampled a set of 2000 term pair instances from the groups 
defined in section 2.3.1 (800, 200, 800, and 200 samples for term identity, abbreviations, synonyms, and label 
similarity groups, respectively) to build the testing data set. Finally, we used the remaining instances to create the 
training set. General statistics of the different splits of BioWiC are reported in Table 3. In addition, following WiC, 
we balanced all the data splits in terms of the number of tags, i.e., 50% True and 50% False.

During the compilation of the training set, we adopted a simple approach where we only included examples 
of their corresponding sentences that did not exceed a certain frequency threshold. We built the training set 
with various thresholds, ranging from 1 to 200, to determine the most appropriate limit. As illustrated in Fig. 3, 
the size of the training set, the number of unique concepts, and the number of semantic types in the training set 
varied based on these thresholds. It was observed that once a sentence recurrence surpassed 100 times, the incre-
mental growth of the training set size as well as the number of unique concepts was marginal, registering below 
2%. Furthermore, if the threshold is set higher, the number of unique semantic types included in the training set 
will not exceed 98. As a result, we chose 100 as our cut-off point.

Split

Instance group Words per 
sentence

Unique 
sentences

Unique 
term pairs

Unique 
CUIs

Unique 
semantic types

Unique semantic 
groupsTerm idn Abbs Syns Label sim All

Train 3606 2480 7072 3998 17156 22.8 14522 5243 4448 98 15

Dev 400 100 400 100 1000 22.8 1820 821 1052 81 14

Test 800 200 800 200 2000 23.0 4000 2000 1870 88 15

All 4806 2780 8272 4298 20156 22.9 20102 8064 5303 99 15

Table 3. General statistics of BioWiC35, divided by splits. “term idn”, “abbs”, “syns”, and “label sim”, stand for 
“term identity”, “abbreviations”, “synonyms”, and “label similarity”, respectively. The number of words per 
instance is calculated using the BERT (bert-base-uncased) tokenizer.

Fig. 3 Impact of different thresholds for max sentence repetition in the training set. Left: Impact on the training 
set size; Center: Impact on the frequency of unique concepts; Right: Impact on the frequency of unique UMLS 
semantic types.
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Quality control. UMLS is known as a broadly used resource in the biomedical domain, covering a wide 
range of biomedical concepts. A key feature of UMLS is its capability to connect a wide range of concepts from 
different biomedical terminologies, such as SNOMED CT, LOINC, MeSH, RxNorm, etc. Through this mapping, 
one single code from a source terminology can be mapped to several UMLS CUI codes. For instance, MeSH code 
D020274, which represents “Depressive Disorder” is mapped to three distinct UMLS CUIs, C5671289, C0751871, 
and C0751872, for “Autoimmune Encephalitis”, “Autoimmune Diseases of the Nervous System” and “Immune 
Disorders, Nervous System”, respectively. In our dataset, there are instances where different CUI codes are 
assigned to the target concepts, resulting in the False label. However, the CUI codes and the confusion and same 
code in alternative ontologies, underlying concepts represented by those codes are equivalent. To prevent any 
confusion and to ensure the dataset’s reliability, we have employed a pruning strategy and removed the instances 
in which the target terms are mapped to multiple UMLS codes, while those UMLS codes correspond to the same 
code in another ontology. The process also involved eliminating any pairs whose CUIs are considered synonyms 
as per the MRREL.RRF file from UMLS. We also followed WiC26 and XL-WiC27 and filtered out all the pairs where 
one CUI is directly related to the other as a broader concept in the UMLS hierarchy.

Cross-mapping validation. To determine the quality of BioWiC35, we extracted two random subsets of 
100 instances (with 50 mutual instances) from the test set and asked two domain experts to label them. Both 
annotators were medical doctors with vast experience in semantic annotation. They were provided with a set of 
instructions including a short description of the task as well as a few examples of labeled instances. During the 
annotation process, no external information from UMLS or any other resources was provided to the experts. The 
annotators had Cohen’s Kappa score of 0.84 which is representative of the high quality of the dataset. An average 
human-level accuracy of 0.80 (0.80 and 0.81 for annotator 1 and annotator 2 respectively) was obtained through 
the annotation process, which can be viewed as the upper bound for model performance.

