Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Safeguarding mitochondrial genomes in higher eukaryotes

Abstract

Mitochondria respond to DNA damage and preserve their own genetic material in a manner distinct from that of the nucleus but that requires organized mito–nuclear communication. Failure to resolve mtDNA breaks leads to mitochondrial dysfunction and affects host cells and tissues. Here, we review the pathways that safeguard mitochondrial genomes and examine the insights gained from studies of cellular and tissue-wide responses to mtDNA damage and mito–nuclear genome incompatibility.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of mitochondria, mtDNA and nucleoids.
Fig. 2: Mitochondrial DNA dynamics in response to DSBs.
Fig. 3: Innate immunity as a form of retrograde signaling upon mtDNA dysfunction.

Similar content being viewed by others

References

  1. Sagan, L. On the origin of mitosing cells. J. Theor. Biol. 14, 255–574 (1967).

    CAS  PubMed  Google Scholar 

  2. Falkenberg, M. Mitochondrial DNA replication in mammalian cells: overview of the pathway. Essays Biochem. 62, 287–296 (2018).

    PubMed  PubMed Central  Google Scholar 

  3. Kukat, C. et al. Cross-strand binding of TFAM to a single mtDNA molecule forms the mitochondrial nucleoid. Proc. Natl Acad. Sci. USA 112, 11288–11293 (2015).

    CAS  PubMed  Google Scholar 

  4. Kukat, C. et al. Super-resolution microscopy reveals that mammalian mitochondrial nucleoids have a uniform size and frequently contain a single copy of mtDNA. Proc. Natl Acad. Sci. USA 108, 13534–13539 (2011). Super-resolution imaging reveals that nucleoids in mammalian mitochondria display uniform size, and each contains a single copy of mtDNA. In addition, replication occurs only in a subset of nucleoids.

    CAS  PubMed  Google Scholar 

  5. Larsson, N.-G. et al. Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nat. Genet. 18, 231–236 (1998).

    CAS  PubMed  Google Scholar 

  6. Ngo, H. B., Kaiser, J. T. & Chan, D. C. The mitochondrial transcription and packaging factor Tfam imposes a U-turn on mitochondrial DNA. Nat. Struct. Mol. Biol. 18, 1290–1296 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Hensen, F., Cansiz, S., Gerhold, J. M. & Spelbrink, J. N. To be or not to be a nucleoid protein: a comparison of mass-spectrometry based approaches in the identification of potential mtDNA-nucleoid associated proteins. Biochimie 100, 219–226 (2014).

    CAS  PubMed  Google Scholar 

  8. Han, S. et al. Proximity biotinylation as a method for mapping proteins associated with mtDNA in living cells. Cell Chem. Biol. 24, 404–414 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Gerhold, J. M. et al. Human mitochondrial DNA-protein complexes attach to a cholesterol-rich membrane structure. Sci. Rep. 5, 15292 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Rajala, N., Gerhold, J. M., Martinsson, P., Klymov, A. & Spelbrink, J. N. Replication factors transiently associate with mtDNA at the mitochondrial inner membrane to facilitate replication. Nucleic Acids Res. 42, 952–967 (2014).

    CAS  PubMed  Google Scholar 

  11. Lieber, T., Jeedigunta, S. P., Palozzi, J. M., Lehmann, R. & Hurd, T. R. Mitochondrial fragmentation drives selective removal of deleterious mtDNA in the germline. Nature 570, 380–384 (2019). Selection against deleterious mtDNA mutations in the female germline occurs during oogenesis and is driven by mitochondrial fragmentation followed by mitophagy.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Jajoo, R. et al. Accurate concentration control of mitochondria and nucleoids. Science 351, 169–172 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Osman, C., Noriega, T. R., Okreglak, V., Fung, J. C. & Walter, P. Integrity of the yeast mitochondrial genome, but not its distribution and inheritance, relies on mitochondrial fission and fusion. Proc. Natl Acad. Sci. USA 112, E947–E956 (2015).

