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a human lower-limb biomechanics 
and wearable sensors dataset 
during cyclic and non-cyclic 
activities
Keaton Scherpereel  1,2 ✉, Dean Molinaro1,2, Omer Inan3, Max Shepherd4,5 & aaron Young  1,2

Tasks of daily living are often sporadic, highly variable, and asymmetric. Analyzing these real-world 
non-cyclic activities is integral for expanding the applicability of exoskeletons, protheses, wearable 
sensing, and activity classification to real life, and could provide new insights into human biomechanics. 
Yet, currently available biomechanics datasets focus on either highly consistent, continuous, and 
symmetric activities, such as walking and running, or only a single specific non-cyclic task. To capture a 
more holistic picture of lower limb movements in everyday life, we collected data from 12 participants 
performing 20 non-cyclic activities (e.g. sit-to-stand, jumping, squatting, lunging, cutting) as well as 
11 cyclic activities (e.g. walking, running) while kinematics (motion capture and IMUs), kinetics (force 
plates), and electromyography (EMG) were collected. This dataset provides normative biomechanics for 
a highly diverse range of activities and common tasks from a consistent set of participants and sensors.

Background & Summary
Human movement in daily living varies from consistent and steady activities, such as walking and running, 
to more dynamic movements that vary by person and situation, such as lifting, lunging, or side-stepping. Not 
only do the biomechanics of these motions vary, but the actual activities are sporadic. Humans stop, start, and 
switch tasks rapidly, often with transitions that are difficult or impossible to define. This variety is reflective of 
the diverse and dynamic goals for human movement, the flexibility of the human musculoskeletal system1, and 
the many environmental factors that impact movement2. The diversity in human activity is evidenced by the lack 
of continuous movement in everyday activities. The most common walking bout lasts only about 4 steps, and 
75% of both walking and resting bouts last less than 70 seconds3. Orendurff et al. demonstrated that gaits of daily 
living consistently reflect a dynamic approach to movement; one where more emphasis is placed on maneuver-
ability than on highly efficient consistent walking3. Despite this fact, the vast majority of biomechanics research 
has focused on long-duration, steady-state walking bouts.

Open-source datasets to date have largely centered around the most common cyclic and steady-state 
activities, which can be easily segmented and averaged across strides. Winter’s seminal dataset characterizing 
human biomechanics focused only on the time-repeatable task of level-ground walking4. Since then, publicly  
available datasets have begun to increase the variety of data available by including more walking speeds5–8 and 
more participants9,10. These datasets have not been limited to level-ground walking but have included other 
time-repeatable tasks including running11,12, walking on stairs and ramps13–18, sitting and standing13,14,19,20, heel 
and toe walking21,22, and even walking on irregular terrain23,24. In addition to increasing the task space, other 
sensor modalities have been explored, such as muscle specific information measured through electromyography 
(EMG)9,10,13–18,21,22,25,26. Research from Camargo et al. has filled a critical gap by providing a single dataset of the 
same participants performing multiple terrain conditions at multiple speeds with consistent and comprehensive 
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sensors15–18. Reznik et al. also filled some of these gaps with their public dataset, including additional ambulation 
mode transitions, sit-to-stand movements, and constant acceleration tasks19,20. Still, there exists very limited 
publicly available data for transitions13–20, and non-cyclic dynamic tasks that represent the variability of daily 
life are largely absent. The state of current open-source datasets in literature is summarized in Table 1 for cyclic 
activities and Table 2 for non-cyclic activities.

Dynamic, non-cyclic activities in biomechanics literature have received attention due to their relevance to reha-
bilitation, sports, and injury prevention as well as their prevalence in everyday life. Activities such as sit-to-stand 
and obstacle avoidance are important for independent daily living and the ability to maintain stability27,28.  
Other studies have examined the biomechanics of highly dynamic activities, such as cutting29,30, jumping31, 
lifting32,33, lunging34, and squatting35 and their relevance for athletes in preventing injury and promoting rehabil-
itation. These motions differ significantly from walking but directly and indirectly have bearing on the majority 
of movements that an individual might encounter in daily life. Despite the relevance to daily living, there are 
no open-source datasets containing many of these tasks, let alone collecting all these types of maneuvers with 
continuous time series data and corresponding wearable sensors.

