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From home energy management 
systems to energy communities: 
methods and data
antonio Ruano  1 ✉ & Maria da Graça Ruano2

this paper introduces the HEMStoEC database, which contains data recorded in the course of two 
research projects, NILMforIHEM, and HEMS2IEA, for more than three years. to be manageable, the 
dataset is divided in months, from January 2020 until February 2023. It consists in: (a) consumption 
electric data for four houses in a neighbourhood situated in the south of Portugal, (b) weather data for 
that location, (c) photovoltaic and battery data, (d) inside climate data, and (e) operation of several 
electric devices in one of the four houses. Raw data, sampled at 1 sec and 1 minute are available 
from the different sensing devices, as well as synchronous data, with a common sampling interval of 
5 minutes are available. Gaps existing within the data, as well as periods where interpolation was used, 
are available for each month of data.

Background & Summary
Over the last two decades the global electricity consumption market has been growing at an average yearly 
reported level of 3.1%. One of the largest consumer sector are buildings, and in particular the residential sector. 
Managing efficiently the flow of electricity in a house is important, not only from the point of view of the owner’s 
electricity bill, but also from the point of view of global consumption, as well as from the point of view of the 
electrical grids. In fact, traditional grids find it difficult to cope with this increasing demand, exacerbated by the 
integration of extensive variable energy resources, such as renewable energy systems.

The present dataset is the result of two projects NILMforIHEM, and HEMS2IEA. The aims of the first pro-
ject were to improve the performance of existing non-intrusive load monitoring algorithms and the efficiency 
of energy systems in homes. The second project, using the results of the former, aimed to propose new energy 
management techniques for local energy communities, managed by an aggregator. It was considered that the 
aggregator would interface with each residential management system and with the electricity grid, allowing elec-
tricity to be managed in accordance with different community contracts. The dataset enables several different 
topics related to the efficient use of energy in households and communities to be investigated by the research 
community. In the sequel a brief review of these topics is conducted.

Home energy management systems. The goal of a Home Energy Management System (HEMS) is to 
manage efficiently the flow of electricity in the house, so that the electric bill is reduced or annulated, maintaining 
the comfort of its occupants. Despite the large interest of the research community, due to the complexity and 
diversity of the systems, as well as by the use of suboptimal control strategies, energy consumption is still higher 
than necessary, and users are unable to yield full comfort in their homes. Excellent reviews detailing HEMS 
developments in recent years are available; please consult the reviews of Beuadin and Zareipour1, Leitão and 
co-workers2, Mahapatra Mahapatra and Nayyar3 or Gomes et al.4. According to this last reference, HEMS can be 
broadly divided into four classes: traditional techniques, model predictive control, also known as model-based 
predictive control (MBPC), heuristics and metaheuristics, and other techniques. The first class comprises meth-
ods based on traditional optimization techniques, typically using commercial solvers. Perhaps the most impor-
tant sub-class within traditional methods is the use of Mixed-Integer Linear Programming (MILP), which refers 
to optimization techniques where the objective function is a linear function and subject to linear restrictions, but 
includes mixed, continuous and discrete variables. Examples of household energy management based on MILP 
are the works of:
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 a) Lu et al.5, where the results of the proposed HEMS are compared with other energy management systems, 
showing the effectiveness of the proposed model, through case studies that allow reducing energy costs in 
both summer and winter;

 b) Baek et al.6, where results are compared when demand response is employed and when it is not. They 
demonstrate that the strategy presented with demand response is superior;

 c) Lyu et al.7, where the proposed methodology allows to reduce house costs by 53% and reduce Peak-to-Av-
erage Ratio (PAR) by around 70%.

Model-based predictive control is an advanced control technique based on a receding horizon principle, 
aimed at determining the best sequence of actions while meeting the requirements. The application of MBPC 
in HEMS has increased significantly in recent years. For instance, in Mirakhorli et al.8 a HEMS for a residential 
building with a Photovoltaic (PV) system, Electric Storage System (ESS), thermal and electric loads, and Electric 
Vehicles (EV) is proposed. The MBPC problem considered a prediction horizon of four hours for every five min-
utes. Rao and co-workers9 propose a HEMS for a smart home focusing on the energy balance between the three 
phases to control both active and reactive power. Several case studies are considered, assuming a prediction 
horizon of twenty-four hours, a control horizon of twenty-four hours, and a simulation horizon of forty-eighty 
hours. A comprehensive approach of a mixed-integer quadratic-programming MPC scheme based on the ther-
mal building model and the building energy management system is employed by Killian and co-workers10.

Heating, ventilation and air conditioning systems. It is recognized that near 40% of the energy (see 
Pérez-Lombard and co-workers11) consumed in buildings is due to the operation of Heating, Ventilation and 
Air Conditioners (HVAC). For this reason a special care should be devoted to this specific equipment. MBPC 
is perhaps the most proposed technique for HVAC control since it offers an enormous potential for energy sav-
ings. Typically what is sought is the minimization of the energy spent, or the electricity bill, incurred in the 
HVAC operation, while simultaneously maintaining the room(s) under thermal comfort. Thermal comfort can 
be assessed in different ways, the most used being temperature regulation. In some cases, the relative humidity 
is also maintained within user-defined bounds. In the last years, the Predicted Mean Vote (PMV) is increasingly 
used. The PMV index is based on human thermal sensation which is strongly related with the energy balance of 
the body when the human body is considered in a heat balance situation, i.e., the heat produced by metabolism 
equals the net loss of heat. The classical way in which the PMV index can be obtained was presented by Fanger12 
and is dependent on six variables: metabolic rate, clothing insulation air temperature, relative humidity and veloc-
ity, and mean radiant temperature.