    CAS  PubMed  Google Scholar 

  14. Lewis, S. C., Uchiyama, L. F. & Nunnari, J. ER-mitochondria contacts couple mtDNA synthesis with mitochondrial division in human cells. Science 353, aaf5549 (2016). Replicating nucleoids are localized at a subset of ER–mitochondria contact sites where mitochondrial division occurs, indicating that ER–mitochondria contacts coordinate the synthesis of mtDNA and its segregation into daughter mitochondria.

    PubMed  PubMed Central  Google Scholar 

  15. Nicholls, T. J. et al. Topoisomerase 3α is required for decatenation and segregation of human mtDNA. Mol. Cell 69, 9–23.e6 (2018).

    CAS  PubMed  Google Scholar 

  16. Ban-Ishihara, R., Ishihara, T., Sasaki, N., Mihara, K. & Ishihara, N. Dynamics of nucleoid structure regulated by mitochondrial fission contributes to cristae reformation and release of cytochrome c. Proc. Natl Acad. Sci. USA 110, 11863–11868 (2013).

    CAS  PubMed  Google Scholar 

  17. Ashley, N. & Poulton, J. Anticancer DNA intercalators cause p53-dependent mitochondrial DNA nucleoid re-modelling. Oncogene 28, 3880–3891 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kazak, L., Reyes, A. & Holt, I. J. Minimizing the damage: repair pathways keep mitochondrial DNA intact. Nat. Rev. Mol. Cell Biol. 13, 659–671 (2012).

    CAS  PubMed  Google Scholar 

  19. De Souza-Pinto, N. C. et al. Repair of 8-oxodeoxyguanosine lesions in mitochondrial DNA depends on the oxoguanine DNA glycosylase (OGG1) gene and 8-oxoguanine accumulates in the mitochondrial DNA of OGG1-defective mice. Cancer Res. 61, 5378–5381 (2001).

    PubMed  Google Scholar 

  20. Kauppila, J. H. K. et al. Base-excision repair deficiency alone or combined with increased oxidative stress does not increase mtDNA point mutations in mice. Nucleic Acids Res. 46, 6642–6669 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Itsara, L. S. et al. Oxidative stress is not a major contributor to somatic mitochondrial DNA mutations. PLoS Genet. 10, e1003974 (2014).

    PubMed  PubMed Central  Google Scholar 

  22. Kennedy, S. R., Salk, J. J., Schmitt, M. W. & Loeb, L. A. Ultra-sensitive sequencing reveals an age-related increase in somatic mitochondrial mutations that are inconsistent with oxidative damage. PLoS Genet. 9, e1003794 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Yuan, Y. et al. Comprehensive molecular characterization of mitochondrial genomes in human cancers. Nat. Genet. 52, 342–352 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ju, Y. S. et al. Origins and functional consequences of somatic mitochondrial DNA mutations in human cancer. Elife 3, e02935 (2014).

    PubMed Central  Google Scholar 

  25. Mason, P. A., Matheson, E. C., Hall, A. G. & Lightowlers, R. N. Mismatch repair activity in mammalian mitochondria. Nucleic Acids Res. 31, 1052–1058 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. de Souza-Pinto, N. C. et al. Novel DNA mismatch repair activity involving YB-1 in human mitochondria. DNA Repair (Amst.) 8, 704–719 (2009).

    Google Scholar 

  27. Wisnovsky, S., Sack, T., Pagliarini, D. J., Laposa, R. R. & Kelley, S. O. DNA polymerase θ increases mutational rates in mitochondrial DNA. ACS Chem. Biol. 13, 900–908 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Yoon, J.-H. et al. Error-prone replication through UV lesions by DNA polymerase θ protects against skin cancers. Cell 176, 1295–1309.e15 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Berglund, A.-K. et al. Nucleotide pools dictate the identity and frequency of ribonucleotide incorporation in mitochondrial DNA. PLoS Genet. 13, e1006628 (2017).