This paper presents an open-source biomechanics dataset that includes a wide range of both dynamic 
non-cyclic tasks and cyclic tasks. It represents the most diverse open-source set of biomechanics data across 
weight bearing lower limb tasks available in the literature. This includes the specific non-cyclic tasks mentioned 
above as well as unique tasks that involve perturbations from external objects. Additionally, representative tasks 
are included from cyclic walking, such as level ground walking, stairs, and inclines as well as unique cyclic tasks 
such as heel and toe walking and backward walking. For each of these tasks, kinematics from motion capture 
as well as real and simulated IMUs are supplied. Kinetics from force plates and the resulting joint moments 
calculated through OpenSim36 are also included, as well as virtual insole data. Finally, time-synchronized EMG 

Metadata Common Cyclic Tasks Uncommon Cyclic Tasks

# Participants
Age 
Range

Walk 
(m/s)

Run 
(m/s)

Stair 
Ascent 
(mm)

Stair Descent 
(mm)

Incline 
(°)

Decline 
(°)

Miscellaneous 
(Heel/Toe Walk)

Walk 
Backwards

Weighted 
Walk Calisthenics

Winter 19834 1 SS (1 
speed)

Moore 20157,8 15 19–32 ~0.8–1.6

Fukuchi 201711,12 28 19–51 2.5–4.5

Fukuchi 20185,6 42 21–84 SS (8 
speeds)

Hu 201813,14 10 23–29 SS (1 
speed) 197 197 10 10

Lencioni 201921,22 50 6–72 SS (5 
speeds) 180 180 x

Schreiber 20199,10 50 19–67 SS (5 
speeds)

Moreira 202125 16 20–27 0.28–1.1

Camargo 202115–18 22 19–33 0.5–1.85 102–178 102–178 5.2–18 5.2–18

Reznick 202119 10 20–60 0.8–1.2 1.8–2.4 97–162 97–162 5, 10 5, 10

Our Dataset 12 18–30 0.4–1.8 2.0–2.5 152 152 5, 10 5, 10 x x x x

Table 1. Cyclic Tasks in Open-source Biomechanics Datasets for Able Bodied Individuals. *SS indicates self-
selected walking speed.

Step 
over

Sit-to-
stand Turn Squats Lift weight

Jump 
across Poses Cutting Lunges

Ball 
Toss

Step 
Ups Curb

Jump in 
place Others

Winter 19834

Moore 20157,8 x

Fukuchi 201711,12

Fukuchi 20185,6

Hu 201813,14 x

Lencioni 201921,22

Schreiber 20199,10

Moreira 202125

Camargo 202115–18 x

Reznick 202119,20 x x

Our Dataset x x x x x x x x x x x x x x

Table 2. Non-Cyclic Tasks in Open-source Biomechanics Datasets for Able Bodied Individuals.
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Fig. 1 A representation of the cyclic and non-cyclic tasks broken into their constituent conditions.

LSHO C7

LPSI RPSI

LGTR

RGTR

RKNE

LKNE
LMKNE

RMKNE

RANK

LANK
LMANK

RMANK

LHEE RHEELMT1RMT1

LMT5RMT5

STRN

LASIRASI

RTHL

RTHC
RTHR

LTHL

LTHC
LTHR

RSHL

RSHC
RSHR

LSHL

LSHC
LSHR

Marker Placements

Fig. 2 The modified Helen Hayes marker set used for data collection.
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from eight muscles on each leg is provided. The data from this complete suite of wearable sensors are a valuable 
contribution to the literature for many applications, such as machine learning, wearable device design, controller 
development, health monitoring, and human modeling.
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Fig. 3 The orientations, placement, and axes definitions for physical inertial measurement units (IMUs) and 
surface electromyography sensors (EMGs).
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Fig. 4 The orientations, placement, and axes definitions for the simulated inertial measurement units (IMUs).
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Methods
In this study, 3D biomechanics from marker-based motion capture and force plates, as well as wearable signals 
from IMUs and EMGs, were collected for a diverse range of ambulatory tasks as well as numerous non-cyclic 
tasks. Virtual sensors were created to increase the usefulness of the dataset by providing data for sensors that 
were not included in this study, such as pressure insoles and foot IMUs. This also provides data for comparison, 
replication, and advancement of research with simulated sensors37,38.

participants. Twelve able-bodied participants (7 males, 5 females, mean ± SD: age = 21.8 ± 3.2 years, 
height = 176.7 ± 8.6 cm, weight = 76.9 ± 14.4 kg) were recruited to participate in a single-day gait analysis study. 
For inclusion, the participants had no history of neurological injury, gait pathology, or cardiovascular condition 
that would limit their ability to ambulate for multiple hours, up and down steep inclines and stairs, and partic-
ipate in fatiguing exercises. Each participant gave informed written consent to participate in a Georgia Tech 
Institutional Review Board-approved study under IRB H17240.

performed tasks. Tasks were selected to provide large inter-joint variability in kinematics and kinetics, and 
to provide examples of similar kinematics but differing kinetics. The tasks can be split into several different sub-
categories within the broad categories of cyclic and non-cyclic as shown in Fig. 1. A full list and description of how 
each of the activities was performed is given in Supplementary Table 1 and in the videos (not taken during actual 
collections) included within the dataset.