Dataset coverage. In this section, we focus on the scope of the dataset by studying the unique CUI codes 
and comparing them to the total CUI present in UMLS. Additionally, we investigate the semantic types within 
the dataset, examining both the number included and the proportions among them. Table 3 shows that BioWiC35 
covers over 5,000 unique CUI codes from UMLS. Additionally, BioWiC includes almost 80% of UMLS semantic 
types, i.e., 99 out of 127, across different splits. This wide coverage is indicative of the dataset’s comprehensive and 
its potential as a valuable resource for biomedical research. In Fig. 4, we present the ratio of the top 10 semantic 
types and semantic groups included in BioWiC. Additionally, Table 4 shows the frequency and proportion of 
target terms across different BioWiC splits, categorized by their token counts.

Compared to WSD datasets in the biomedical domain, BioWiC35 stands out as the most comprehensive 
in terms of the variety of unique biomedical terms it includes, covering a total of 7’413 distinct terms. This 
range far surpasses that of other datasets, such as MSH WSD24 with 203 terms, NLM WSD25 with 50 terms, and 
WiC-TSV30, which includes only 8 terms. Moreover, the extensive scope of BioWiC is emphasized by its incor-
poration of 99 different semantic types from UMLS, in contrast to the narrower range covered by other datasets, 
i.e., MSH WSD24, NLM WSD25, and WiC-TSV30, which include 81, 46, and 8 UMLS semantic types respectively.

Baseline experiments. We have implemented several baseline models, covering all the SuperGLUE28 
benchmark suites. Considering that all divisions of BioWiC35 are balanced in terms of positive and negative 
instances, we take the same approach as WiC26 and use the accuracy metric to measure the performance of differ-
ent models. This is determined by the percentage of correctly predicted cases (whether they are true positives or 
true negatives) compared to the total number of samples. The baselines include:

Random: We provide a lower bound for the performance by randomly assigning a class to each instance.
GloVe: In this baseline, we used GloVe-840B40 pre-trained embeddings. We averaged token embeddings to 

represent each sentence and fed the resulting feature vector to an MLP classifier (with 128 neurons in the hidden 
layer and one neuron in the output layer).

Bi-LSTM: We also trained a BiLSTM model (with 128 hidden units) to capture both the forward and back-
ward context information of the sentence. The BiLSTM model output was fed into a fully connected layer with 
one output neuron for binary classification.

BERT: We explored the performance of several BERT-based models to provide stronger baselines for the 
BioWiC35 task. To evaluate well language model’s performance generalized to concepts of the biomedical 
domain, our baseline includes three general transformer-based language models – BERT41, RoBERTa42, and 
ELECTRA43. In addition, to assess the effect of prior knowledge of language models on biomedical concept 
representation, we evaluated the performance of three language models pre-trained with biomedical and clinical 
data – BioBERT44, Bio_ClinicalBERT45, and SciBERT46 trained on PubMed abstracts and PubMed Central, the 
MIMIC-III database47, and papers from Semantic Scholar (mostly in the biomedical domain), respectively. To 
fine-tune each model, we used the Sentence-BERT48 framework, which incorporates siamese and triplet net-
work architectures to generate semantically meaningful embeddings. We pre-processed each input sentence by 
enclosing the target terms within double quotes, emphasizing their significance, and fed the modified sentences 
into the BERT architecture for further processing. We have also used a different pre-processing technique for 
input sentences in our BERT models. Supplemental Table 1 in the Supplementary Information section compares 
the results of both strategies.