    PubMed  PubMed Central  Google Scholar 

  30. Li, Y. et al. The DNA repair nuclease MRE11A functions as a mitochondrial protector and prevents T cell pyroptosis and tissue inflammation. Cell Metab. 30, 477–492.e6 (2019).

    CAS  PubMed  Google Scholar 

  31. Blignaut, M., Loos, B., Botchway, S. W., Parker, A. W. & Huisamen, B. Ataxia-Telangiectasia Mutated is located in cardiac mitochondria and impacts oxidative phosphorylation. Sci. Rep. 9, 4782 (2019).

    PubMed  PubMed Central  Google Scholar 

  32. Eaton, J. S., Lin, Z. P., Sartorelli, A. C., Bonawitz, N. D. & Shadel, G. S. Ataxia-telangiectasia mutated kinase regulates ribonucleotide reductase and mitochondrial homeostasis. J. Clin. Invest. 117, 2723–2734 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Ling, F., Hori, A. & Shibata, T. DNA recombination-initiation plays a role in the extremely biased inheritance of yeast [rho] mitochondrial DNA that contains the replication origin ori5. Mol. Cell. Biol. 27, 1133–1145 (2007).

    CAS  PubMed  Google Scholar 

  34. Prasai, K., Robinson, L. C., Scott, R. S., Tatchell, K. & Harrison, L. Evidence for double-strand break mediated mitochondrial DNA replication in Saccharomyces cerevisiae. Nucleic Acids Res. 45, 7760–7773 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Williamson, D. The curious history of yeast mitochondrial DNA. Nat. Rev. Genet. 3, 475–481 (2002).

    CAS  PubMed  Google Scholar 

  36. Gualberto, J. M. & Newton, K. J. Plant mitochondrial genomes: dynamics and mechanisms of mutation. Annu. Rev. Plant Biol. 68, 225–252 (2017).

    CAS  PubMed  Google Scholar 

  37. Hayashi, J.-I., Tagashira, Y. & Yoshida, M. C. Absence of extensive recombination between inter- and intraspecies mitochondrial DNA in mammalian cells. Exp. Cell Res. 160, 387–395 (1985).

    CAS  PubMed  Google Scholar 

  38. Hagström, E., Freyer, C., Battersby, B. J., Stewart, J. B. & Larsson, N.-G. No recombination of mtDNA after heteroplasmy for 50 generations in the mouse maternal germline. Nucleic Acids Res. 42, 1111–1116 (2014).

    PubMed  Google Scholar 

  39. Bacman, S. R., Williams, S. L. & Moraes, C. T. Intra- and inter-molecular recombination of mitochondrial DNA after in vivo induction of multiple double-strand breaks. Nucleic Acids Res. 37, 4218–4226 (2009). In this study and the study by Gammage et al. (ref. 48), delivering mitochondria-targeted endonucleases (mitoTALEN or mtZFN) to mice with a heteroplasmic mtDNA mutation reduced the mutant mtDNA load and alleviated disease-related phenotypes, underscoring a therapeutic potential.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Mishra, A., Saxena, S., Kaushal, A. & Nagaraju, G. RAD51C/XRCC3 facilitates mitochondrial DNA replication and maintains integrity of the mitochondrial genome. Mol. Cell. Biol. 38, e00489–17 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Coene, E. D. et al. Phosphorylated BRCA1 is predominantly located in the nucleus and mitochondria. Mol. Biol. Cell 16, 997–1010 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Sage, J. M., Gildemeister, O. S. & Knight, K. L. Discovery of a novel function for human Rad51: maintenance of the mitochondrial genome. J. Biol. Chem. 285, 18984–18990 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Rossi, M. N. et al. Mitochondrial localization of PARP-1 requires interaction with mitofilin and is involved in the maintenance of mitochondrial DNA integrity. J. Biol. Chem. 284, 31616–31624 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Tadi, S. K. et al. Microhomology-mediated end joining is the principal mediator of double-strand break repair during mitochondrial DNA lesions. Mol. Biol. Cell 27, 223–235 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Srivastava, S. & Moraes, C. T. Manipulating mitochondrial DNA heteroplasmy by a mitochondrially targeted restriction endonuclease. Hum. Mol. Genet. 10, 3093–3099 (2001).