Motion capture. Retroreflective markers were placed based on a modified Helen Hayes marker set15 includ-
ing markers on the medial malleoli, medial femoral condyles, greater trochanters, and posterior superior iliac 
spine (Fig. 2 abbreviations detailed in the dataset).
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Fig. 5 Representative biomechanics for a selection of tasks averaged across participants. Walking at 1.2 m/s (a) 
and running at 2.5 m/s (b) were segmented by gait cycle while squats with a 25 lb weight (c) and jumps (d) were 
segmented by a pelvis velocity threshold. Figures for all of the tasks and segmentation information is contained 
in the dataset.
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of the non-cyclic, non-locomotion tasks (b). Figures for all of the tasks are contained in the dataset.
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Motion capture data were collected at 200 Hz (Vicon. Ltd., Oxford, UK) using 29 cameras overhead and 4 
ground cameras. Gap’s were filled (with rigid body fill and pattern fill) using an automatic pipeline (max gap 
length 200 frames) to fill some gaps and then manual examination was used to verify and fill the remainder. 
Trajectories were then low pass filtered (zero-lag 6 Hz 5th order Butterworth filter15,19,39) before processing in 
OpenSim. Subject-specific models were based on the OpenSim gait2354 model40. They were scaled based on 
anatomical landmarks and participant mass as measured via force plate data during static trials. During scaling, 
mass distribution between segments was preserved and main anatomical landmarks were used for pose posi-
tioning (highest weight: LASI, RASI, LPSI, RPSI, RKNE, LKNE, RMKNE, LMKNE, LANK, RANK, LMANK, 
RMANK, C7; lower weight: LGTR, RGTR, LMT1, LMT5, LCAL, RCAL, RMT1, RMT5). Sagittal joint angles 
were required to be within ±5° of 0 for neutral standing static trials to verify that the model matched the human’s 
pose.

Ground reaction forces. Ground reaction forces were collected with both an instrumented treadmill 
(Bertec Corporation, Columbus, Ohio) as well as over ground force plates (Bertec Corporation, Columbus, Ohio) 
depending on the task. Force plate data were collected at 1000 Hz and then low pass filtered (20 Hz 5th order 
Butterworth zero-lag41,42) and clamped to zero for forces less than 20 N. Force plates and the treadmill were 
re-zeroed upon configuration changes. Forces were split into steps based on the 20 N threshold (except for the 
treadmill trials that included running in which a 50 N threshold was applied due to higher noise) and then were 
automatically assigned to their respective feet based on matching marker and center of pressure data in the global 
coordinate system.

Joint angles and velocities. The subject-specific models were used to calculate inverse kinematics based on 
marker data where each marker was weighted equally. In the event of a marker falling off, a new static calibration 
was performed and then the marker placement on the model was shifted to match the new placement without 
changing the scaling of the skeletal model (details on specific trials are provided in the dataset). Inverse kinematic 
calculations within OpenSim were performed to estimate joint angles based on marker positions. The unfiltered 
kinematics are provided in the dataset. However, for any further steps such as inverse dynamics or joint velocities, 
a filter (6 Hz lowpass forward-reverse Butterworth filter) was applied36. The hip, knee, and ankle velocities were 
computed from the filtered inverse kinematics using central finite differencing (MATLAB’s gradient function).

Joint moments and powers. Filtered inverse kinematic data were used in conjunction with ground 
reaction force data to calculate inverse dynamics. Steps not on the force plates were marked as NaN for inverse 
dynamics from heel strike of the first step off the force plates to toe off of the last step before returning to the force 
plates. Joint moments were then lowpass filtered using a forward-reverse 5th order Butterworth filter with a cutoff 
frequency of 6 Hz. These moments were then multiplied by the above velocities to compute joint powers.

