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A haplotype-resolved genome 
provides insight into allele-specific 
expression in wild walnut (Juglans 
regia L.)
Liqun Han1,3, Xiang Luo2,3, Yu Zhao1, Ning Li1, Yuhui Xu   1,4 ✉ & Kai Ma1,4 ✉

Wild germplasm resources are crucial for gene mining and molecular breeding because of their special 
trait performance. Haplotype-resolved genome is an ideal solution for fully understanding the biology 
of subgenomes in highly heterozygous species. Here, we surveyed the genome of a wild walnut tree 
from Gongliu County, Xinjiang, China, and generated a haplotype-resolved reference genome of 
562.99 Mb (contig N50 = 34.10 Mb) for one haplotype (hap1) and 561.07 Mb (contig N50 = 33.91 Mb) for 
another haplotype (hap2) using PacBio high-fidelity (HiFi) reads and Hi-C technology. Approximately 
527.20 Mb (93.64%) of hap1 and 526.40 Mb (93.82%) of hap2 were assigned to 16 pseudochromosomes. 
A total of 41039 and 39744 protein-coding gene models were predicted for hap1 and hap2, respectively. 
Moreover, 123 structural variations (SVs) were identified between the two haplotype genomes. Allele-
specific expression genes (ASEGs) that respond to cold stress were ultimately identified. These datasets 
can be used to study subgenome evolution, for functional elite gene mining and to discover the 
transcriptional basis of specific traits related to environmental adaptation in wild walnut.

Background & Summary
Common walnut (Juglans regia L.) (2n = 32), which belongs to the Juglans genus of Juglandaceae, is an impor-
tant economic tree species and the source of the fourth most consumed nut1. The fruits of common walnut 
are mainly used for the production of oil and health care products due to their lipid profile and abundance 
of antioxidants, such as phenolic compounds, vitamins and micronutrients2–4, which have potential beneficial 
roles in health maintenance and disease prevention5,6. These properties have promoted walnut cultivation and 
production in many countries, such as the USA, Iran, Turkey and China7.

Walnut likely originated and was domesticated in Central Asia8,9 and has been found in China for more than 
7000 years10. Currently, China is regarded as a secondary centre of origin, harbouring wide genetic diversity11,12. 
Wild walnut is widely distributed in a nature reserve in Gongliu County, Xinjiang, China13–15. Wild relatives 
often harbour elite alleles conferring tolerance to extreme biotic or abiotic stress in specific environments16–18, 
which can provide resistance resources for genetic improvement. Xinjiang wild walnut shows relatively high 
stress resistance19,20 and good nutritional components21. Specifically, the elite cold resistance of wild walnut can 
guarantee its survival and propagation in long-term extreme cold, whether in winter or late spring, in Gongliu 
County. Therefore, wild walnut in this area is an ideal material for cold-improvement molecular breeding and 
the identification of cold stress regulatory mechanisms. However, walnut is a nonmodel tree species, and most 
studies have focused on the quality of cold-stressed walnut kernels22,23 or phenotyping the cold resistance of 
walnut varieties24, with few focusing on the molecular mechanism of cold tolerance25.

The draft genome of walnut was released in 201626 and improved in 201827. Since then, reference genome 
assemblies have been published successively with higher genome continuity or at the chromosome scale by 
means of long-read sequencing and Hi-C anchoring28,29. In addition, the genome sequences of six species of 
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Juglandaceae (J. sigillata, J. cathayensis, J. mandshurica, J. hindsii, J. microcarpa and J. nigra30) are also available 
(http://xhhuanglab.cn/data/juglans.html). However, the walnut genome has high heterozygosity between diploid 
chromosomes27–29, and the current genomes have mosaic assemblies of haplotypes. Recently, haplotype-defined 
genome assembly was realized in highly heterozygous organisms such as Manihot esculenta31, Camellia sinen-
sis32, Artemisia annua33 and Malus spp.34, which provided novel insight into allelic variation calling and func-
tional differentiation of divergent alleles in heterozygous species.