    CAS  PubMed  Google Scholar 

  46. Tanaka, M. et al. Gene therapy for mitochondrial disease by delivering restriction endonuclease SmaI into mitochondria. J. Biomed. Sci. 9, 534–541 (2002). One of the earliest examples of using a mitochondria-localized restriction endonuclease to specifically eliminate mutant mtDNA in heteroplasmic human cells.

    CAS  PubMed  Google Scholar 

  47. Bacman, S. R. et al. MitoTALEN reduces mutant mtDNA load and restores tRNAAla levels in a mouse model of heteroplasmic mtDNA mutation. Nat. Med. 24, 1696–1700 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Gammage, P. A. et al. Genome editing in mitochondria corrects a pathogenic mtDNA mutation in vivo. Nat. Med. 24, 1691–1695 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Minczuk, M., Papworth, M. A., Miller, J. C., Murphy, M. P. & Klug, A. Development of a single-chain, quasi-dimeric zinc-finger nuclease for the selective degradation of mutated human mitochondrial DNA. Nucleic Acids Res. 36, 3926–3938 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Gammage, P. A., Rorbach, J., Vincent, A. I., Rebar, E. J. & Minczuk, M. Mitochondrially targeted ZFNs for selective degradation of pathogenic mitochondrial genomes bearing large-scale deletions or point mutations. EMBO Mol. Med. 6, 458–466 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Bacman, S. R., Williams, S. L., Pinto, M., Peralta, S. & Moraes, C. T. Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs. Nat. Med. 19, 1111–1113 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Ma, H. & O’Farrell, P. H. Selections that isolate recombinant mitochondrial genomes in animals. Elife 4, e07247 (2015).

    PubMed Central  Google Scholar 

  53. Xu, H., DeLuca, S. Z. & O’Farrell, P. H. Manipulating the metazoan mitochondrial genome with targeted restriction enzymes. Science 321, 575–577 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Shokolenko, I., Venediktova, N., Bochkareva, A., Wilson, G. L. & Alexeyev, M. F. Oxidative stress induces degradation of mitochondrial DNA. Nucleic Acids Res. 37, 2539–2548 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Peeva, V. et al. Linear mitochondrial DNA is rapidly degraded by components of the replication machinery. Nat. Commun. 9, 1727 (2018). POLG proofreading activity and MGME1 are required for rapid degradation of damaged mtDNA. This study indicates that degradation is the first means to preserve mitochondrial function in response to mtDNA breaks.

    PubMed  PubMed Central  Google Scholar 

  56. Nissanka, N., Bacman, S. R., Plastini, M. J. & Moraes, C. T. The mitochondrial DNA polymerase gamma degrades linear DNA fragments precluding the formation of deletions. Nat. Commun. 9, 2491 (2018).

    PubMed  PubMed Central  Google Scholar 

  57. Trifunovic, A. et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429, 417–423 (2004).

    CAS  PubMed  Google Scholar 

  58. Macao, B. et al. The exonuclease activity of DNA polymerase γ is required for ligation during mitochondrial DNA replication. Nat. Commun. 6, 7303 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Nicholls, T. J. et al. Linear mtDNA fragments and unusual mtDNA rearrangements associated with pathological deficiency of MGME1 exonuclease. Hum. Mol. Genet. 23, 6147–6162 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Fukui, H. & Moraes, C. T. Mechanisms of formation and accumulation of mitochondrial DNA deletions in aging neurons. Hum. Mol. Genet. 18, 1028–1036 (2009).