Electromyography. EMG data were collected at 1259 Hz bilaterally (Trigno Avanti Wireless EMG, Delsys, 
Natick, MA) and upsampled to 2000 Hz (default for Delsys digital sensor data acquisition in Vicon Nexus). EMG 
data was synched with the motion capture data using the Delsys trigger module (Delsys, Natick, MA). EMG were 
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Fig. 8 A visual representation of the processed data folder structure.
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recorded from the following muscles bilaterally: gluteus medius (GMED), gluteus maximus (GMAX), gracilis 
(GRAC), biceps femoris (BF), vastus lateralis (VL), rectus femoris (RF), tibialis anterior (TA), medial gastroc-
nemius (MGAS). Seniam guidelines were used to determine EMG placement43. The location was prepared with 
alcohol and then the sensor was adhered to the skin using double sided adhesive. EMG data are provided as raw 
unfiltered data.

IMUs. IMU data (Trigno Avanti Wireless EMG, Delsys, Natick, MA) from experimental sensors were collected 
at 148.6 Hz at several locations in combination with EMG. Due to these data coming from the same sensor pack-
age as the EMG, the system automatically upsampled to 2000Hz to match the EMG data. In the dataset, IMUs 
have been downsampled back to 200 Hz to better reflect the collection frequency and to match the rest of the 
mechanical data. IMUs were collected bilaterally at the same locations as EMGs on the gluteus medius, biceps 
femoris, rectus femoris, and tibialis anterior. The placement for EMGs and actual IMUs is presented in Fig. 3.

Virtual inertial measurement units (IMUs). Filtered kinematics in OpenSim were used to calculate 
transformation matrices to transform segment positions into global frame coordinates for each individual time 
step. Simulated IMUs were positioned on the pelvis, thigh, shank, and foot bilaterally as shown in Fig. 4 with all 
of the medial-lateral positions located at the center of their respective segments.

These above positions in the local frame were converted via the transforms to the position in the global frame 
at each time point. Then these positions were differentiated twice to find acceleration. Gravity was then included 
along the proper axis. The rotational transformation matrix was again used to find the rate of rotation at each 
point to calculate gyroscope measures. This process is outlined and verified in Molinaro et al.38.

File
Sampling 
rate (Hz) Units

# of 
columns

Contents description (the first column of every file is a time column in 
seconds)

_activity_flag.csv 200 boolean 3
The first two data columns are columns of zeros (off) and ones (on) for 
which the participant is performing the given activity (on) for left and right 
respectively.

_angle.csv 200 degrees 13

The first 6 data columns are for the right leg and consist of 3 angles for 
the hip (flexion/extension, adduction/abduction, rotation), 1 for the knee 
(flexion/extension), 2 for the ankle (dorsiflexion/plantarflexion, eversion/
inversion). The final 6 columns are broken down in the same way as above 
for the left leg.

_emg.csv 2000 volts 17

The data columns come in pairs of columns for left and right EMG raw 
values (noted L and R). These are for each of the muscle locations listed 
in the methods section: tibialis anterior (TA), rectus femoris (RF) biceps 
femoris (BF), gluteus medius (GMED), medial gastrocnemius (MGAS), 
vastus lateralis (VL), gracilis (GRAC), gluteus maximus (GMAX).

_insole_sim.csv 200 COP (meters), 
Force (Newtons) 11

The data columns are for two quantities: center of pressure (COP) and 
force. These are in the reference frame of the foot. The first two data 
columns are for the right foot COP as measured from the back of the 
calcaneus for the anterior/posterior direction (AP) and the center of the 
foot for the medial/lateral direction (ML). The following 2 are for the left 
COP. The next 3 are for ground reaction forces converted to the foot frame 
for vertical forces (Vertical), mediolateral (ML), and anterior/posterior 
(AP) with positive directions as defined by the axes in the methods figure. 
The last three columns are for forces on the left foot.

_grf.csv 200 COP (meters), 
Force (Newtons) 13

As above, the data columns are for two quantities: center of pressure 
(COP) and force. These are in a global coordinate frame and thus the X 
and Z directions change with the orientation of the person. The first three 
columns are for right foot force in X, Y (vertical), and Z followed by the 
COP in X, Y, and Z. This is then repeated for the left leg.

_imu_real.csv 200 Accel (m/s2), 
Gyro (degrees/s) 49

The data columns consist of pairs of six columns from each of the IMUs: 
acceleration in the X, Y, Z direction and gyro in the X, Y, and Z direction. 
The sensors begin with pairs for left first and then right for the four 
locations: shank, anterior thigh (AThigh), posterior thigh (PThigh), and 
pelvis.