Diploid organisms have two allelic copies in their genome, but in a given individual, the alleles are not neces-
sarily both active or active at the same level. This unequal expression of gene copies caused by cis-acting genetic 
variants or CHG methylation is called allele-specific expression (ASE)35,36. ASE was first reported in yeast in 
200237 and is involved in many plant biological processes, such as the response to mild water deficit in tomato38 
and heterosis via partial to full dominance or overdominance effects on the traits being regulated and chromatin 
accessibility alterations in rice39,40. In recent years, genome-wide ASE features and ASE-related genes have been 
well characterized, benefitting from haplotype-resolved genome assembly in this third-generation sequencing 
era41,42. In the woody perennial plant apple, approximately 19% of the expressed genes were allele specific, and 
many ASE genes, such as genes encoding ACC oxidase and RIN-like MADS-box transcription factors, were 
associated with fruit quality43. Furthermore, Tian et al.34 reported that transposable elements (TEs) can regulate 
ASE to determine flower colour in apple.

This study reports a high-quality haplotype-resolved reference genome of wild walnut. First, Illumina 
sequencing reads were used to estimate the genome size, heterozygosity and proportion of repetitive sequences. 
PacBio high-fidelity (HiFi) long reads were adopted to primarily assemble highly continuous contigs, followed 
by HiFi read phasing to reassemble the resulting haplotypes. Then, two haplotypes (hap1 and hap2) at the 
chromosome scale were identified by Hi-C technology-assisted assignment. The final assembly lengths were 
562.99 Mb and 561.07 Mb for hap1 and hap2, respectively, with contig N50 values of 33.91 Mb and 22.40 Mb, 
respectively. Approximately 93.64% of the contigs (527.2 Mb) were anchored onto 16 pseudochromosomes for 
hap1, and 93.82% (526.4 Mb) were anchored onto 16 pseudochromosomes for hap2. The LTR assembly index 
(LAI v2.9.4)44, BUSCO v5 completeness45, genome collinearity and phasing switch errors32 were used to evaluate 
the completeness, continuity and phasing accuracy of the haplotype genomes. We predicted 41039 gene models 
for hap1 and 39744 gene models for hap2, and 34617 and 34562 genes were functionally annotated by four con-
ventional databases, respectively. A total of 358869 and 358104 simple sequence repeats (SSRs) were also identi-
fied for hap1 and hap2, respectively. The genome variation between hap1 and hap2, including different types of 
structural variations (SVs), is highlighted. Finally, 358, 457, 465, 494 and 386 ASEGs were identified at 0 h, 3 h, 
6 h, 12 h and 24 h after cold treatment, respectively. This high-quality haplotype-resolved genome assembly will 
shed light on subgenome evolution, molecular genetics and ASE regulatory mechanisms underlying adaptation 
to the extreme cold environments of wild walnut.