    CAS  PubMed  Google Scholar 

  61. Srivastava, S. & Moraes, C. T. Double-strand breaks of mouse muscle mtDNA promote large deletions similar to multiple mtDNA deletions in humans. Hum. Mol. Genet. 14, 893–902 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Nissanka, N., Minczuk, M. & Moraes, C. T. Mechanisms of mitochondrial DNA deletion formation. Trends Genet. 35, 235–244 (2019).

    CAS  PubMed  Google Scholar 

  63. Samuels, D. C. Mitochondrial DNA repeats constrain the life span of mammals. Trends Genet. 20, 226–229 (2004).

    CAS  PubMed  Google Scholar 

  64. Persson, Ö. et al. Copy-choice recombination during mitochondrial L-strand synthesis causes DNA deletions. Nat. Commun. 10, 759 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Samuels, D. C., Schon, E. A. & Chinnery, P. F. Two direct repeats cause most human mtDNA deletions. Trends Genet. 20, 393–398 (2004).

    CAS  PubMed  Google Scholar 

  66. Tuppen, H. A. L., Blakely, E. L., Turnbull, D. M. & Taylor, R. W. Mitochondrial DNA mutations and human disease. Biochim. Biophys. Acta Bioenerg. 1797, 113–128 (2010).

    CAS  Google Scholar 

  67. Phillips, A. F. et al. Single-molecule analysis of mtDNA replication uncovers the basis of the common deletion. Mol. Cell 65, 527–538.e6 (2017). The common deletion can be generated in vivo following mtDNA breaks generated by mito-TALENs, and this process relies on the mitochondrial replisome.

    CAS  PubMed  Google Scholar 

  68. Wallace, D. C. et al. Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy. Science 242, 1427–1430 (1988).

    CAS  PubMed  Google Scholar 

  69. DiMauro, S. A brief history of mitochondrial pathologies. Int. J. Mol. Sci. 20, 5643 (2019).

    CAS  PubMed Central  Google Scholar 

  70. Bender, A. et al. High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat. Genet. 38, 515–517 (2006).

    CAS  PubMed  Google Scholar 

  71. Bua, E. et al. Mitochondrial DNA-deletion mutations accumulate intracellularly to detrimental levels in aged human skeletal muscle fibers. Am. J. Hum. Genet. 79, 469–480 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Kraytsberg, Y. et al. Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nat. Genet. 38, 518–520 (2006).

    CAS  PubMed  Google Scholar 

  73. Kenny, T. C., Gomez, M. L. & Germain, D. Mitohormesis, UPRmt, and the complexity of mitochondrial DNA landscapes in cancer. Cancer Res. 79, 6057–6066 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Wallace, D. C. Mitochondria and cancer. Nat. Rev. Cancer 12, 685–698 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Kujoth, C. C. et al. Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 309, 481–484 (2005).

    CAS  PubMed  Google Scholar 

  76. Hämäläinen, R. H. et al. Defects in mtDNA replication challenge nuclear genome stability through nucleotide depletion and provide a unifying mechanism for mouse progerias. Nat. Metab. 1, 958–965 (2019).

    PubMed  Google Scholar 

  77. Latorre-Pellicer, A. et al. Mitochondrial and nuclear DNA matching shapes metabolism and healthy ageing. Nature 535, 561–565 (2016).

    CAS  PubMed  Google Scholar 

  78. Ma, H. et al. Incompatibility between nuclear and mitochondrial genomes contributes to an interspecies reproductive barrier. Cell Metab. 24, 283–294 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Wei, W. et al. Germline selection shapes human mitochondrial DNA diversity. Science 364, eaau6520 (2019).