_imu_sim.csv 200 Accel (m/s2), 
Gyro (degrees/s) 43

The data columns consist of pairs of six columns just as above (acceleration 
in the X, Y, Z direction and gyro in the X, Y, and Z direction). For this 
set there are seven virtual sensors, beginning with the pelvis and then 
alternating left and right for the thigh, shank, and foot.

_moment.csv 200 Newton-meters 11
The data columns are joint moments beginning with 3 for each hip (right 
then left; flexion/extension, adduction/abduction, rotation), 1 for each 
knee (right then left; flexion/extension), 1 for the ankle (right then left; 
dorsiflexion/plantarflexion).

_moment_filt.csv 200 Newton-meters 11 The data columns are in the same order as above as the moment with a 
lowpass zero-lag 5th order Butterworth filter at a cutoff frequency of 6 Hz.

_power.csv 200 Watts 11 The data columns are in the same order as above as the moment but for 
power.

_velocity.csv 200 degrees/s 13 The data columns are in the same order as above for the angle but for 
velocity.

Table 3. Output File Types for Each Task.
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Virtual insoles. These same transformation matrices were inverted and used to convert the global force plate 
measures into the foot reference frame. This provides forces with respect to the foot for both vertical ground 
reaction force as well as anterior-posterior shear and mediolateral shear. The center of pressure was calculated in 
a similar fashion based on the position of force application on the force plate converted to global coordinates and 
then transformed to the foot reference frame based on the instantaneous transformation matrix. This provides an 
anterior-posterior center of pressure as measured from the back of the foot and a medio-lateral center of pressure 
with respect to the center of the foot.

summary data visualizations. Task specific joint dynamics. A summary of the biomechanics for several 
tasks that can be segmented is presented below in Fig. 5 while the complete set of figures is included directly 
within the dataset. Each figure consists of nine subplots with each column representing the three joints (hip, knee, 
and ankle) in the sagittal plane and each row representing angle, moment, and power respectively. Individual 
participant lines are included in grey while the across participant average and standard deviation are presented 
in color. In these figures, hip extension is positive, knee extension is positive, and ankle plantarflexion is positive.

Motion space comparison of cyclic and non-cyclic tasks. To visually demonstrate the differences between cyclic 
and non-cyclic domains and further illustrate the uniqueness of these non-cyclic activities, the data were exam-
ined within the moment and angle regime, thus quantifying the kinematic and kinetic scope of data across all 
tasks including those that could not be segmented. Joint moment and angle data over time were combined for 
three distinctions of activities: 1. Cyclic: the most commonly studied activities consisting of walking on stairs, 
ramps, and level ground 2. Cyclic+: all collected cyclic tasks (including running, backward walking, heel & toe 
walking, etc.). 3. Non-cyclic: the 20 non-cyclic tasks described above. A kernel density estimator44 was then 
passed over the data and the largest continuous contour containing 99.5% of the data across all participants was 
created to represent the motion space in the kinematic (as represented by angle) and kinetic (as represented by 
moment) domains. These plots are presented in Fig. 6 for the hip, knee, and ankle.

This demonstrates that these non-cyclic activities cover a new domain within both the kinematic and kinetic 
regime of human movement specifically for the hip and the knee.

Task specific moment-velocity requirements. As a separate visualization to examine specific tasks, a similar 
approach was taken to determine the biological moment-velocity demands for specific tasks. This provides the 
biological analog for a torque-speed curve for electric motors. As above, a kernel density estimator was used 
to form a continuous non-parametric estimate for density and then a continuous contour for 95% of the data 
was taken to capture the maximum biological moment and velocity demand for each task. This particular vis-
ualization highlights the required operating ranges and specifications for designing wearable devices to handle 
extremes of human tasks. An example of several of these plots are included in Fig. 7 and the rest are included 
within the dataset itself.

This visualization highlights how the power requirements of different tasks vary, thus further emphasizing 
the differences between the cyclic and non-cyclic domains.

Data records
The data is given in four separate folders: Processed Data, Raw Data, C3Ds, and Segmentation. The data can be 
found at the SMARTech repository45.

processed data. Processed data are listed by participant first then by trial type. Each folder contains.csv files 
for the measurements listed above. This is summarized in Fig. 8.