Methods
Plant material preparation, Illumina short-read library construction and sequencing.  Approximately 
20 g of young leaves from a wild walnut tree was collected from the nature reserve of Gongliu County, Xinjiang, China 
(E82°16′28″, N43°20′52″). The altitude of the wild walnut habitat ranges from 1241 m to 1670 m, and the annual aver-
age temperature is 7.6 °C, with an average of 19.7 °C in July and −9.9 °C in January46,47. Under cold stress, wild walnut 
plants exhibit better performance than seedling walnut48. The location and appearance are shown in Fig. 1. Then, the 
leaves were cut into pieces and rapidly placed in liquid nitrogen. The genomic DNA of the fresh leaves was isolated 
using a Super Plant Genomic DNA DP360 Kit (Tiangen Biotech, Beijing, China), followed by DNA concentration 
measurement using a NanoDrop spectrophotometer (ND2000, Thermo Fisher Scientific, USA) and quality monitor-
ing by electrophoresis on 0.80% agarose gels. High-quality DNA was subjected to ultrasonic fragmentation (350 bp) 
using a Covaris S2 instrument (Covaris, Woburn, MA, USA). A 350 bp paired-end resequencing library was prepared 
using a TruSeq DNA Sample Prep Kit (Illumina, San Diego, CA, USA) according to the manufacturer’s standard 
protocols. An Agilent 2100 bioanalyzer (Agilent Technologies, Palo Alto, CA) and q-PCR were used to measure the 
fragment size and quality of the library. To aid in gene model prediction, total RNA was extracted from mixed samples 
containing leaf, root, shoot and flower tissues (~1 g) from the same tree using the RNeasy Plant Mini Kit (Qiagen, 
Germany) according to the manufacturer’s instructions and treated with an RNase-free DNase I digestion kit (Aidlab, 
China). RNA degradation was monitored using a 1% agarose gel, and the purity of the isolated RNA was measured 
using a NanoDrop 2000 spectrophotometer (Thermo Scientific, Wilmington, DE, USA). The integrity of the RNA 
was assessed on an Agilent 2100 Bioanalyzer (Agilent, Palo Alto, CA, USA), and the RNA library was constructed 
with the TruSeq RNA Library Prep Kit v.2 (Illumina, San Diego, CA, USA). Both the DNA and RNA libraries were 
sequenced on an Illumina NovaSeq. 6000 sequencer (Illumina, San Diego, CA, USA) according to the manufacturer’s 
recommendations. The raw reads were filtered to generate high-quality clean reads by (i) removing adaptor sequences, 
(ii) filtering reads with >10% unidentified nucleotides, and (iii) removing reads with >50% bases with a low Phred 
quality score (≤10). As a result, 31.47 Gb (~56×) and 10 Gb (RNA-seq data) of high-quality clean reads were gener-
ated for the genome survey and gene model prediction, respectively.

PacBio HiFi long-read library generation and sequencing.  High-integrity genomic DNA extraction 
was performed according to Mayjonade’s methods49. The HiFi library was used according to PacBio’s standard 
protocols. Briefly, 10 μg of high-quality gDNA was randomly disrupted by a Covaris g-TUBE device (Covaris, 
Woburn, MA) and transferred for DNA damage repair and end repair. Then, dumbbell-shaped adaptors were 
ligated. Thereafter, the products were subjected to exonuclease digestion followed by size selection to screen 
segments between 10 kb and 30 kb in size using BluePippin (Sege Science, USA). The final library was sequenced 
on a PacBio Sequel II platform (circular consensus sequencing (CCS) model) using two flow cells for 35 h 
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(Adsen Biotechnology Company, Urumqi, China). Finally, we obtained approximately 57.86 Gb of HiFi reads (~ 
103 × depth) with a CCS contig N50 and greatest length of 15.91 kb and 50.33 kb, respectively.

Hi-C library preparation and sequencing.  As living samples can provide integrated and real inter-
action states in vivo, seeds from wild walnuts (for DNA extraction) were collected and germinated indoors. 
Seedlings at the four-leaf stage were used for Hi-C library preparation according to Lieberman–Aiden’s method50.  
In brief, fresh leaves were immediately crossed with formaldehyde, and the cross-linked DNA was then digested 
with Hind III (NEB). Subsequently, the sticky ends of these enzyme-digested fragments were end-repaired by a 

Fig. 1  The location and appearance of the wild walnut plants used for this genome assembly. (a) The precise 
location of the sampled wild walnut (red arrowhead). (b) The appearance of the sampled wild walnut.

k-mer size Genome size (Mb) Heterozygosity (%) Repeat ratio (%)

k = 15 513.17 0.41 32.98

k = 17 509.43 0.30 35.29

k = 19 470.69 0.32 34.12

k = 21 513.17 0.30 33.00

k = 23 484.53 0.29 33.01

Table 1.  Genome size estimation by k-mer analysis.