Llama-2: We also conducted experiments using three different versions of the Llama-2 language model, i.e., 
Llama-2-7b, Llama-2-13b, and Llama-2-70b49. Our experiments involve a few-shot approach where the language 
model receives a small number of examples before making predictions and a fine-tuning approach, where we 
utilized the BioWiC35 instances to fine-tune the language models.

https://doi.org/10.1038/s41597-024-03317-w
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BERT/Llama-2++: We conducted additional experiments where we incorporated the general domain data 
from the WiC dataset26 as additional training data for fine-tuning the transformer-base models. By expanding 
our training data with extra instances from the general domain, we aim to explore the potential benefits of lev-
eraging diverse sources of information for the BioWiC35 task.

Results
The performance of the baseline models on the BioWiC35 benchmark is presented in Fig. 5. The results indicate 
that the state-of-the-art language models fine-tuned on the BioWiC training set, surpass the random baseline 
by a margin of 18% to 26% (p-value < 0.001). Both GloVe and BiLSTM baselines are unable to compete with 
the fine-tuned large language models. Overall, Llama-2-70b outperforms all competing methods, achieving 
the highest accuracy. The closest to the Llama-2-70b model in terms of accuracy are BioBERT, BioBERT++, 
and SciBERT++, which Llama-2-70b outperforms by 2% (p-value = 0.04). It is worth noting that in contrast 
to the different variations of the Lamma-2 language model, which are pre-trained on general domain corpora, 
BioBERT is pre-trained on large biomedical data, allowing it to understand complex biomedical texts effec-
tively44. However, Llama-2-70b achieves state-of-the-art performance, illustrating its high capability for adapt-
ing to the task of representing biomedical terms in context.

In our analysis of different Llama-2 models, we observe a significant difference in performance depending 
on the method used in our evaluation, i.e., few-shot learning or fine-tuning. As shown in Fig. 5, Llama-2-7b 
surpassed the random baseline by a slight margin in the few-shot setting; however, its performance increased 
by 17% upon fine-tuning (p-value < 0.001). This pattern of performance boost was consistent with the other 
Llama-2 variants. Specifically, after the fine-tuning process, the accuracy of Llama-2-13b improved from 0.61 to 
0.73 (p-value < 0.001), while Llama-2-70b experienced an increase from 0.68 to 0.78 (p-value < 0.001). These 
observations emphasize the crucial role of the fine-tuning phase in enhancing the contextualized representation 
of biomedical terms. Additionally, our results are consistent with a prior study50, which demonstrated that the 
GPT-3 language model failed to surpass random baseline performance on the WiC dataset under a few-shot 
evaluation.

Comparing the performance of different BERT-based models shows that BioBERT and SciBERT achieve the 
highest performance among different groups of the test set. Overall, BioBERT outperforms SciBERT by a slight 
margin of 1% accuracy, i.e., 0.75 and 0.76 (p-value = 0.04), respectively. The potential reason for the superior 

Fig. 4 Distribution of UMLS semantic types and semantic groups in BioWiC35. Left: Top 10 semantic types; 
Right: Top 10 semantic groups.

Tokens per term

Train Dev Test All

# % # % # % # %

1 22011 64 1385 69 2987 74 26383 65

2 8893 26 458 23 784 20 10135 25

3 2406 7 118 06 166 4 2690 7

4+ 1030 3 39 02 63 2 1132 3

All 34340 100 2000 100 4000 100 40340 100

Table 4. Distribution of terms based on token count across different BioWiC35 splits, presented in counts and 
corresponding proportion. “4+” indicates terms with four or more tokens.
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performance of BioBERT and SciBERT can be attributed to their pre-training phase on large biomedical cor-
pora. This provides them with an in-depth knowledge of biomedical terminologies and concepts, leading to 
more accurate representations of terms and expressions when compared to BERT-based models pre-trained on 
the general domain corpora44. Surprisingly, Bio_ClinicalBERT performance is similar to the general domain 
BERT models and does not align with other superior biomedical BERT variants.

Further analysis of the results for different groups indicates that the “term identity” and “synonyms” groups 
present a greater challenge compared to the other groups for all models. Regarding model performance for 
the “label similarity” group, it is plausible that minor changes in term structure carry meaningful distinctions 

Fig. 5 Accuracy of the baseline models on the BioWiC35 test set. ++ indicates that data from WiC was added to 
the training set. Min, mean, median, and max statistics exclude the random performance.
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in biomedical contexts. Models might utilize structural alterations, such as the addition of suffixes or prefixes, 
influencing the meanings of terms. This understanding of term structure can be particularly relevant and bene-
ficial for performance in the “label similarity” group. As for the “abbreviations” group, it is important to note that 
abbreviations are commonly used in the biomedical domain. The models may have come across these abbrevi-
ations (along with their full form) in various contexts during both the pre-training and fine-tuning phases. This 
exposure to abbreviations in diverse settings helps the models to effectively learn and capture their meanings. 
The group of “synonym” instances appears to be more difficult for models to handle. This might be because, in 
the biomedical field, a single term can have multiple synonyms with varied forms and each synonym can have 
multiple meanings (as shown in Fig. 1) which makes it hard for the models to recognize synonym terms with 
different shapes across different contexts. For the “term identity” group, since this group of instances doesn’t 
present any difference between the target terms, the models cannot rely on lexical cues and must prioritize 
the comprehension of the contextual information from the surrounding context, which makes the task more 
challenging.

In our study, we also conducted experiments in which we incorporated general domain training data from 
WiC26 into our dataset (denoted by adding++ to the name of the language model). We observe slight fluctu-
ations in the performance of the models when merging general and biomedical domain datasets. It could be 
possibly explained by the fact that the model faces potential distribution shifts due to the distinct nature of 
each domain. Despite the increased volume of training data, this misalignment in data distributions can offset 
the advantages of the added samples. Thus, while the combined dataset is larger, it may not necessarily lead to 
improved model performance in the biomedical context.

alternative evaluation scenarios. To gain a deeper understanding of how models perform in the 
BioWiC35 benchmark, we analyzed their performance in two alternative scenarios. First, we assessed how the data 
distribution impact their results. Here, we considered seen and unseen data distributions. Second, we assessed 
what is the influence of the training corpus on the performance. Differently, in this scenario, we are interested to 
see whether learning from general corpus examples would enable models to generalise to the biomedical domain.

Seen vs unseen: In this analysis, the aim is to evaluate the variation in performance based on whether the 
target terms in the instances have been previously seen during training or not. For this purpose, we used the 
models fine-tuned on the BioWiC35 training set and divided the test set into two categories: “seen” and “unseen”. 
The first category includes instances where the model has been exposed to at least one of the target terms during 
training, while the second category involves instances where both target terms are new to the model. Table 5 
reports the number and proportion of seen and unseen data across different groups within the BioWiC test set. 
Note that term pairs (the two target terms of each instance) and the sentences in the test set are unique and were 
not presented to the model during its training phase.

Table 6 shows the accuracy of different models, fine-tuned on the BioWiC35 training set when tested on 
seen and unseen data sets. As we can see, the models exhibit a significant decline in performance, i.e., between 
5% and 13%, when classifying unseen instances. Interestingly, models demonstrate improved performance on 

Instance group

Seen Unseen All

# % # % # %

Term identity 412 52 388 48 800 100

Abbreviations 190 95 10 5 200 100

Synonyms 675 84 125 16 800 100

Label similarity 179 90 21 10 200 100

All 1457 73 543 27 2000 100

Table 5. Distribution of seen and unseen instances in different groups of BioWiC35 test set.

Model

Distribution Training set

Seen Unseen WiC BioWiC

BERT 0.72 0.67 0.63 0.70

ELECTRA 0.69 0.64 0.62 0.68

RoBERTa 0.74 0.64 0.63 0.71

BioBERT 0.79 0.67 0.64 0.76

Bio_ClinicalBERT 0.73 0.62 0.62 0.70

SciBERT 0.77 0.68 0.64 0.75

Llama-2-7b-fine-tuned 0.72 0.59 0.50 0.68

Llama-2-13b-fine-tuned 0.76 0.64 0.51 0.73

Llama-2-70b-fine-tuned 0.80 0.70 0.51 0.78

Table 6. Comparative analysis of model accuracy on BioWiC35 test set. Left: performance of the models trained 
using BioWiC on the seen data vs unseen data distributions. Right: performance using WiC or BioWiC as the 
training set.
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the unseen data in the “abbreviation” groups, aligning with the notion that abbreviations are prevalent across 
contexts and models may possess prior knowledge in this aspect. Overal, the findings suggest that there is huge 
scope for improvement in this field, particularly as the performance of models decreases when encountering 
novel data.

Cross-domain analysis: We conducted additional experiments to assess the performance of language mod-
els when fine-tuned exclusively on data from the general domain, specifically WiC. The results indicate that all 
models experience a substantial decrease in performance when fine-tuned only with WiC data (Table 6). This 
highlights the importance of the training data provided by BioWiC35 in enhancing the ability of language models 
in the representation of different forms of concepts within the biomedical field. Furthermore, this suggests that 
the differences in terminology and linguistic patterns between the biomedical and general domains might be a 
reason why models fine-tuned on BioWiC exhibit superior performance.

Evaluating models’ upper bound: To assess whether state-of-the-art models have reached an upper bound 
on the BioWiC dataset, we leveraged two subsets of 100 instances from the BioWiC test set that were man-
ually annotated by subject matter experts (see the cross-mapping validation section for more details). On 
the 50 instances annotated by both experts, we observed strong inter-annotator agreement (Cohen’s Kappa 
score = 0.84), confirming the quality of the dataset annotations. However, the best-performing model (Llama-
2-70b) exhibited low agreement with the human annotators on this mutually annotated subset (Cohen’s Kappa 
scores of 0.35 and 0.36). The pattern of discrepancies between human and model annotations persisted across 
the two subsets of 100 instances (Cohen’s Kappa scores of 0.33 and 0.47 for annotators 1 and 2, respectively). 
These results highlight the substantial room for improvement of language models to represent contextualized 
biomedical terms.

Usage Notes
The primary objective of this study is to develop a novel biomedical dataset, BioWiC35, introducing unique chal-
lenges for biomedical concept representation. The complexity of the biomedical language, with its abundance 
of polysemous terms, abbreviations, and acronyms, highlights the need for models to accurately disambiguate 
the intended meanings of terms based on the context they appear. We propose that BioWiC can serve as a 
robust benchmark dataset, enabling NLP models to better understand the intended meaning of biomedical 
terms within their given textual context, allowing models to generate representations that precisely capture 
those intended meanings across different contexts. This enhanced contextual understanding is critical for sev-
eral downstream NLP tasks in the biomedical domain, such as information retrieval, question-answering, and 
machine translation, where accurately interpreting the meaning of terms within their specific context is essential 
for optimal model performance51.

The proposed benchmark has certain limitations that should be taken into consideration. The breadth of cov-
erage of concepts is rather limited as BioWiC35 only deals with a small subset of the concepts present in the bio-
medical domain, i.e., 5’000 CUIs out of 4.5 M CUI codes available in UMLS. Moreover, it may not be adequate 
for certain use cases that require a specific coverage of concepts, e.g., genomics and proteomics. Additionally, 
our benchmark is currently designed to work with medical documents written in English only. Lastly, it is a 
static benchmark, in the sense that it does not currently provide a seamless platform (i.e., web service) for users 
to contribute to it through crowd-sourcing. This limits the ability to keep the benchmark up-to-date and reflec-
tive of the latest developments in the biomedical domain. These limitations can be addressed in future versions 
of the benchmark.

Code availability
The entire process, including the development of the dataset35 and the conduction of experiments, was 
implemented using the Python programming language. The complete code and dataset are hosted on GitHub at: 
https://github.com/hrouhizadeh/BioWiC.
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