For HVAC control, MBPC can be applied in several different ways. Donaisky and co-workers13 minimized 
the PMV index, generating a nonlinear PMV model having a Wiener structure. Ma et al.14 employ a simple 
thermal mass model to minimize a cost function employing economic costs. Castilla et al.15 minimize the PMV 
index, using a PMMPC model. In Chen’s work16 the energy is (indirectly) minimized, using constraints on the 
thermal sensation scale, where the use of the PMV index is compared with an Actual Mean Vote index. A sim-
ple thermal model is used in this approach. In Huang et al.17 a neural network is used to optimize a start-stop 
strategy for temperature-regulated control. Li et al.18 minimize the energy spent and violations of bounds on air 
temperature, using a state-space formulation for the prediction of these variables.

Non-intrusive load monitoring. Energy monitoring is a key point of a HEMS; it can be done installing 
measuring devices at every load of interest or using Non-Intrusive Load Monitoring (NILM) methods, which 
disaggregate the overall usage, using a measure of the load at the utility service entry. Research, however, is still 
needed in this field, specially in terms of simple algorithms, without requiring either special-purpose hardware 
or the use of high-sampling power data.

Excellent reviews on NILM algorithms can be found in the works of Georgios Angelis et al.19 and Ruano and 
co-workers20,21.

The main stages in a NILM application are21:

 a) Data collection: electrical data, including current, voltage, and power data, are obtained from smart meters, 
acquisition boards or by using specific hardware;

 b) Event detection: an event is any change in the steady state of an appliance over time. An event implies 
variations in power and current, which can be detected in the electrical data previously collected by means 
of thresholds;

 c) Feature extraction: appliances provide load signature information or features that can be used to distin-
guish one appliance from another;

 d) Load identification: using the features previously identified, a classification procedure takes place to deter-
mine which appliances are operating at a specified time or period, and/or their states.

Regarding step (a), the most important point to consider is the sampling interval applied to the electrical 
signals. They can broadly be classified into very low (slower than one minute), low (between than one minute 
than one second), medium (sampling frequency between one and fifty/sixty Hz), high (from fifty/sixty Hz to two 
kHz), very high (between two and forty kHz) and extremely high (greater than forty kHz). Another point to take 
in consideration is the hardware used to acquire the data. Commercial devices typically only achieve very low 
and low frequencies; higher sampling frequencies need specialized hardware. Related with that are data storage 
and processing capabilities, which obviously increase with the sampling frequency employed.

Focusing now at step (b), according to the work of Anderson et al.22 event detectors typically use three differ-
ent approaches: expert heuristics, probabilistic models and matched filters. The former consist of the creation of 
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a set of rules for each appliance. Initial NILM works used this approach. Probabilistic models provide a proba-
bility, used to make a decision about the occurrence of events. A particularly well-known case is the Generalized 
Likelihood Ratio (GLR) method (please see Anderson’s work22). Finally, matched filters are characterized by 
extracting the signal waveforms and correlating them with known patterns.

The features that can be used to identify an appliance are obviously related to the sampling time employed. 
For very low and low frequencies, active, apparent and reactive powers are often used, together with 
Root-Mean-Square values of the current or voltage. Medium rate acquisition allows the use of transient features 
of the electrical features. High sampling rates allow to employ spectral features such as harmonics (see Meehan 
et al. work23), Discrete-Wavelet Transform (Chang and co-workers24), and so on. Very high rate data allows to 
obtain much more detail about each appliance’s waveform, either from the higher harmonics or from the shape 
of the raw current and voltage waveforms themselves. Two-dimensional voltage-current (V-I) trajectories were 
used in Hassan and co-workers investigation25.

Using the features described above, computed from the aggregate load, the objective in step d) is to identify 
the appliances that are operating at a given time. This can be formulated as a optimization or classification prob-
lem, as four appliance types are usually considered:

•	 Type I—On/off devices: most appliances in households, such as bulbs and toasters;
•	 Type II—Finite-State-Machines (FSM): the appliances in this category present states, typically in a periodical 

fashion. Examples are washer/dryers, refrigerators, and so on;
•	 Type III—Continuously Varying Devices: the power of these appliances varies over time, but not in a periodic 

fashion. Examples are dimmers and tools.
•	 Type IV—Permanent Consumer Devices: these are devices with constant power but that operate 24 h, such as 

alarms and external power supplies.

This way, for the case of type II appliances, identification is not only translated into which appliances are 
active, but also their states.

A very large number of techniques have been proposed for this step. They can be very broadly classified 
as optimization methods and machine learning (supervised and unsupervised) techniques. Optimization 
approaches use different methods to perform a combinatorial search. Examples are hybrid programming (Kong 
et al. work26), genetic algorithms (Egarter, Sobe & Elmenreich paper27) and others. Supervised techniques use 
offline training to achieve a database of information used to design the classifier(s). These are the most employed 
class of methods; the works of Chang et al.24, Kelly & Knottenbelt28 and Wu and Wang29 belong to this class. 
Unsupervised methods do not require any training prior to classification, which is an important advantage. 
Feature clustering, and the later labelling of each cluster with meaningful appliance names has been applied by 
Yang and co-workers30. The most recent unsupervised techniques applied to NILM belong to a family of meth-
ods that assume that the electrical signal is the output of a stochastic system, maintaining a representation of the 
whole system state, instead of dealing with individual events. Examples are Hidden Markov Methods (HMM) 
and variants (please see the works of Cutsem et al.31 and Kong et al.32).

Forecasting. Another important point for HEMS is the ability to forecast the values of important variables 
for energy management. And several forecasts are necessary, such as the home load demand, either global or 
appliance-based, the electricity produced by renewable energy sources, if available, weather variables, occupancy, 
inside climate, for instance. The better the quality of the estimation, the better the electricity management that 
can be achieved.