The breakdown of the csv files listed for each task of each participant are listed in Table 3.

raw data. The raw data are also contained in folders by participant. Within that folder there are several sub-
folders that contain different stages of processed data. The CSV_Data subfolder contains.csv files similar to the 
processed data but with all of the transitional data included. The MarkerData subfolder contains the marker data 
for each trial in a .trc format. The ExtLoads subfolder contains the ground reaction forces for each trial in a .mot 
format. The Models subfolder contains the different OpenSim models used for each trial and a Statics.csv table 
the specifies which model is associated with each task. These are based off different static trials in which specific 
marker locations may change if markers were replaced after falling off. The Transforms subfolder contains .mat 
files of tables for the transformation matrices from the global frame to the specific limb frame, which are used in 
simulating IMUs and pressure insoles.

c3Ds. The c3d data is again separated in folders by participant. The ViconData subfolder within each partici-
pant contains the raw .c3d files for each task.

segmentation. The segmentation folder is also separated in folders by participant and contains the tasks that 
can be segmented (such as with the gait cycle or velocity thresholds) in their segmented form with the associated 
timestamps. Each participant folder contains two types of files, one with the task name and _parsing.mat that con-
tains the timestamps used for segmentation of the data by right and left leg, and the other with the task name and 
_segmentation.mat that contains the angle, moment, filtered moment, velocity, and power segmented into cycles.

The rest of the folders in the dataset contain additional figures and videos as referenced above.
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technical Validation
Data collection. For data collection, the motion capture cameras were calibrated and verified to be within an 
acceptable error prior to data collection. In the case of a marker falling off during a trial, the marker was replaced 
and then a new static calibration was performed (the specific model that corresponds to each trial is given in 
RawData folder of the dataset). EMG’s were placed according to the Seniam guidelines43 and to verify placement, 
the signals were visually inspected while the participant performed movements to activate those muscles.

Data processing. Inverse kinematics marker errors were visually examined to verify that markers were not 
mislabeled. Each task was examined to invalidate the inverse dynamics during segments where the participant’s 
external ground reaction forces were not captured. Inverse kinematics errors (as measured by the Euclidian dis-
tance from the motion capture location and the model location) above an 8 cm threshold were examined to 
determine the cause and corrected if possible. This is slightly higher than the error during normal gait analysis 
threshold46 due to the uniqueness of these activities. This was chosen based on visual inspection of true marker 
trajectories that resulted in IK errors maxing out near 8 cm. The average root mean squared marker error across 
tasks and participants for this dataset was 1.5 ± 0.2 cm. The orientation of the IMUs was verified by comparing 
the orientation of the gravity vector across participants during standing. Other signals were compared visually 
across participants to verify that a single participant was not an extreme outlier using plotting tools similar to 
those presented in Fig. 5.

comparison to public datasets. Many of the tasks included in this dataset are novel and unique tasks, 
however, some have been collected and published, specifically for the cyclic data. Comparing our dataset to that 
of Camargo et al. (speeds ranging from 0.5 m/s to 1.85 m/s) for level ground walking, the kinematics and kinetics 
are similar. For 1.8 m/s, both demonstrate sinusoidal hip kinematics and moments ranging from ~20° of hip 
flexion to 20° of extension with moment ranging from 1 Nm/kg of extension to 1 Nm/kg of flexion and hip power 
peaking around 2 W/kg. Knee kinematics range from 0° to 70° of flexion with a double peak and moments rang-
ing from 0.5 Nm/kg of extension to 0.5 Nm/kg of flexion. Ankle kinematics range between 20° of dorsiflexion 
to 20° of plantarflexion and moment peaking around 1.5 Nm/kg of plantarflexion. Comparing to Reznick et al. 
(1.2 m/s), similar trends can be seen with the exception of smaller reported hip extension angles. This is similar 
for running with a slightly higher knee moment for level ground walking in our study as well as stairs and ramps.

Our dataset covers a range of walking speeds similar to previous datasets (0.6–1.8 compared to 0.5–1.85 m/
s15 and ~0.28-1.1 m/s25 though with less granularity. Our running speeds were limited to a max speed of 2.5 m/s 
(compared to a max 4.5 m/s11) because our inclusion criteria did not involve being an active runner. One limita-
tion of our work is that due to the rigorous nature of our protocol, this study recruited healthy young able-bodied 
adults (ranging from age 18–30 compared to previous larger ranges such as 19 to 679).

code availability
Code for simulating additional new IMUs for this dataset can be found in the code folder of the dataset and 
is based on the virtual IMUs included for each task45. A plotting script is included for visualizing the angle, 
moment, and power data from each of the tasks across participants. Finally, a function is included which groups 
the individual tasks by the groups used in the above analyses. Example scripts are included which demonstrate 
how to use each function.
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