Assembly index hap1 hap2

Genome before scaffolding by HiC

Counts of Contig sequences 789 829

Largest contig length (bp) 38,200,000 38,210,000

Contig N50 (bp) 16,857,125 10,663,198

Contig N90 (bp) 2,804,056 1,680,000

Genome after scaffolding by HiC

Counts of scaffold sequences 708 703

Length of scaffold sequences (bp) 562,990,894 561,068,552

Largest scaffold length (bp) 49,766,161 49,731,481

Scaffold N50 (bp) 34,103,335 33,910,957

Scaffold N90 (bp) 22,892,000 22,406,140

GC content (%) 36.71% 36.71%

N Length (bp) 162,000 252,000

N content (%) 0.03% 0.04%

Gap numbers 81 126

Table 2.  Overview of the haplotype-resolved genome assembly.
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biotin-modified base. Circular DNA molecules were continuously generated using blunt-end proximity-ligated 
fragments and fragmented into 300–700 bp fragments. Finally, the fragments were enriched by biotin beads, and 
after library quality control by a Qbit 2.0 (Life Technologies, Carlsbad, CA, US) and an Agilent 2100 bioanalyzer 
(Agilent Technologies, Palo Alto, CA, USA), the library was subjected to paired-end 150 bp (PE150) sequencing 
in one lane (Illumina, San Diego, CA, USA). This Hi-C library generated approximately 64.61 Gb (~115 × depth) 
of clean data.

Genome survey analysis.  A total of approximately 31.47 Gb of clean reads were generated for the genome 
survey using GenomeScope v151 with the parameters “k = 15, 17, 19, 21, 23; length = 100; and max cover-
age = 10000”. We obtained an estimated genome size of 470.69 Mb-513.17 Mb with a heterozygosity of 0.29%–
0.41% for this wild walnut (Table 1).

De novo assembly of the haplotype-resolved chromosome-scale genome.  After adaptor filtering, 
the HiFi reads were employed to assemble a primary contig dataset using hifiasm v0.16.1 with default parameters52. 
Second, all CCS reads were remapped to the above assembled contigs using minimap2 v2.2453, and the parameters 
were set as -secondary = n -cx map-pb. Third, Longshot (default settings) was used to call variations54. Fourth, 

Fig. 2  Hi-C heatmap and Circos plot for hap1 and hap2. (a,b) show the interaction links of the Hi-C data at 
a bin size of 20 kb. The interaction intensity is indicated using colours ranging from light yellow to dark red, 
which denote the frequency of Hi-C interactions from low to high. (c,d) Circos plot of the genomes of hap1 
and hap2 with a window size of 500 kb. This Circos plot includes six components: (a) LAI (LTR assembly index) 
values; (b) density of GC content; (c) gene density; (d) density of Copia retrotransposons; (e) density of Gypsy 
retrotransposons; and (f) density of TEs (transposable elements).
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variation phasing was realized by using WhatsHap with default parameters55. Fifth, CCS reads were separated into 
two haplotypes (hap1 and hap2) and an unassigned group according to the phased variations. Sixth, CCS reads 
of the hap1 combined unassigned group and hap2 combined unassigned group were assembled independently 
using hifiasm v0.16.1 with default parameters52. For genome scaffolding, clean Hi-C data were mapped to the 
contigs of hap1 and hap2 by BWA v0.7.1056. HiCExplorer57 was used to calculate mapping reads and interaction 
pairs. For hap1, a total of 120.89 million reads were uniquely mapped, of which 51.16 million were valid inter-
actions, accounting for 42.32%. For hap2, 119.03 million reads were uniquely mapped, and 50.58 million reads 

Element Class

hap1 hap2

Numbers
Length 
occupied (bp)

Percentage of 
sequence (%) Numbers

Length 
occupied (bp)

Percentage of 
sequence (%)

LTR

Copia 49,843 36,934,468 6.56 52,452 38,093,854 6.79

Gypsy 59,067 48,144,768 8.55 59,139 48,457,231 8.64

Unknown 56,810 29,001,468 5.15 55,392 27,968,130 4.99

TIR

CACTA 69,243 26,040,568 4.63 72,898 27,068,332 4.83

Mutator 72,764 20,818,845 3.7 72,396 20,322,553 3.62

PIF_Harbinger 44,274 11,675,844 2.07 48,596 13,940,292 2.49

Tc1_Mariner 4,654 1,481,269 0.26 4,706 1,325,219 0.24

hAT 41,895 17,862,985 3.17 37,947 16,767,929 2.99

non LTR LINE_element 5,825 2,521,684 0.45 5,421 2,396,560 0.43

nonTIR
Helitron 61,104 15,839,016 2.81 55,772 14,959,035 2.67

Repeat_region 122,585 50,172,923 8.91 118,992 47,873,476 8.54

Total 588,064 260,493,838 46.26 583,711 259,172,611 46.23

Table 3.  Annotations of repeated sequences in hap1 and hap2.

Annotation index hap1 hap2

Gene model annotation

Number of gene models 41,039 39,744

Number of mRNA 43,309 42,373

Number of exon 213,870 215,844

Number of intron 170,536 173,431

Mean coding sequence length (bp) 1,093 1,107

Mean number of exons per mRNA 4.94 5.09

Mean exon length (bp) 221 217

Mean intron length (bp) 693 736

Non-coding RNA annotation

tRNA 500 500

rRNA 72 104

miRNA 207 210

snoRNA 1,038 1,105

Functional annotation

COG 32,341 32,267

GO 18,069 18,055

KEGG 17,123 17,291

Pfam 31,305 31,219

Total 34,617 34,562

Table 4.  Overview of the haplotype-resolved genome annotation.

Variation type Numbers
Length in 
hap1 (bp)

Length in 
hap2 (bp)

Inversions 21 1,037,925 1,090,802

Translocations 40 1,026,758 1,033,924

Duplications (hap1) 2 6,247 —

Duplications (hap2) 60 — 210,298

Presence/absence variant (>50 bp) 575 274,629 274,840

Table 5.  Structural variation and presence/absence variants between hap1 and hap2.
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were observed to interact with other pairs, for a percentage of valid data of 42.49%. Second, valid interaction 
read pairs were used to cluster and orient the assembled haplotype-resolved contigs onto pseudochromosomes 
by using HiCAssembler58 (options: -min_scaffold_length 100000; -bin_size 20000; -misassembly_zscore_thresh-
old 1.0; -num_iterations 4; -num_processors 30). The Juicebox tool (https://github.com/aidenlab/Juicebox) was 
used to fine-tune the pseudochromosomes manually. This final assembly resulted in a total of 562.99 Mb (contig 
N50 = 34.10 Mb) assigned to 16 pseudochromosomes for hap1, of which 527.20 Mb could be oriented, accounting 
for 93.64% of the haplotype genome size, while 526.40 Mb of hap2 was oriented, accounting for 93.82% of the 
561.07 Mb (contig N50 = 33.91 Mb) of the assembled sequences (Table 2; Fig. 2c,d). Heatmaps were produced to 
display the interactions of genome read pairs at a resolution of 20 kb (Fig. 2a,b).

Genome-wide repetitive sequence annotation.  A comprehensive transposable element (TE) pre-
diction tool, Extensive Denovo TE Annotator59 (options: -t 20 -step all -sensitive 1 -anno 1), was adopted to 

Fig. 3  SV (structural variation) distribution between the haplotypes. The horizontal blue lines indicate the 
chromosomes of hap1, and the red lines indicate the chromosomes of hap1. The grey, orange, light blue and 
green lines indicate the syntenic, inverted, duplicated and trans-located regions, respectively.

https://doi.org/10.1038/s41597-024-03096-4
https://github.com/aidenlab/Juicebox


7Scientific Data |          (2024) 11:278  | https://doi.org/10.1038/s41597-024-03096-4

www.nature.com/scientificdatawww.nature.com/scientificdata/

construct a nonredundant TE library with Helitron and long terminal repeat (LTR) identification. TIR-Learner 
v2.560 was used to search for terminal inverted repeats (TIRs) under default recommendations. RepeatMasker 
v4.0561 was used to predict the final repeat sequences of the genome under the parameters -nolow -no_is -norna 
-engine wublast. Finally, we identified 46.26% and 46.23% repetitive elements in the hap1 and hap2 assemblies, 
respectively, including similar components of the LTR type (4%–8%), TIR type (0–5%), non-LRT type (~0.50%) 
and non-TIR type (2%–9%) between hap1 and hap2 (Table 3; Fig. 2c,d).

Fig. 4  Histograms of the biallelic expression of divergent alleles in homologous chromosome pairs at 0 h (a), 3 h 
(b), 6 h (c), 12 h (d), and 24 h (e). The black column indicates hap1 dominance. The red column indicates hap2 
dominance. The grey column indicates equal expression.

https://doi.org/10.1038/s41597-024-03096-4
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Gene model prediction and functional annotation.  Three steps were combined for protein-coding 
gene model prediction. First, AUGUSTUS v3.4.062 and GeneMark-ES v4.6863 were used to search for gene models 
via ab initio prediction. Second, GeMoMa v1.3.164 was used for homology prediction. Then, PASA (parameters: 
-align_tools gmap, -maxIntronLen 20000) was used for gene prediction via RNA-seq65. Finally, 41039 gene mod-
els were annotated for hap1, and 39744 gene models were annotated for hap2 (Table 4; Fig. 2c,d). For functional 
annotation, the above gene model sequences were translated into protein sequences and subsequently compared 

Fig. 5  Allele-specific gene expression in hap1 and hap2 under cold stress. (a) Allele-specific expression genes 
(ASEGs) on haplotype chromosomes at five time points under cold stress (0 h, 3 h, 6 h, 12 h, 24 h). The numbers 
of ASEGs are displayed as the mean ± s.d. (b) Venn diagram of the ASEGs at five time points under cold stress. 
The numbers indicate unique and common ASEGs for different time points.

https://doi.org/10.1038/s41597-024-03096-4
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against the COG v2.1.466, GO67, Pfam68 and KEGG69 databases. In total, 34617 hap1 and 34562 hap2 nonredun-
dant gene models were annotated by these biological databases, accounting for 84.35% and 86.96% of all gene 
models, respectively (Table 4). The gene model numbers of hap1 and hap2 were greater than those reported in 
Chandler26 (32498), Serr (Payne × PI 159568)70 (31425) and Ding et al.71 (33430) and lower than those reported 
in Chandler28 (37554) and Zhongmucha-129 (39432).

Noncoding RNA annotation.  tRNAscan-SE v2.0.972 (default settings), barrnap v0.973 (options: -kingdom 
euk -threads 8) and Infernal v1.074 (option: -Z $Z -cut_ga -rfam –nohmmonly -fmt 2) combined with Rfam75 
were used for the tRNA, rRNA and miRNA/snoRNA searches, respectively. Overall, 1817 (500 tRNA, 72 rRNA, 
207 miRNA and 1038 snoRNA) and 1919 (500 tRNA, 104 rRNA, 210 miRNA and 1105 snoRNA) noncoding 
RNAs were discovered in the genomes of hap1 and hap2, respectively (Table 4).

Simple sequence repeat (SSR) recognition and variation calling.  Hap1 and hap2 were analysed 
by using TBtools v 1.09875176 for SSR recognition under default settings. We identified 358869 SSRs for hap1 
and 358104 SSRs for hap2. In addition, we used hap2 as a query to map it to hap1 using minimap2 v2.2453 under 
the settings -eqx -ax asm5, followed by variation detection using SyRI77 under default settings. Afterwards, we 
detected 21 inversions, 40 translocations, 575 presence/absence variants (PAVs), 2 duplications in hap1 and 60 
duplications in hap2 (Table 5; Fig. 3). Notably, the lengths of the PAVs were 274,629 bp in hap1 and 274.840 bp in 
hap2, accounting for 303 and 272 genes in hap1 and hap2, respectively (see repository files78). Similarly, the struc-
tural variations between hap1 and three released genomes29,70,71 of Juglans were identified (see repository files78).

Allele-specific expression genes (ASEGs) under cold stress.  To explore the response of ASEGs to 
cold stress, three-leaf-stage seedlings derived from the kernels of wild walnut trees were treated at 4 °C in a climate 
chamber (Shanghai Boxun Industrial Co., Ltd., Shanghai, China). Leaves (approximately 0.5 g) were sampled 
after treatment for 0 h, 3 h, 6 h, 12 h and 24 h, with three biological repetitions, and immediately placed in liquid 
nitrogen for quick freezing. RNA-seq libraries were constructed, and sequencing was performed (see Methods: 
Plant material preparation, Illumina short-read library construction and sequencing). MCScanX79 was used to 
identify collinear block gene pairs between hap1 and hap2 with the default settings. The scaffold-involved collin-
ear gene pairs were removed. Subsequently, the collinear gene pairs were checked by BLAST80 with a similarity 
between 90% and 100%. Ultimately, we obtained 18770 gene pairs. The clean RNA-seq data were mapped to the 
walnut genomes using HISAT2 v2.2081, and TPM values were used for expression quantification by StringTie v 
2.1.282. DESeq 283 was used to determine ASEGs with the criteria |log2Fold Change| > 1 and adjusted p < 0.05. 
We obtained 358, 457, 465, 494 and 386 ASEGs at 0 h, 3 h, 6 h, 12 h and 24 h, respectively, accounting for approx-
imately 2% of all the identified collinear genes (see repository files78; Fig. 4). Of all the ASEGs, 234 were shared, 
and 12, 37, 22, 32 and 20 were specifically detected in the 0 h, 3 h, 6 h, 12 h and 24 h samples, respectively (Fig. 5b). 
We also noticed that more frequent ASEGs were dominantly expressed on hap2 (Fig. 5a), indicating uncoordi-
nated allelic expression patterns for the ASEGs under cold stress in wild walnut.

Data Records
Illumina reads for genome survey, RNA-seq reads and Hi-C reads were deposited in the Sequence Read Archive 
(SRA) (accession numbers: PRJNA858167, PRJNA859241, and PRJNA858917, respectively)84–86. HiFi long 
reads were co-deposited in the National Genomics Data Center (https://ngdc.cncb.ac.cn/) under the accession 
number CRA007543 and SRA under accession number PRJNA94732987. The genome assembly of wild walnut 
(Juglans regia L.) has been deposited on the Figshare platform (https://doi.org/10.6084/m9.figshare.22266730)88 

Fig. 6  Summary assessment bar chart for BUSCO evaluation in hap1, hap2 and published genomes of Juglans 
(http://xhhuanglab.cn/data/juglans.html). Light blue indicates the percentage of complete and single-copy 
genes, while darker blue indicates the percentage of complete and duplicated genes; yellow indicates the 
percentage of fragmented genes; and red indicates the percentage of missing genes in the assemblies.
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and GenBank with accession numbers GCA_034508915.1 and GCA_034509015.1, respectively89,90. The 
RNA-seq reads of cold-stressed samples were deposited in the SRA under accession number PRJNA94242691.

Technical Validation
Sequencing read quality control.  For Illumina-based sequencing data (sequencing for genome survey, 
Hi-C reads and RNAseq reads), raw reads were removed to obtain clean data according to the following steps: (1) 
filtering adaptors; (2) removing reads with >10% unidentified nucleotides; and (3) removing reads with >50% 
bases with a Q value ≤ 10. The clean data were then evaluated in terms of the insert size, GC content, Q30 value, 
quality distribution and base composition. Specifically, we used HiCUP92 (v0.6.1) for preprocessing and to eval-
uate the Hi-C library quality. After trimming the restriction enzyme site of HindIII by calling the HiCUP_trun-
cater script, the Hi-C clean data were aligned to the haplotype genomes by BWA v0.7.1056, and only the unique 

Fig. 7  Collinearity evaluation between haplotypes and the published genome of Juglans regia L29,71. (a) The 
collinearity between hap1 and the published Juglans regia L. genome29. (b) The collinearity between hap2 and 
the published Juglans regia L. genome29. (c) The collinearity between hap1 and the published Juglans regia L. 
genome71. (d) The collinearity between hap2 and the published Juglans regia L. genome71. To distinguish the two 
published genomes, chromosome71 collinearity was marked using different colours.
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mapped sequences with a mapping score of at least 20 were used for the following process. For the HiFi long 
reads, subreads from the same template strand were consistently corrected, and adapters and low-quality reads 
were filtered. Before processing, 2000 randomly selected long reads were subjected to contamination evaluation 
by BLAST80 against the Nt database (ftp://ftp.ncbi.nih.gov/blast/db) under the threshold of P < 1e-05.

Haplotype genome assembly evaluation.  BUSCO v545 evaluation revealed that more than 94% of 
Embryophyta genes were successfully assembled in both hap1 and hap2 (Fig. 6), indicating that the completeness 
of these haplotype-resolved genomes was in line with that of the published genome29. The LAI44 values of hap1 
and hap2 were 13.36 and 13.41, respectively. The CC ratios93 of hap1 and hap2 were 43.25 and 42.94, respectively. 
Furthermore, we used hap1 and hap2 as queries for mapping against two published genomes29,71 in minimap2 
v2.2453 under the settings -eqx -ax asm5. Good collinearities were observed between our haplotype genomes and 
the two published genomes29,71 (Fig. 7). Finally, the phasing accuracy of the haplotype-resolved assembly was 
assessed by the percentage of switch errors using the modified calc_switchErr pipeline32,94. As 10x Genomics 
linked reads were not available, the criterion consistency phased SNP step was excluded from the phasing eval-
uation pipeline. A total of 184957 SNPs were detected, including 33061 switched SNPs, indicating a switch error 
rate of 17.87%, which is similar to that in the genome of Solanum tuberosum L. (17.1%) and lower than that in 
the genomes of Malus domestica cv. Gala (22.2%) and Vanilla planifolia (44.0%)94. We further used published 
Nanopore sequencing data (SRR10001245) from the Juglans regia L. cultivar Chandler28 to evaluate phasing accu-
racy. We first polished the ONT data using the genome resequencing data of wild walnut with Ratatosk95 v0.7.0 
under default settings; then, the same method was used to calculate the switch error. Finally, we obtained a switch 
error of 6.25%. Collectively, these results indicate that a reference-level high-quality haplotype-resolved genome 
of wild walnut was obtained.

Published QTL confirmation.  To further validate the accuracy of the genome, we downloaded published 
reduced-representation sequencing data from Juglans regia L., which were used for high-density genetic map con-
struction and QTL mapping96. A total of 2540 out of 2577 markers (98.56%), developed by specific length ampli-
fied fragment sequencing (SLAF-seq), on the genetic map can be mapped to the genome of hap1 with an identity 
>90% and an E threshold value < E-10 (see repository files78). Specifically, a QTL identified by the authors for 
anthracnose resistance harbouring 10 markers was found to be best mapped to chr1:14148922–14220999 of hap1, 
a region of approximately 721 kb (Table 6). A similar discovery was made for hap2. These results indicated the 
high accuracy of the subgenomes of this wild walnut.

Code availability
No specific code was developed in this work. All the data were analyzed following the manuals suggested by the 
developers of the bioinformatic tools, which have been described in the Methods section.
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