Forecasting techniques can be envisaged from several points of view, such as: (a) the time-scales involved; 
(b) the exogeneous variables used in the model; and (c) the methods applied. Regarding the former, time-scales 
can vary from horizons of a few seconds or minutes (intra-hour or very short forecasts, for control and adjust-
ment actions), a few hours (intra-day or short/medium, for energy resource planning and scheduling, as well 
as for the electricity market), to a few days ahead (intra-week or long, for unit commitment and maintenance 
schedules). The choice of employing exogeneous variables, and in the affirmative case, which variables are used 
depends essentially on the model application. Finally, looking at the methods, in the general case they can 
be broadly divided into statistical and machine learning methods (obviously forecasting of specific variables 
may employ other class of methods). Statistical models are typically linear models such as persistent forecasts, 
Auto-Regressive (AR), Auto-Regressive–Moving-Average (ARMA), and Auto-Regressive Integrated Moving 
Average—ARIMA. Machine Learning methods are the most used nowadays and typically comprise several 
different shallow and deep neural networks, whether isolated or fusing different models.

Regarding PV power forecasting, several reviews exist in the topic. The interested reader can consult, for 
instance, the works of Alcañiz et al.33 or Pandžić and Capuder paper34, and the references within. Forecasting 
PV power will also need the forecasting of atmospheric variables, such as solar irradiation (please see El-Amarty  
et al. work35), air temperature (Tran et al.36), and possibly others. As examples, Yang and co-workers37 proposed 
a hybrid scheme, involving classification, training, and forecasting stages. This scheme is used for one-day ahead 
hourly forecasting of PV output. Fonseca and co-workers38 compare the suitability of a non-parametric distribu-
tion and three parametric distributions in characterizing prediction intervals for photovoltaic energy forecasts 
with high levels of confidence. Mei et al.39 propose an LSTM-Quantile Regression Averaging-based nonparamet-
ric probabilistic forecasting model for PV output power.

Households load demand forecasting is an active area of research as, on one hand, it allows the occupants 
to be aware of the energy consumption of their own house and, consequently, to take measures to reduce this 
consumption and the energy bill, and, on the other hand to enable a more efficient operation of the HEMS. 
During the last years, computational intelligence techniques somehow replaced physical-based methods, as 
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the former do not require knowledge of the building geometry and physical phenomena to deduce an accurate 
prediction model. Several reviews exist on this topic, such as Foucquier’s40, Wei et al.41, Ahmad et al.42 and Wen 
et al.43. As in the case of PV forecasting, different exogenous variables can be applied to the prediction models, 
such as atmospheric air temperature, number of occupants, codifications of days between, week, weekend, and 
holidays, to name but a few. Different computational methods can also be applied. For instance, Mynhoff et al.44 
compared different prediction models: Artificial Neural Networks-Nonlinear Auto-Regressive (ANN-NAR), 
HMMs, Support Vector Machines (SVM), MultiLayer Perceptrons (MLP) and Deep Belief Networks (DBN) for 
one-step daily and weekly forecasts. Yildiz and co-workers45 compared the forecasting performance of ANNs, 
SVMs and Least-Squares SVMs, with different data resolutions and forecasting horizons, with several models, 
each applied to a different load profile, obtained by clustering the load profiles.

Forecasts can also be applied to energy markets. In recent years, in many countries, the acquisition and sale 
of electricity is traded in energy markets (please see Yildiz and co-workers46). Accurate forecasts of the electric-
ity demand and price are therefore a need for the participants in the energy markets. In particular, the one-day 
ahead hourly forecast, considered a short-term forecast, has received increasing attention from the research 
community. Comprehensive reviews on load and price forecasting are available in Suganthi & Samuel47 and 
Weron’s work48 respectively.

Finally, according to Zhang, He & Yang49, existing load and generation forecasting algorithms can be clas-
sified into two classes: point forecasts and probabilistic forecasts. The former provides single estimates for the 
future values of the corresponding variable, which are not capable of properly quantifying the uncertainty 
attached to the variable under consideration. The latter algorithms are increasingly attracting the attention of the 
research community due to their enhanced capacity to capture future uncertainty, describing it in three ways: 
prediction intervals, quantiles, and probability density functions (PDF) (please see Bracale and co-workers50).

Communities of energy. Obviously, better and more efficient solutions, not only from each householder’ 
point of view, but also from the community consumption perspective, are extensions of the tools above described 
to groups of households that share between them the energy produced or stored, in the form of communities 
of energy. In this context the local HEMS can be hierarchically controlled by an aggregator, which supervises 
not only the management of energy in each local prosumer (productor/consumer), but also the flow of energy 
between the members of the community as a whole, as well as the exchanges between the community and  
the grid.

It is within this context that this dataset is introduced. It spans more than three years of data, covering differ-
ent types of variables of high importance to the field of electrical energy and thermal comfort of, either isolated 
or community-based households. More specifically, it allows, for a single prosumer, to:

 a) Test and validate different control strategies for home energy management systems, as done by us in51,52. 
The first reference compares MBPC control implemented with the Branch-and-Bound technique for 
HVAC control with the house proprietary system. The second reference employs a MILP method in a 
MBPC framework, controlling not only the inverter, but also appropriately scheduling loads. Both ap-
proaches achieve important savings in the electricity bill.

 b) Design forecasting energy consumption models, as discussed in53–55. The first reference employs a design 
Multi-Objective-Genetic-Algorithm (MOGA)56 framework available in our lab, which performs feature 
selection, topology determination and parameter estimation, to forecast load demand forty-eight-steps-
ahead, with a time-step of fifteen minutes. The second one extends the previous approach to an ensemble 
of MOGA designed models. The third one proposes an hybrid forecasting mechanism to use with52.

 c) Design forecasting PV energy generation models57. The approach described above is applied to PV power 
generation, with great success.

 d) Moving from deterministic forecasting to probability forecasting, for both load demand and PV power 
generation58

 e) Test and validate different non-invasive load monitoring (NILM) algorithms, as performed in59,60. The first 
reference employs ApproxHull61, a data selection tool existing in our lab to deep learning models. The sec-
ond one uses ApproxHull and MOGA to design shallow models to detect appliance operation and energy 
estimation,

 f) Design forecasting thermal comfort models, as well as test and validate control strategies for Heating, Ven-
tilation and Air Conditioning (HVAC) systems, as in62. Very basically, HVAC is controlled so that it guar-
antees PMV thermal comfort within user-predefined schedules, while minimizing the energy consumed, 
making use of forecasting models of solar radiation, atmospheric air temperature and relative humidity, 
inside air temperature, relative humidity and mean radiant temperature, as well as room occupancy.
Additionally, for a community of four houses, it allows to:

 g) Test and validate different control strategies for the community energy management system, which can 
be found in63, where the MILP-MBPC strategy described above is extended for a community of houses. 
Different ways to share the produced and stored energy are compared.

 h) Design day-ahead net load point and probabilistic forecasting to work with energy markets, in64;
 i) Test and validate transfer learning strategies for NILM, as discussed in D’Incecco’s work65.

All the above topics are important, on their own, for future research. What perhaps is most important and 
should be stressed is that significant improvements on the general field of energy efficiency in buildings and 
energy communities require the join research of all these topics, to which others can obviously be added. This is 
an added-value of this dataset in comparison with existing ones, as this includes all the data needed to address 
all the topics considered, which is not verified in existing datasets.
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As the households that were employed in this research are typical Mediterranean detached family houses, 
the data available in this dataset can be used as representative of that segment of buildings, and climate. By this 
we mean that it is expectable that methods and techniques applicable to the nine classes of problems identified 
above, using this dataset, will produce similar results to other households or communities in regions with a 
similar climatic type.

As both raw data, typically sampled at one second or at one minute (please see below) and curated data, syn-
chronized with a five minutes sampling are available, different sampling intervals can be used for the different 
methods. The dataset can be found at66.

Methods
Data was collected from four residential houses, situated in Gambelas, Faro, in the south of Portugal. All four are 
detached houses, with two floors and garden, where families live. Two of the houses have triphasic meters, while 
the others are monophasic. The former will be denoted as TH1 and TH2, while the latter are coined MH1 and 
MH2. TH1 has a PV system and a energy storage, MH1 has a photovoltaic system, and the others do not have 
any renewable energy source.

TH1 was used in NILMforIHEM project, that started in 2019. For this reason, and because it was used for 
objectives a) to f) above, has much more data for a much larger period of time. This house and the three addi-
tional houses were employed for project HEMS2IEA, which started in 2021. Only electric consumption data was 
recorded for these three houses. Recorded data for the four houses spans from November 2021 until July 2022. 
After this date, as one of the houses had major works, data was reduced to three houses.

TH1 has twenty different spaces (including garden, halls, and so on). The floor plans are shown in Fig. 1.
A photovoltaic system was installed, composed of 20 Sharp NU-AK panels67, each panel with a maximum 

power of 300 W. (please see Figs. 2 and 3) The inverter is a Kostal Plenticore Plus (Fig. 4) converter (KI)68, which 
also controls a BYD Battery Box (Fig. 5) HV H11.5 (with a storage capacity of 11.5 kWh)69.

The house electric panel consists of sixteen monophasic circuit breakers, plus a triphasic one. Several electric 
variables are measured in every circuit breaker, providing approximate ground truth for the NILM identifica-
tion. Circutor Wibees (WB)70 are used as the measurement devices. They are plug and play wireless devices and 
use Hall Effect technology for the measurement. Because of that, calibrations are required for correct measure-
ments. Voltage, current, frequency, active reactive and apparent power, power factor, active inductive reactive 
and capacitive reactive energy are measured every second for the every monophasic circuit breakers, the same 
number for each phase of the triphasic one, together with totalized values. In total, 198 variables are sampled by 
the WBs every second.

Fig. 1 Floor plans of TH1. Top: 1st floor; bottom: ground floor.
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Total consumption data is supplied by a Carlo Gavazzi (EM340) three-phase energy meter71. This meter is 
a class X certificated device, and electrical measurement is done using a two-wires Modbus RTU connection. 
EM340 supplies 37 different electric variables, sampled at one Hz.

Fig. 2 Photovoltaic panels.

Fig. 3 Photovoltaic panels.

Fig. 4 Inverter.
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Measurements of the energy produced by the PV, stored in the battery and injected in the grid are obtained 
either from the inverter (KI) or from a Kostal smart energy meter (KEM)72. Home electrical consumption var-
iables are also available in the inverter. In total, 78 variables are obtained by KEM and KI, at a sampling interval 
of one minute (Fig. 9).

For on/off control Smart Plugs Self-Powered Wireless Sensors73 are used (Fig. 7). They are also used to ena-
ble sockets belonging to the same CB to be measured individually. They are read/controlled directly using an 
internal web service. The number of SPs changed with time, enabling the measurement of six variables every 
second for each plug. In a similar way to the SPs, the Air Conditioner in Room B14 in Fig. 1 can be measured 
and actuated.

A Weather station (please see Mestre et al.74) measures the air temperature and relative humidity, and global 
solar radiation, at one second intervals (Fig. 6).

Self-Powered Wireless Sensors (please see Ruano et al.75) are used for measuring climate room data, such as 
air temperature and relative humidity, status (open/close) of doors and windows, walls temperature, light and 
room movement (Fig. 8). They are Ultra-Low-Power devices and communicate via ISM radio band working on 
2.4 GHz or 868 MHz frequencies.

Data transmission from/to the measurement devices is available through Gateways and a Technical Network. 
A technical IP-cabled and a wireless network have been created using a network router, separating the home 
network from the technical network.

Fig. 5 Battery Box.

Fig. 6 Weather Station.
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Finally, an IOT platform was created to interactuate with the data acquisition system. For more information 
on the acquisition system and the IOT platform, please see Ruano et al.76.

In the three additional houses, only electric consumption is measured. For this reason, in TH2, a Carlo 
Gavazzi EM340 meter was installed. In MH1 and MH2, Carlo Gavazzi EM112 (one-phase) meters were 
installed, providing a subset of variables acquired by the EM340.

Data Records
The data records are available in Zenodo66. The datasets are divided in months, starting in January 2020, 
and ending in February 2023, spanning therefore more than three years. They are Matlab data files, with 

Fig. 7 Smart Plug.

Fig. 8 Self-Powered Wireless Sensor.

Fig. 9 Schneider panel.

https://doi.org/10.1038/s41597-024-03184-5


9Scientific Data |          (2024) 11:346  | https://doi.org/10.1038/s41597-024-03184-5

www.nature.com/scientificdatawww.nature.com/scientificdata/

the format ‘v7’, which can be loaded using the usual ‘load’ Matlab command. Notice that the use of this for-
mat enables the data to be read directly by other languages, such as python, using the function loadmat in  
scipy.io.

The sensing devices are categorized in eight categories, and within each category, there might be different 
appliances.

The variables measured by the Wibeees are shown in Table 2.
There are sixteen monophasic WBs and 1 triphasic. The monophasic WBs range from one to fifteen, and 

nineteen. The triphasic one ranges from sixteen to eighteen, corresponding to each one of three phases. The most 
important electric appliances in TH1 are shown in Table 3.

The data acquisition of the wibeees is asynchronous. This means that there is a time basis for each device. The 
different time basis are stored in the matrix dtvec. The number of samples for each device is stored in the vector 
ndt. Therefore, if you want to plot the evolution of the phase factor of, let us say, wibeee 6, you should use the 
Matlab command:
•	 plot(dtvec(1:ndtvec(6),6),PFvec(1:ndtvec(6),6)

There are several variables associated with the inverter/battery. These variables are sampled at a 1 minute rate. 
They are detailed in Tables 4–8.

There are several variables associated with the EM112 and EM340 meters. These variables are sampled at a 
one second rate. They are detailed in Table 9 for the monophasic meters, and in Table 10, for the triphasic ones. 
The variables might be vectors (if only one house is measured in the corresponding period) or matrices (if there 
are measurements available for the two houses).

The maximum number of Smart Plugs existent in TH1 was 4. Data was sampled at one second. The measured 
variables are represented in Table 11.

The Intelligent Weather Station measures data minute by minute. The variables are shown in Table 12.
The Self-Powered Wireless Sensors measure variables in 4 compartments of TH1: in the first floor, the Hall, 

Bedrooms 1_2 and 1_4, and in the ground floor, the Lounge (please see Fig. 1). Data is sampled at 1 minute 
intervals. The measured data is shown in Tables 13–16.

Finally, Table 17 illustrates the variables measured by the Air Conditioner at bedroom 1_4. Data is measured 
at one minute intervals.

technical Validation
Until now, we have mentioned variables named as ‘***vec’. They are a raw version of the variables ***, with 
possibly interpolated data (please see below). The time basis for each one of the 34 devices is, as already specified, 
different from each other, and expressed in each dt***vec variables.

Variable Variable Name Units

Time basis dtvec datetime

Number of Samples ndtvec

Voltage Vvec Volts

Current Ivec Ampere

Frequency Fvec Hertz

Active Power APvec kW

Reactive Power RPvec kVAR

Apparent Power ApPvec kVA

Power Factor PFvec

Active Energy AEvec kWh

Inductive Reactive Energy IREvec kVARh

Capacitive Reactive Energy CREvec kVAh

Table 2. Variables measured by Wibeees. All variables are matrices (except ndtvec, which is a vector).

Categories Device numbers Comments

1 - Wibees 1–19 See Tables 2, 3

2 – EM340 20,31 See Table 10

3 - Inverter 21 See Tables 4–8

4 – Smart Plugs 22–24, 34 See Table 11

5 – Weather Station 25 See Table 12

6 - SPWS 26–29 See Tables 13–16

7 – Air Conditioner 30 See Table 17

8 – EM 112 32-33 See Table 9

Table 1. Categories and Devices classifications.
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As for processing a single time basis is needed, all variables have been down-sampled to a 5 minutes sample 
time, where the values for each sample are the mean values of the corresponding variable, during the corre-
sponding five minutes interval. Energy variables have been down-sampled to a one hour interval.

Consider, as an example, the month of August 2020. There, PFvec (Phase Factor of the 19 wibeees) has a size 
of 2,675,237*19, while the averaged version, PFveccon, has a size of 8,928*19. The common power time basis is 
available in the date variable dtveccon, and for energy values the common time basis is in dteneveccon.

This way, if you want to plot the evolution of the phase factor of, let us say, wibeee 6, you should use (please 
see Fig. 10):

plot(dtvec(1:ndtvec(6),6),PFvec(1:ndtvec(6),6))

Wibeee Appliances

1 Alarm

2 Swimming-pool Pump and lights, Garden Appliances

3 Illumination 1st floor

4 Illumination and Plugs Ground Floor (Hall, Garage, Bedroom, Bathroom)

5 Air conditioner Office 1st floor

6 Garage and outside gates

7 Air conditioners B12 and B13

8 Pantry plugs (Thermo-Accumulator, Washing and Drying machines)

9 Kitchen plugs (Dish Washing Machine, Microwave, etc)

10 Air conditioner A14

11 Kitchen plugs (2 fridges, Coffee Machine, etc

12 Living Room plugs (TV, Sound System, etc)

13 Plugs 1st Floor (Computing Equipment, towel heater, ceramic heater)

14 Air conditioner Living Room

15 Illumination Ground Floor (Living room, Dining Room, Kitchen)

16 Burner Stove 1

17 Burner Stove 2

18 Oven

19 Weather Station, Data Acquisition System

Table 3. Wibees and major appliances (please see Fig. 1).

Variable Variable Name Units

Time Basis dtINVvec datetime

Number of Samples ndtINVvec

Active Power (L1) INVPMAP_L1vec kW

Active Power (L2) INVPMAP_L2vec kW

Active Power (L3) INVPMAP_L3vec kW

Total Active Power INVPMAP_sysvec kW

Reactive Power (L1) INVPMRP_L1vec kVAR

Reactive Power (L2) INVPMRP_L2vec kVAR

Reactive Power (L3) INVPMRP_L3vec kVAR

Total Reactive Power INVPMRP_sysvec kVAR

Apparent Power (L1) INVPMApP_L1vec kVA

Apparent Power (L2) INVPMApP_L2vec kVA

Apparent Power (L3) INVPMApP_L3vec kVA

Total Apparent Power INVPMApP_sysvec kVA

Current (L1) INVPMI_L1vec Ampere

Current (L2) INVPMI_L2vec Ampere

Current (L3) INVPMI_L3vec Ampere

Voltage (L1) INVPMV_L1vec Volt

Voltage (L2) INVPMV_L2vec Volt

Voltage (L3) INVPMV_L3vec Volt

Table 4. Variables related with the inverter/battery in TH1. All variables are vectors (except ndtINVvec, which 
is a scalar). This table represents grid connection values.
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while if you are happy with only the averaged values (please see Fig. 11), you would use:

plot(dtveccon,PFveccon(:,6)).
With real-time measured data, there is always the possibility of having missing or invalid data. All measured 

data is pre-processed, to check for possible gaps. If the number of consecutive missing values is less than seven, 
the values are interpolated with a moving median scheme; if not they are left as 0 and the period with no data is 
marked.

Data are also validated. At present only the ranges of temperature, humidity and solar radiation are verified. 
Valid ranges are:

•	 Smart Plugs: Current [0 inf]
•	 WS: AT [−10 50]; RH [0 120]; RAD [0 1500]
•	 SPWS Hall: AT [−10 50]; RH [0 120]
•	 SPWS Bed 1_2: AT [−10 50]; RH [0 120]
•	 SPWS Bed 1_4: AT [−10 50]; RH [0 120]; M [0 100]
•	 SPWS L: AT [−10 50]; RH [0 120]; M [0 100]
•	 AC: AC_RT [−10 50]; AC_IT [−10 50]; AC_OT [−10 50]

Variable Variable Name Units

Total DC power (sum of all PV inputs) INVTotDCpowervec W

Total AC Charge (AC-side to battery) INVTotACchargevec Wh

Total AC discharge energy (battery to grid) INVTotACdischargevec Wh

Total DC energy from PV1 INVTotDCPV1vec Wh

Total DC energy from PV2 INVTotDCPV2vec Wh

Total DC energy from PV3 INVTotDCPV3vec Wh

Total DC PV energy (sum of all PV inputs) INVTotDCPVvec Wh

Total energy (AC-side to grid) INVTotACenergyvec Wh

Total DC charge energy (DC-side to battery) INVTotDCchargevec Wh

Total DC discharge energy (DC-side from battery) INVTotDCdischargevec Wh

Table 7. Variables related with the inverter/battery in TH1. This table presents total values.

Variable Variable Name Units

DC Power (string 1) INVDCP_L1vec kW

DC Power (string 2) INVDCP_L2vec kW

DC Power (string 3) INVDCP_L3vec kW

DC Power (All) INVDCP_sysvec kW

DC Current (string 1) INVDCI_L1vec Ampere

DC Current (string 2) INVDCI_L2vec Ampere

DC Current (string 3) INVDCI_L3vec Ampere

DC Voltage (string 1) INVDCV_L1vec Volt

DC Voltage (string 2) INVDCV_L2vec Volt

DC Voltage (string 3) INVDCV_L3vec Volt

Table 5. Variables related with the inverter/battery in TH1. This table represents DC values.

Variable Variable Name Units

State of Charge INVBASCvec %

Charge Current INVBCCvec Ampere

Discharge Current INVBDCvec Ampere

Charge (−)/Discharge(+) Power INVBCDPvec kW

Gross Capacity INVBGCvec kW

Number of cycles INVBNCvec

State of Charge INVBSCvec %

Temperature INVBTvec °C

Voltage INVBVvec Volt

Table 6. Variables related with the inverter/battery in TH1. This table represents Battery values.
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The information about interpolated data, gaps and faults can be found at the data file with the extension _stat.
mat. This information can be seen in the following matrices (notice that the categories and device numbers in 
Table 1 are used here):