    CAS  PubMed  Google Scholar 

  80. Mok, B. Y. et al. A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing. Nature 583, 631–637 (2020).

    CAS  PubMed  Google Scholar 

  81. Fan, W. et al. A mouse model of mitochondrial disease reveals germline selection against severe mtDNA mutations. Science 319, 958–962 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Floros, V. I. et al. Segregation of mitochondrial DNA heteroplasmy through a developmental genetic bottleneck in human embryos. Nat. Cell Biol. 20, 144–151 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Lin, Y.-F. et al. Maintenance and propagation of a deleterious mitochondrial genome by the mitochondrial unfolded protein response. Nature 533, 416–419 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Melber, A. & Haynes, C. M. UPRmt regulation and output: a stress response mediated by mitochondrial-nuclear communication. Cell Res. 28, 281–295 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Mills, E. L., Kelly, B. & O’Neill, L. A. J. Mitochondria are the powerhouses of immunity. Nat. Immunol. 18, 488–498 (2017).

    CAS  PubMed  Google Scholar 

  86. West, A. P. et al. Mitochondrial DNA stress primes the antiviral innate immune response. Nature 520, 553–557 (2015). TFAM heterozygosity prompts mitochondrial DNA stress and manifests in copy number reduction, nucleoid enlargement, and leakage of mtDNA to the cytosol to engage a cellular immune response.

    PubMed  PubMed Central  Google Scholar 

  87. Zhong, Z. et al. New mitochondrial DNA synthesis enables NLRP3 inflammasome activation. Nature 560, 198–203 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhou, R., Yazdi, A. S., Menu, P. & Tschopp, J. A role for mitochondria in NLRP3 inflammasome activation. Nature 469, 221–226 (2011).

    CAS  PubMed  Google Scholar 

  89. Sliter, D. A. et al. Parkin and PINK1 mitigate STING-induced inflammation. Nature 561, 258–262 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Dhir, A. et al. Mitochondrial double-stranded RNA triggers antiviral signalling in humans. Nature 560, 238–242 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Tigano, M., Vargas, D. C., Fu, Y., Tremblay-Belzile, S. & Sfeir, A. Nuclear sensing of mitochondrial DNA breaks enhances immune surveillance. Preprint at bioRxiv https://doi.org/10.1101/2020.01.31.929075 (2020).

  92. McArthur, K. et al. BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis. Science 359, eaao6047 (2018). Super-resolution microscopy showed how mitochondrial DNA can escape the matrix by herniation through BAK/BAX macropores and subsequent rupture of the inner membrane.

    PubMed  Google Scholar 

  93. Riley, J. S. et al. Mitochondrial inner membrane permeabilisation enables mtDNA release during apoptosis. EMBO J. 37, e99238 (2018).

    PubMed  PubMed Central  Google Scholar 

  94. Kim, J. et al. VDAC oligomers form mitochondrial pores to release mtDNA fragments and promote lupus-like disease. Science 366, 1531–1536 (2019).

    CAS  PubMed  Google Scholar 

  95. García, N. & Chávez, E. Mitochondrial DNA fragments released through the permeability transition pore correspond to specific gene size. Life Sci. 81, 1160–1166 (2007).

    PubMed  Google Scholar 

  96. Patrushev, M. et al. Mitochondrial permeability transition triggers the release of mtDNA fragments. Cell. Mol. Life Sci. 61, 3100–3103 (2004).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Michael J Smith, Samuel Trembley-Belzille, and Toby Lieber for commenting on the manuscript. Mitochondria-related work in the Sfeir lab is supported by funds from the David and Lucille Packard Foundation, a Mallinckrodt Scholar award and the Pew-Innovation award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnel Sfeir.

Ethics declarations

Competing interests

Agnel Sfeir is a cofounder, consultant and shareholder in Repare Therapeutics.

Additional information

Peer review information Beth Moorefield was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Y., Tigano, M. & Sfeir, A. Safeguarding mitochondrial genomes in higher eukaryotes. Nat Struct Mol Biol 27, 687–695 (2020). https://doi.org/10.1038/s41594-020-0474-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-020-0474-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing