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Global annual wetland dataset 
at 30 m with a fine classification 
system from 2000 to 2022
Xiao Zhang1,2, Liangyun Liu  1,2,3 ✉, Tingting Zhao1,2,4, Jinqing Wang1,2,3, Wendi Liu1,2,3  
& Xidong Chen5

Wetlands play a key role in maintaining ecological balance and climate regulation. However, due to 
the complex and variable spectral characteristics of wetlands, there are no publicly available global 
30-meter time-series wetland dynamic datasets at present. In this study, we present novel global 30 m 
annual wetland maps (GWL_FCS30D) using time-series Landsat imagery on the Google Earth Engine 
platform, covering the period of 2000–2022 and containing eight wetland subcategories. Specifically, 
we make full use of our prior globally distributed wetland training sample pool, and adopt the local 
adaptive classification and spatiotemporal consistency checking algorithm to generate annual wetland 
maps. The GWL_FCS30D maps were found to achieve an overall accuracy and Kappa coefficient of 
86.95 ± 0.44% and 0.822, respectively, in 2020, and show great temporal variability in the United States 
and the European Union. We expect the dataset would provide vital support for wetland ecosystems 
protection and sustainable development.

Background & Summary
Wetlands are areas of land distinguished by the continual or occasional presence of water, where the water table 
is close to the surface of the soil, or where the land is covered by shallow water1. Regarded as one of the world’s 
most vulnerable and diverse ecosystems2, wetlands provide habitat for a vast range of species and are critical for 
regulating water resources3, storing carbon4, and moderating climate5,6. However, many wetlands around the 
world are threatened by factors such as human activity and climate change7,8. Wetland remote sensing mapping 
and monitoring provide not only real-time environmental data but also reveal changing trends and the health 
of wetland ecosystems9–11. As wetlands include a variety of surface covers such as marshes, swamps, bogs, fens, 
ponds, lakeshores, riverbanks, and estuaries1,12, their complicated spectral characteristics and heterogeneous 
spatiotemporal variabilities make mapping them quite difficult.

Over the past decades, global wetland remote sensing mapping has made some progress but mostly at coarse 
resolution12–14 mainly due to the limitations of huge computations and the limited free access of high-resolution 
satellite imagery. Many studies have emphasized that coarse wetland products cannot capture human-driven 
changes or small and fragmented wetlands9,12,15. Recently, breakthroughs in cloud computing and the improved 
accessibility of remote sensing archives have provided great opportunities for global wetland mapping. A series 
of high-resolution global thematic wetland products have been generated, including water bodies16,17, tidal 
flats18–20, mangrove forests21–24, and salt marshes25–28. Most of these products belong to coastal wetlands, and 
the high-resolution mapping of global inland wetlands (e.g., swamps and marshes) is sparse. Recently, Zhang, 
et al.12 combined multisourced remote sensing datasets to produce a global 30 m wetland dataset (named as: 
GWL_FCS30) containing five inland and three coastal wetland subcategories; however, it only covers a single 
year and cannot provide long-term wetland distribution information. Therefore, there are still no long-term 
global wetland distribution products with fine resolution, such as 30 m.
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The major difficulty of wetland remote sensing mapping is how to obtain high-confidence training sam-
ples29. Previous studies have also highlighted that the confidence of training samples is the premise and key to 
high-precision land cover mapping30,31. In general, there are two channels to obtain the training samples: “visual 
interpretation” and “automatic generation”12,32. The former mainly relies on human prior knowledge and sub-
jectivity to interpret the satellite imagery, and can achieve high-precision sample labeling under the premise of 
spending a large amount of manpower resources. In contrast, the latter makes full use of these published prod-
ucts to extract the confidence areas, and then uses the refinement method and automatic sampling to achieve the 
“automatic generation” of training samples33–35. Obviously, the “automatic generation” option can easily obtain 
the globally distributed training samples without any human participation. Therefore, it was also adopted to 
generate the GWL_FCS30 wetland dataset in 202012.

Here, we generate novel global 30 m wetland annual maps with a fine classification system (GWL_FCS30D) 
from time-series Landsat imagery on the Google Earth Engine platform, which contains eight wetland sub-
categories—inland water, swamp, marsh, flooded flat, saline, mangrove, salt marsh, and tidal flat—and covers 
the time span of 2000–2022. The developed dataset will be the first global 30 m fine wetland annual maps from 
2000 to 2022, which can provide strong support for understanding the spatial distributions and long time-series 
change of various wetland subcategories all over the world. The GWL_FCS30D dataset will also help to better 
understand and manage wetlands, thereby achieving sustainable natural resource management and environ-
mental conservation goals.

Methods
Figure 1 illustrates a flowchart of the developed method in mapping the global wetlands from time-series 
Landsat imagery. It contains four major parts: compositing multisourced and multitemporal training variables 
from time-series Landsat imagery, generating globally distributed and confident training samples over the whole 
period, the annual wetland remote sensing mapping and optimization algorithm, and generating the global 30 m 
wetland annual maps during 2000–2022 and analyzing their accuracy metrics. Details of each procedure are 
explained in the following sections.

remote sensing datasets. Landsat satellites, with their long-term and continual data recording, 30-m 
spatial resolution, 16-day revisit cycle, open data policy, and global coverage, provide great ability to capture 
the distributions and temporal changes of wetlands36,37. In this study, all Landsat imagery during 2000–2022, 
archived on the Google Earth Engine cloud-computing platform with < 80% cloud percentage, are used to gen-
erate the multitemporal and various water-level composites. To minimize the effects of atmosphere, clouds, 
snow, and ice, each Landsat image is first atmospherically corrected to the surface reflectance using the official 
algorithms of LEDAPS (Landsat Ecosystem Disturbance Adaptive Processing System)38 and LaSRC (Landsat 
Surface Reflectance Code)39; these “low-quality” pixels (e.g., cloud, shadow as well as ice and snow) are then 
masked based on the CFmask (C Function of Mask) algorithm, which was validated to achieve a high accuracy of 
96.4%40,41 and thus adopted by the United States Geological Survey as an official algorithm.

The spatial distribution of wetlands is closely related to topography, that is, wetlands are easily formed in 
low-lying areas12. To characterize the topographical variability at 30 m, the ASTER Global Digital Elevation 
Model dataset, which is a globally comprehensive and highly detailed elevation dataset and undergoes regu-
lar updates and refinements to enhance its accuracy and reliability42, is used to capture the elevation features 
and corresponding slope and aspect using the topographical calculation functions of ee.Terrain.slope() and ee.
Terrain.aspect() on the Google Earth Engine platform.

Fig. 1 Flowchart of how to generate the global 30 m wetland annual maps from multisourced remote sensing 
imagery.
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Globally distributed and temporally stable training samples. Determining how to collect a globally 
distributed and confident training sample pool is the prerequisite for high-precision wetland mapping. Our pre-
vious works combined more than 10 global wetland-related products to generate a globally distributed training 
sample pool (denoted as GWL_TrainPool) containing 8 wetland subcategories (Table 1) and 4 non-wetlands 
(including forest/shrubland, grassland, cropland, and others), and then used it to develop the first global 30 m 
fine wetland map in 2020, achieving an overall accuracy of 86.44%12. Tables S1–1 & 2 also list the comparisons in 
the wetland classification system between this study and other previous wetland mappings or land-cover prod-
ucts, and it can be found that the fine classification system in GWL_FCS30D showed certain characteristics and 
advantages for global wetland mapping.

In this study, our key goal is making full use of GWL_TrainPool for supporting global annual wetland 
mapping during 2000–2022. It should be noted that the time representativeness of GWL_TrainPool is 2020, 
that is, it is inappropriate to directly use it to train the classification models in other years. Therefore, we must 
take some measures to refine GWL_TrainPool. Specifically, we firstly import multiple temporal GlobeLand30 
land-cover datasets, which contained three time-steps of 2000, 2010, and 2020, and achieved an overall accuracy 
of 80.33%43, to refine these non-wetland samples in GWL_TrainPool. If a non-wetland sample was labeled as 
a water-body or wetland in any period of the GlobeLand30 datasets, it will be removed from the non-wetland 
sample pool. In other words, only temporally stable non-wetland samples are retained after the refinement.

In terms of vegetated wetlands (swamp, marsh, mangrove, and salt marsh) samples (Table 1), LandTrendr44,45 
and VCT (Vegetation Change Tracker)46—two widely used land-cover change detection tools for monitoring 
vegetation disturbances (forest deforestation and vegetation degradation)—are applied to refine these vegetated 
wetland samples. Specifically, as LandTrendr and VCT are suitable for inter-annual land-cover changes, the 
inter-annual NDVI values of these vegetated wetlands in the 90th percentiles (explaining at next Section, min-
imizing the effects of residual cloudy) during 2000–2022 are input into the two models. If a vegetated wetland 
pixel is detected as having changed by either model, it is removed from GWL_TrainPool. In other words, only 
temporally stable vegetated wetland samples are retained after the change detection.

As tidal flats and flooded flats are only exposed at low tides, the inter-annual maximum LTideI values are 
analyzed to refine these flat samples. Specifically, our previous studies of mapping global tidal flats found that 
almost all tidal flats had positive LTideI indices in low tides47; that is, if any of the inter-annual maximum LTideI 
values of the flat sample are less than 0, then they will be discarded. As for how to refine the permanent water 
training samples, as permanent water in the JRC’s Global Surface Water (GSW) dataset was validated to achieve 
high user’s and producer’s accuracies of 99.1% and 99.7%16, respectively, the retained water samples are also 
permanent water bodies in the JRC-GSW dataset. The saline training samples are constrained through visual 
interpretation from time-series high-resolution images on the Google Earth platform, mainly because they are 
sparsely distributed and concentrated on several typical areas. Finally, the spatial distributions of sample size for 
these globally distributed samples is also given in the Figure S1, these sufficient and temporally stable training 
samples can effectively ensure the representativeness of regional wetlands.

Compositing multisourced features. As the reflectance characteristics of wetlands are simultaneously 
influenced by water-level changes (e.g., tidal flats and flooded flats wetlands) and phenological variability (e.g., 
vegetated wetlands)12, the time-series Landsat imagery are composited into three types: the highest and low-
est water-levels for identifying tide-sensitive subcategories (tidal flat, flooded flat, and permanent water body), 
multitemporal phenology (vegetated subcategories: swamp, marsh), and spatial textures. In terms of the highest 
and lowest water-levels, our previous study of mapping global tidal flats demonstrated that the maximum com-
positing method for the LTideI (low Tide index) and mNDWI (modified normalization difference water index) 
had a stronger ability to capture the lowest and highest tides47. Specifically, the LTideI index, optimized from 
the NDVI (Normalized Difference Vegetation index), made full use of the characteristics of tidal flats with high 
values in the near-infrared band and low values in other bands when comparing with sea water (Eq. (1)). Usually, 
the tidal flat achieved the positive value (>0) while ocean water was low negative value. The reason why LTideI 
used the maximum value of 4 spectral bands is that the visual bands of sea water were prone to negative value in 
high latitudes due to atmospheric correction error, the maximum measure can efficiently optimize this problem. 
Our previous study in global tidal flat mapping also demonstrated that it achieved stronger robustness and better 
performance than the NDVI index in splitting tidal flats with water body47. Then, the mNDWI was based on the 

Name Abbreviation Description

Permanent water PWT Retaining water consistently throughout the year

Swamp SWP Inland natural wetlands mainly covered by tree vegetation (forest and shrub)

Marsh MSH Inland natural wetlands dominated by herbaceous vegetation

Flooded flat FFT Non-vegetated inland areas regularly inundated with water, typically during seasonal or periodic 
flooding events

Saline SLE High salt concentrations in the area’s water, soil, or vegetation

Mangrove MGV Salt-tolerant trees and shrubs that grow in brackish water

Salt marsh SMH Coastal wetland characterized by salt-tolerant vegetation, typically found in intertidal zones

Tidal flat TFT Muddy or rocky areas that are submerged during high tides and exposed during low tides

Table 1. Wetland classification system used in this study.
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spectral characteristic that water body had a higher reflectance values in visible bands than in NIR band, and 
usually achieved the positive value (>0) when covering with water, otherwise it would be lower than 0.
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where ρblue, ρgreen, ρred, ρNIR, and ρSWIR2 are the reflectance values of blue, green, red, and NIR (Near Infrared) 
and SWIR2 (Shortwave Infrared) bands in the Landsat imagery, and L is an adjustable term for improving the 
robustness of the LTideI index. The adjustable parameter L is selected as 0.1 based on the suggestion of Zhang, 
et al.47. The maximum compositing in LTideI is applied to represent the lowest tide, whereas the maximum 
mNDWI represents the highest tide. Specifically, the maximum compositing function of qualityMosaic()on the 
GEE platform was used to generate the maximum value of LTideI and mNDWI from the time-series Landsat 
imagery, and their corresponding reflectance bands (blue, green, red, NIR, SWIR1 and SWIR2 bands) were also 
composited. Namely, in the highest or lowest tide composites, the maximum value of mNDWI or LTideI as well 
as corresponding reflectance bands were generated. Thus, a total of 16 features are composited to represent the 
lowest and highest tides.

As for how to derive the phenological features from time-series Landsat observations, previous studies have 
categorized compositing methods into two groups: seasonal-based and percentile-based strategies32,35,48. Both 
strategy types share a similar ability to capture the phenology variability, but the former usually requires the 
seasonal calendar as prior knowledge. Thus, the percentile-based compositing strategy is more suitable for gen-
erating large-area phenology features and has also been widely used for global land-cover mapping12,19,48. The 
core of the percentile-based compositing strategy was to collect the magnitude of changing reflectance values 
instead of the time, that is, the phenological variations were reflected by different percentile values49. In this 
study, the intra-annual available Landsat data are composited into 10th, 30th, 50th, 70th, and 90th percentiles 
in blue, green, red, NIR, SWIR1, and SWIR2 bands, and NDVI, mNDWI, LSWI (Land Surface Water Index), 
and LTideI indices. NDVI and LSWI are introduced is to better capture the variabilities related to vegetation and 
water bodies. It should be emphasized that the maximum and minimum percentiles are generally ignored to 
minimize the residual effects of these “low-quality” pixels (e.g., cloud, shadow, ice, and snow).
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In addition to the multitemporal spectral features, the spatial textures are also collected to increase the sep-
arability between natural wetlands and some anthropogenic land-cover types, such as tidal flats and coastal 
aquaculture ponds47. Similar to our previous works in global tidal flat mapping47, the grey co-occurrence matrix 
algorithm is applied to the five NIR percentiles, and corresponding texture variables of entropy, contrast, var-
iance, homogeneity, and correlation are generated to characterize the spatial variabilities at five percentiles. In 
short, after adding three topographical variables, a total of 94 multisourced variables are used for the subsequent 
classification modeling, including 16 spectral features for capturing the highest and lowest water-levels, 50 phe-
nological features (5 percentiles × 10 variables), 25 texture variables, and 3 topographical variables.

Wetland annual mapping using local adaptive classifications. Choosing an appropriate algorithm 
to map the global 30 m wetlands is also a critical step, and large-area land-cover classification and mapping often 
have two options: globally single modeling and local adaptive modelling. The former only builds a single classifi-
cation model, which applies to the entire study area. In contrast, the latter splits the study area into multiply local 
areas and then builds the corresponding regional model in each local area. Some studies demonstrated that local 
adaptive modeling can achieve better performance than globally single modeling because the former can take into 
account the characteristics of each local area33,50. It should be noted that local adaptive modelling also requires a 
larger number of globally distributed training samples than globally single modeling. In this study, supported by 
the temporally stable and globally distributed training sample pool (GWL_TrainPoolstable), local adaptive mode-
ling is adopted. We first divide the globe into 961 independent 5° × 5° geographical tiles, inherited from our previ-
ous works in global land-cover mapping12,32,51. It should be noted that the sample size in each 5° × 5° geographical 
tile ranges from approximately 2000 to 24000 because of their equal allocation sample distribution and the min-
imum sample size of 2000 for each land-cover type12. Then, the local classification models are trained using the 
regional training samples, and the local wetland maps are then generated from multisourced features. Meanwhile, 
it should be noted that the regional training samples came from the neighboring adjacent 3 × 3 geographical tiles, 
that is, the training samples in the central tile and its spatial neighboring adjacent tiles were combined to train 
the local adaptive classification model. The aims of this step are: (1) to improve the spatial continuous over the 
adjacent tiles48; and (2) increase training sample size especially for these sparse land-cover types. Similarly, our 
previous works in developing the GWL_FCS30 in 2020 also imported the spatial neighboring training samples12.

In terms of the specific classification algorithm, we directly use the random forest algorithm because of its 
high accuracy, resistance to overfitting, suitability for high-dimensional data, robustness, and ability to handle 
missing values and outliers52–54. We run the global annual wetland mapping on the Google Earth Engine plat-
form using the function of ee.Classifier.smileRandomForest() with the default parameters and 100 decision trees.
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Temporal consistency optimization. We combine the temporally stable and globally training sam-
ple pool, multisource features, and local adaptive modeling to generate the global 30 m annual wetland maps. 
However, the influence of classification error and its accumulation cannot be ignored. To improve the tempo-
ral consistency of the time-series global wetland maps, the spatiotemporal consistency optimization method is 
employed (Eq. (4)):
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where P(x, y, t) denotes the homogeneity probability at the spatial coordinates (x, y) and time point t, (wx, wy, wt) 
is the spatial and temporal window size for measuring the homogeneity, L represents the land-cover label, N is 
the size of spatiotemporal neighbor pixels and is equal to (wx, wy, wt), and I() is the indicator function and equals 
1 when L x y t L x y t( , , ) ( , , )′ ′ ′ = . In general, the spatial and temporal window size of (wx, wy, wt) are selected 
as the empirical value of 1, that is, the spatiotemporal nearest pixels (3 × 3 × 3) would participate in the 
optimization.

Specifically, we calculate the homogeneity probabilities for each pixel over the whole time-series 
…P P P( , , , )x y x y x y, ,2000 , ,2001 , ,2022 , and if the homogeneity probability at time-point t is less than 0.5 (empirical 

threshold suggested by the work of Li, et al.55), the land-cover type of this pixel at time-point t should be 
changed. However, some wetland subcategories are easily affected by water-level variations. For example, when 
rainfall is low in a given year, a large number of flooded flats and marshes will be exposed; otherwise, they are 
always covered by water bodies. Thus, some special change of wetland subcategories should be rejected during 
the post-processing step. We merge the permanent water, flooded flat, and marsh into one group, and the tidal 
flat, salt marsh, and permanent water (ocean) into another group, the swamp, mangrove forest and saline were 
remaining three independent groups. Namely, if the homogeneity probability is less than 0.5 and more than 1/3 
in the same group, the land-cover change is rejected. It should be noted that the empirical threshold of 1/3 is 
used to solve the noise error in independent classification, that is, when the corresponding probability is less 
than 1/3, the land-cover label should be changed to the majority even in the same subcategory group.

Data records
The developed global 30 m annual wetland maps with the fine classication system during 2000–2022 are freely 
shared via the Zenodo platform56. As saving the global 30 m wetland maps as a single file is too large, the shared 
global dataset is divided into 961 standard 5° × 5° geographical tiles with GeoTIFF format at the geograph-
ical projection and WGS84 coordinate system. Each tile contains 23 bands representing the year of wetland 
maps in 2000, 2001, …, 2021, and 2022, and is named as “GWL_FCS30D_20002022_E/W**N/S##”, where the 
“E/W**N/S##” specifies the longitude and latitude coordinates of the upper left corner of the grid. Then, the 
eight wetland subcategories, non-wetlands, and ocean are labeled with various values in each band, that is, the 
permanent water, swamp, marsh, flooded flat, saline, mangrove, salt marsh, and tidal flat are marked as 180, 181, 
182, 183, 184, 185, 186, and 187, respectively; the non-wetland and ocean are labeled as 0 and 255, respectively. 
Figure 2 gives an overview of the eight global wetland subcategories in 2022 at 30 m spatial resolution. Overall, 
the GWL_FCS30 is spatially consistent with the actual global wetland patterns, namely, the inland wetlands 
(swamp, marsh, and permanent water) dominate the global wetlands and are mainly concentrated on the high 
latitudes of the Northern Hemisphere, rainforest areas, and areas adjacent to rivers and lakes.

Technical Validation
accuracy assessment using global validation dataset. The wetlands usually reflected the variable 
spectral characteristics of water-level changes, and were the sparse land-cover types comparing with non-wet-
lands. How to ensure the sample size of wetland validation points and interpretation confidence of each validation 
point is the key for an accurate assessment. In this study, the stratified random sampling algorithm57 is applied 
to increase the sample size of these wetland points. Specifically, the total sample size n and for specific wetland 
subcategory ni was determined by the Eq. (5),
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where N is the number of pixel units in the study area; t defines the confidence interval (t = 1.96 for a 95% 
confidence interval, and t = 2.33 for a 97.5% confidence interval), and d denotes the desired half-width of the 
confidence interval; Wi is the weight distribution of class i; pi is the producer’s accuracy. After the statistics, the 
preliminary sample size of n is determined as 24000.

Then, in terms of how to determine the label of each validation point, we first make full use of the dense 
time-series Landsat and Sentinel-2 imagery to analyze the dynamic variability of each validation point and 
further combine the high-resolution imagery as auxiliary information to visually interpret the wetland and 
non-wetland status. In addition, to minimize the subjective of the validation samples, each validation point was 
independently interpreted by five experts, only the high agreement points are retained while these validation 
points with large differences among five experts were directly discarded. Afterwards, a total of 22719 validation 
points were collected for 2020, including 10952 non-wetland points and 11767 wetland points (7833 inland and 
3934 coastal wetland points), as seen in Fig. 3. Overall, the distribution of wetland validation points basically 
reflected the actual global wetland distribution shown in Fig. 2.
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The error matrix is one of the most widely used methods in accuracy assessment57. It generates four accu-
racy metrics: producer’s accuracy (P.A.), User’s accuracy (U.A.), overall accuracy (O.A.) and kappa coefficient 
(Kappa). Using the global wetland validation points and the error matrix calculation method, the error matrix 
of the developed global 30 m wetland maps in 2020 is depicted in Table 2. Our wetland maps showed good 
accuracy, as O.A. and Kappa reached 86.95 ± 0.44% and 0.822 in 2020, respectively. In terms of P.A. and U.A., 
we found that permanent water, mangrove, saline, and tidal flat had higher accuracies than that of the remaining 
wetland subcategories, mainly because they had unique spectral characteristics (permanent water, saline and 
tidal flat) or combined rich prior knowledge (mangrove). For example, tidal flats are only exposed for a short 
time and reflect water features at other times, and our previous work demonstrated the feasibility of LTideI index 
in capturing the exposed status of tidal flats47. In contrast, salt marsh had the lowest P.A. of 59.7 ± 2.51%, and it 
suffered evident confusions with tidal flats, mangrove, and coastal non-wetlands. The coexistence relationship 
of tidal flat, salt marsh and mangrove forest, as well as the complicated spectral characteristics of salt marshes, 
resulted in an omission error of 40.3%. Flooded flats and marshes also co-exist, and their distributions are 
usually affected by environmental factors (temperature and precipitation); thus, these environment-affected 

Fig. 2 Spatial distribution of eight global wetland subcategories in 2022.

Fig. 3 Spatial distribution of 22719 global validation points in 2020.
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subcategory confusions decreased their P.A. and U.A. The PA of marsh and flooded flat was 64.13 ± 1.88% and 
62.62 ± 3.77%, respectively.

Time-series accuracy metrics from third-party validation datasets. Collecting global time-series 
wetland validation points was a challenging and difficult task. Therefore, third-party time-series validation data-
sets LCMAP (Land Cover Monitoring, Assessment, and Projection) from the United States58 and LUCAS (Land 
Use/Cover Area frame Survey) from the European Union59 are used to objectively analyze the accuracy varia-
bility of our global wetland maps during 2000–2018. As wetland validation points are rare compared to other 
non-wetland points, only the P.A. and U.A. of wetlands and their standard error are presented in Fig. 4. Overall, 
our wetland maps showed good temporal stability in terms of P.A. and U.A. using the LCMAP and LUCAS data-
sets, reaching mean values of 78.32% and 93.52%, and 89.95% and 86.32%, for the two validation datasets, respec-
tively. Specifically, for the LCMAP dataset, our wetland maps achieved higher U.A. (88.98%–90.52%) than the 
P.A. (77.73%–79.70%) values, which meant that our wetland maps suffered a higher omission error and a lower 
commission error. As for the LUCAS dataset, our maps achieved a higher P.A. of 93.24%–94.12% but a lower U.A. 
of 84.67%–85.71%, that is, the commission error was higher in LUCAS dataset of the European Union.

Qualitative analysis of some typical areas. To intuitively understand the performance of our 
time-series global wetland maps, a typical inland wetland case in Poyang Lake, China, in which the frequent 
changes in subcategories are affected by water-level and environmental factors, is illustrated in Fig. 5. Obviously, 
our wetland maps accurately capture the spatial distributions of four wetland subcategories (permanent water, 
swamp, marsh, and flooded flat), and four of them revealed various wetland distribution patterns in 2000, 2010, 
2020 and 2022. For example, the permanent water area reached its minimum and maximum values in 2000 and 
2022, respectively, with the main reasons being as follows: (1) the density of satellite observations affected the 

NWT PWT SWP MSH FFT SLE MGV SMH TFT Total P.A. (%)

NWT 45.741 0.233 1.114 0.511 0.092 0.035 0.088 0.066 0.326 48.206 94.89(0.41)

PWT 0.313 7.39 0 0 0 0 0 0 0 7.703 95.94(0.92)

SWP 0.313 0.145 7.646 0.739 0 0.044 0.048 0 0.004 8.94 85.52(1.53)

MSH 0.079 0.524 2.874 7.034 0.198 0.079 0.035 0.088 0.057 10.969 64.13(1.88)

FFT 0.189 0 0.352 0.445 1.747 0.018 0.009 0.009 0.022 2.791 62.62(3.77)

SLE 0.11 0.026 0.013 0.075 0.185 3.658 0 0.004 0.004 4.076 89.74(1.96)

MGV 0.044 0.044 0.207 0.057 0.009 0 4.745 0.048 0.031 5.185 91.51(1.59)

SMH 0.357 0.233 0.172 0.242 0.374 0.009 0.546 3.847 0.665 6.444 59.70(2.51)

TFT 0.048 0.092 0.013 0.013 0.15 0.035 0.031 0.163 5.141 5.687 90.4(1.61)

Total 47.194 8.689 12.391 9.116 2.755 3.878 5.502 4.226 6.25

U.A. (%) 96.92 (0.22) 85.06 (1.57) 61.71 (1.80) 77.16 (1.81) 63.42 (3.78) 94.32 (1.53) 86.24 (1.91) 91.04 (1.81) 82.25 (1.99)

O.A. 86.95(0.44)

Kappa 0.822

Table 2. Error matrix of our wetland maps in 2020 using global validation points. Note: Refer to Table 1 for 
abbreviation definitions.

Fig. 4 Time-series PA and UA wetland variability for our global 30 m wetland maps during 2000–2018 using 
the (a) LCMAP and (b) LUCAS validation datasets.
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wetland remote sensing mapping, that is, the lowest water-level situation was easier to be captured from dense 
observations. (2) Environmental factors (temperature and precipitation) greatly influenced their distributions. 
For example, in 2022, the high temperature and low precipitation in the Poyang Lake area caused a large area of 
lake flats (flooded flats) to be exposed. In summary, our time-series wetland maps showed great ability to capture 
changes in these subcategories.

In terms of coastal wetlands, several 30 m global time-series mangrove and tidal flat products have been 
developed over the past few years18,21–24. We performed a cross-comparison between our wetland maps and other 
existing products in Yancheng, Jiangsu province, which contains one of the largest tidal flats in the world (Fig. 6).  

Fig. 5 Spatial distribution of our time-series global wetland maps in Poyang Lake, China. The low-water-level 
composites are provided by corresponding Landsat imagery in the upper row using the SWIR1, NIR, and red 
false-color compositing.

Fig. 6 Comparison between our wetland maps and Murray’s global tidal flat products in Yancheng, Jiangsu 
province, during 2000–2015. Lowest tide composites are also given using false-color compositing (NIR, red, and 
green).
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Overall, a higher consistency between the two datasets was found in 2015 than in the other two periods, and 
Murray’s tidal flat products evidently overestimated the tidal flat area in 2000 and 2010 according to the low-tide 
composites. In addition, our wetland maps had better performance in distinguishing tidal flats and other sub-
categories (e.g., coastal ponds and salt marshes), which share similar spectral characteristics and temporal var-
iability, and were wrongly identified as tidal flats in Murray’s products. Previous studies also explained that 
Murray’s tidal flat products suffered from overestimation problems and misclassified some aquaculture ponds as 
tidal flats47,60. In addition, our wetland maps also present the distributions and temporal changes of salt marshes 
over the period of 2000–2015. Specifically, as there is a coexistence relationship between salt marshes and tidal 
flats, salt marshes were distributed on the edge of the tidal flats in our wetland maps, and showed a trend of area 
expansion during 2000–2015. Actually, the phenomenon was consistent with the actual situation, that is, salt 
marshes in the region have increased significantly over the past decade due to invasive alien species61.

Figure 7 provides another cross-comparison with the GMW-V3 (Global Mangrove Watch Project Version 3.0)21  
dataset for Kalimantan Island, Indonesia, which contains the largest mangrove area of the world. It should be 
noted that the GMW-V3, developed from L-band Synthetic Aperture Radar imagery and covering the period of 
1996–2020, has been proven to be the time-series mangrove monitoring product with the highest accuracy and 
performance currently, with an overall accuracy of 93.1% and a Kappa coefficient of 0.86121. In this comparison, 
we found that there was great consistency between the two wetland maps in the spatial patterns and temporal 
variability of mangrove: mangrove forest was distributed along the coastlines, most of which was concentrated 
in river estuary areas (e.g., Mahakam River’s estuary, the big blue rectangle in Figure 7). Meanwhile, in terms 
of temporal variability, the mangrove degradations, which were mainly reclaimed as coastal breeding ponds in 
the two blue rectangles of Figure 7, were accurately captured by our wetland maps and the GMW-V3 products. 
Thus, our time-series wetland maps also achieved reliable performance in capturing the spatial distributions and 
temporal changes of mangrove.

Usage Notes
Our annual global wetland maps from 2000 to 2022 reveal the spatiotemporal distributions of eight wetland sub-
categories at a resolution of 30 m from the perspective of remote sensing observation, and can provide vital support 
in climate change analysis, carbon emission estimation, and regulating water resources3. To ensure the confidence 
of wetland mapping, we combined a temporally stable and globally distributed training sample pool, multisourced 
remote sensing features, a local adaptive modeling strategy, and spatiotemporal consistency optimization. The 
accuracy assessment and qualitative comparisons with existing products indicated that our wetland maps can 
capture the actual patterns and temporal changes of wetlands according to intra-annual Landsat imagery.

Fig. 7 Comparison between our wetland maps with GMW-V3 products during 2000–2020 in Kalimantan 
Island, Indonesia. False-color composited Landsat imagery is also presented to capture the low tides.
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We still need to emphasize several points about our global wetland maps. First, as the generated wetland dis-
tributions came from remote sensing observations, the density of Landsat observations would affect their spatial 
patterns. For example, the area of flooded flats in Poyang Lake (Fig. 5) in 2000 is obviously less than that in later 
years, as there were insufficient Landsat satellite data during the low-water period in 2000. As there was no long 
time-span global DEM dataset on the GEE platform, the single-temporal ASTER DEM dataset around 2000 
was used, that is, the topography changes over the period of 2000–2022 was ignored. Second, although we used 
globally distributed training samples and local adaptive modeling to ensure the mapping accuracy of wetlands, 
the problems of omission and commission errors due to complicated spatial and spectral characteristics of some 
wetland subcategories (marsh, flooded flat and salt marsh) still cannot be ignored, all of them suffered relatively 
low producer’s accuracy lower than 70% in Table 2. For example, the salt marsh had complicated spectral char-
acteristics, and was susceptible to spectral mixing with tidal flats and mangrove forests. Third, we took a series 
of measures to ensure quality of the globally distributed and temporally stable training samples, however, it is 
impossible to filter all wetland changes due to their complicated spectra and temporal variations. For example, 
the changes within the vegetated wetlands still need to be strengthen. Thus, the future work will continue to 
optimize the quality of training samples by adding more prior knowledge and products or multisourced satellite 
imagery (e.g., Sentinel-1, JAXA SAR, and Sentinel-2 observations).

Code availability
The time-series Landsat analysis and wetland remote sensing mapping were programed on the Google Earth 
Engine platform with JavaScript, and the corresponding codes can be freely visited on the Zenodo platform56 and 
GitHub (https://github.com/zhangxiaoradi/CodeRepository/blob/main/GWL_FCS30D_Code).
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