Variable Variable Name Units

Active_Power (L1) INVAP_L1vec kW

Active_Power (L2) INVAP_L2vec kW

Active_Power (L3) INVAP_L3vec kW

Total Active_Power INVAP_sysvec kW

Current (L1) INVI_L1vec Ampére

Current (L2) INVI_L2vec Ampére

Current (L3) INVI_L3vec Ampére

Voltage (L1) INVV_L1vec Volt

Voltage (L2) INVV_L2vec Volt

Voltage (L3) INVV_L3vec Volt

Total Apparent Power INVApP_sysvec kVA

Total Reactive Power INVApP_sysvec kVAR

Total Home Consumption Rate INVCRvec kW

Power Consumption (from Battery) INVPCBvec kW

Power Consumption (from Grid) INVPCGvec kW

Power Consumption (from PV) INVPCPVvec kW

Energy Consumption (from Battery) INVECBvec kWh

Energy Consumption (from Grid) INVECGvec kWh

Energy Consumption (from PV) INVECPVvec kWh

Total Energy Consumption INVECPVvec kWh

Invertor Generation Energy INVGEvec kWh

Invertor Generation Power INVGPvec kW

Inverter State INVISvec

Manager State INVMSvec

Power Factor INVPFvec %

Power Limit INVPFvec

Work Time INVWTvec

Daily Yeld INVYDvec

Monthly Yeld INVYMvec

Yearly Yeld INVYYvec

Total Yeld INVYTvec

Table 8. Variables related with the inverter/battery in TH1. This table shows home and other variables.

Variable Variable Name Units

Time Basis dtEM1vec datetime

Number of Samples ndtEM1vec

Voltage EMVvec Volt

Current EMIvec Ampere

Active Power EMAPvec kW

Reactive Power EMRPvec kVAR

Apparent Power EMApPvec kVA

Power Factor EMPFvec %

Frequency EMF1Pvec Hertz

Total Active Energy EMAEP1Pvec kWh

Partial Active Energy EMRE1Pvec kWh

Total Reactive Energy EMRE1Pvec kVARh

Partial Reactive Energy EMREP1Pvec kVARh

Power Demand EMDP1Pvec kW

Peak Power Demand EMDPP1Pvec kW

Table 9. Variables related with home consumption, from EM112 meters.
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•	 STEM, ENDEM – matrices with the number of rows equal to the number of appliances, recording the start 
and the end of periods without data

For instance, for the same August 2020 month, appliance 29 (the SPWS for the lounge) does not have data 
between 01-Aug-2021 20:52:54 and 01-Aug-2020 23:42:35, among other gaps.

•	 STON, ENDON - start and end samples of the periods with data

For the same appliance, the first period when there are valid data is between 01-Aug-2020 00:00:36 and 
01-Aug-2020 20:52:54

•	 nEM/nON - number of periods without data/with data

For the same appliance, there are 71/72 periods without data/with data
•	 inicio/fim - beginning/end of the data acquisition for each appliance
•	 ttotal - total number of seconds of the specified period of analysis

Each gap can be inspected with:

Variable Variable Name Units

Time Basis dtEMvec datetime

Number of Samples ndtEMvec

Voltage (L1-L2) EMVL1_L2vec Volt

Voltage (L1-N) EMVL1_Nvec Volt

Voltage (L3-L1) EMVL3_L1vec Volt

Voltage (L3-N) EMVL3_Nvec Volt

Voltage (L2-L3) EMVL2_L3vec Volt

Voltage (L3-N) EMVL2_Nvec Volt

Voltage (L-L) EMVL_L_sysvec Volt

Voltage (L-N) EMVL_N_sysvec Volt

Current (L1) EMI_L1vec Ampere

Current (L2) EMI_L2vec Ampere

Current (L3) EMI_L3vec Ampere

Active Power (L1) EMAP_L1vec kW

Active Power (L2) EMAP_L2vec kW

Active Power (L3) EMAP_L3vec kW

Total Active Power EMAP_sysvec kW

Reactive Power (L1) EMRP_L1vec kVAR

Reactive Power (L2) EMRP_L2vec kVAR

Reactive Power (L3) EMRP_L3vec kVAR

Total Reactive Power EMRP_sysvec kVAR

Apparent Power (L1) EMApP_L1vec kVA

Apparent Power (L2) EMApP_L2vec kVA

Apparent Power (L3) EMApP_L3vec kVA

Total Apparent Power EMApP_sysvec kVA

Power Factor (L1) EMPF_L1vec %

Power Factor (L2) EMPF_L2vec %

Power Factor (L3) EMPF_L1vec %

Total Power Factor EMPF_sysvec %

Frequency EMFvec Hertz

Active Energy (L1) EMAE_L1vec kWh

Active Energy (L2) EMAE_L2vec kWh

Active Energy (L3) EMAE_L3vec kWh

Total Active Energy EMAETvec kWh

Partial Active Energy EMAEPvec kWh

Total Reactive Energy EMRETPvec kVARh

Partial Reactive Energy EMARPvec kVARh

Power Demand EMDPvec kW

Peak Power Demand EMDPPvec kW

Table 10. Variables related with home consumption, from EM340 meters.
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•	 gaps - array of records with all the gaps. Their structure is:

•	 devices (category of the appliance)
•	 num (appliance number)

Variable Variable Name Units

Time Basis dtSPvec datetime

Number of Samples ndtSPvec

Voltage VSPvec Volts

Current ISPvec Ampere

Active Power APSPvec kW

Active Energy AESPvec kWh

Signal Power SPRssivec dbs

On/off SPOnvec 0/1

Table 11. Variables measured by Smart Plugs. All variables are matrices (except ndtSPvec, which is a vector).

Variable Variable Name Units

Time Basis dtWSvec datetime

Air Temperature WS_ATvec °C

Relative Humidity WS_RHvec %

Solar Radiation WS_RADvec W/m2

Table 12. Variables measured by the IWS. All variables are vectors.

Variable Variable Name Units

Time Basis dtH1vec datetime

Air Temperature H1_ATvec °C

Relative Humidity H1_RHvec %

Light H1_Lvec Lumens

Table 13. Variables measured at Hall in the first floor (appliance 26). All variables are vectors.

Variable Variable Name Units

Time Basis dtB12vec datetime

Air Temperature B12_ATvec °C

Relative Humidity B12_RHvec %

Light B12_Lvec Lumens

Table 14. Variables measured at Bedroom 1_2 in the first floor (appliance 27). All variables are vectors.

Variable Variable Name Units

Time Basis dtLvec datetime

Air Temperature L_ATvec °C

Relative Humidity L_RHvec %

Movement L_M %

Table 16. Variables measured at Lounge in the ground floor (appliance 29). All variables are vectors.

Variable Variable Name Units

Time Basis dtB14vec datetime

Air Temperature B14_ATvec °C

Wall Temperature B14_WTvec °C

Movement B14_M %

Table 15. Variables measured at Bedroom 1_4 in the first floor (appliance 28). All variables are vectors.
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•	 k – sample index for the start of the gap
•	 tbeg/tend - time of the start/end of the gap

•	 tgap - total duration (in secs) of the gaps for each appliance

Fig. 11 Phase Factor of Wibeee 6, with the common time basis (five minutes).

Fig. 10 Phase Factor of Wibeee 6, with its own time basis (one second).

Variable Variable Name Units

Time Basis dtACvec datetime

Indoor Temperature AC_ITvec °C

Reference Temperature AC_RTvec °C

Outdoor Temperature AC_OTvec °C

Power State (On/Off) AC_PSvec 0/1

Swing Mode (On/off) AC_SMvec 0/1

Eco Mode (On/off) AC_EMvec 0/1

Turbo Mode (On/off) AC_TMvec 0/1

Operational Mode AC_SMvec

Fan Speed AC_FSvec %

Table 17. Variables measured by the AC in bedroom B_14, first floor. All variables are vectors.
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For appliance 29 and for the same period, for 77 hours, 57 minutes and 50 sec there were no acquired data. 
This device and device # 27 (SPWS B_12) have a significant percentage of missing data. This does not happen 
with the other variables (for August 2020 the mean of missing data for the other variables is 16,288 sec and the 
median 15,411 sec (that is around 0.6% of the total data).

Faults can be inspected with:

•	 tfault - information about the total duration of the faults: array with 7 records for each device group. Each 
record has the following fields:
•	 num: number of variables checked for the category
•	 dev: array of records with the number of appliances in the group which are checked for validity: each 

record has:
•	 nvars (number of variables checked)
•	 var (variable names)
•	 t (total faulty time for the specified variable).

•	 faulttot – array with records for each fault. It has the following fields:
•	 devices – category of the appliance
•	 num – appliance number
•	 var – variable inspected
•	 kbeg/kend – sample numbers where the fault started/ended
•	 tbeg/tend - time the fault started/ended

For instance, in August 2020 eight faults were recorded. The first was verified for appliance 28, belonging to 
category 6 (the SPWS for Bedroom 1_4). The fault was verified for the temperature, started in sample 632 and 
ended in sample 633, or from 03-Aug-2020 13:49:11 to 03-Aug-2020 13:50:18.

•	 nsamplesint/nsamples - number of interpolated samples/total number of samples per appliance

For instance, for wibeee 2, the total number of samples was 2,643,997. Among them 161 were interpolated 
(less than 0.01%).

As explained before, Wibees needed to be calibrated, before being useful. This was done, for each Wibee, 
using an external instrument measuring electric power, and confronting this value with the value availa-
ble through the acquisition system. This gave initial factor values, which were subsequently fine-tuned by a 
phase-by-phase optimization procedure, making use of the Carlo Gavazzi measured data. These multiplying 
factors, which are used by the Matlab file extract_quadro_10.m, are available in the Matlab data file Factor.mat. 
(please see below). It should be noted that this optimization procedure was executed in a monthly basis, to verify 
if further calibrations were needed. The factor values remained, however, constant throughout the project. .

Apart from small communication problems, there were no anomalies found for the Carlo Gavazzi meters, 
as well as the for KI and KEM meters. As mentioned before, they were solved by interpolation, if possible, or 
identified by the detection of gaps.

Code availability
All code for the generation of the dataset was written in Matlab R2022 and can be found at https://github.
com/aebruano/HEMStoEC. Daily information is received by the data acquisition system in a zipped file, 
which should be placed in the same directory (denoted as root directory) of the function files. A sample can be 
found in 2023_06_11_00_00_00.zip. The README and the VARS files provide information about the format 
of the files enclosed in the zip file. Matlab data is extracted from the unzipped file using the Matlab function 
extract_quadro_10.m. The command extract_quadro_10(‘2023_06_11_00_00_00’) creates a Matlab data 
file 2023_06_11_00_00_00.mat inside the 2023_06_11_00_00_00 directory. Gaps are identified and data is 
interpolated using the function Validate_Quadro_4.m.

A data file 2023_06_11_00_00_00_cor.mat is created, again inside the 2023_06_11_00_00_00 directory, upon 
the command Validate_Quadro_4(‘2023_06_11_00_00_00’,‘2023_06_11_23_23_59’).Data with a common time 
basis is achieved using the Matlab function convert_quadro_10_cor.m. Using the command convert_quadro_10_
cor(‘2023_06_11_00_00_00’,‘2023_06_11_23_23_59’,”, minutes(15),hours(1)), the data file 2023_06_11_00_00_00 
to 2023_06_11_23_23_59 excl pst 15 min est 1 hr_cor.mat is created, this time in the root directory. A matlab file, 
Factor.mat, needs to be placed in the root directory.
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