Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Drug discovery

Let K-Ras activate its own inhibitor

Traditional approaches to covalent drug design postulate that noncovalent binding affinity (Ki) should be in the nanomolar range for the lead compound to be attractive. A study by Hansen et al. suggests that covalent K-Ras inhibitors can have weak noncovalent binding affinity yet have fast chemical reactivity (kinact), because K-Ras enhances the covalent reactivity of bound inhibitor, similarly to how enzymes activate their substrates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chemical structures of covalent inhibitor of K-Ras and its activation mechanism.

Marina Corral Spence/Springer Nature

Fig. 2: Activation of electrophiles.

Marina Corral Spence/Springer Nature

Fig. 3: Emerging concepts in covalent inhibitor design and discovery of proteins on a proteome-wide scale that can activate bound electrophiles similar to K-Ras.

Marina Corral Spence/Springer Nature

References

  1. Stephen, A. G., Esposito, D., Bagni, R. K. & McCormick, F. Cancer Cell 25, 272–281 (2014).

    Article  PubMed  CAS  Google Scholar 

  2. Patricelli, M. P. et al. Cancer Discov. 6, 316–329 (2016).

    Article  PubMed  CAS  Google Scholar 

  3. Lito, P., Solomon, M., Li, L. S., Hansen, R. & Rosen, N. Science 351, 604–608 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Schindler, T. et al. Science 289, 1938–1942 (2000).

    Article  PubMed  CAS  Google Scholar 

  5. Hansen, R. et al. Nat. Struct. Mol. Biol. https://doi.org/10.1038/s41594-018-0061-5.

  6. Schwartz, P. A. et al. Proc. Natl Acad. Sci. USA 111, 173–178 (2014).

    Article  PubMed  CAS  Google Scholar 

  7. Doyle, A. G. & Jacobsen, E. N. Chem. Rev. 107, 5713–5743 (2007).

    Article  PubMed  CAS  Google Scholar 

  8. MacMillan, D. W. Nature 455, 304–308 (2008).

    Article  PubMed  CAS  Google Scholar 

  9. Kraut, J. Annu. Rev. Biochem. 46, 331–358 (1977).

    Article  PubMed  CAS  Google Scholar 

  10. Janes, M. R. et al. Cell 172, 578–589.e517 (2018).

    Article  PubMed  CAS  Google Scholar 

  11. Zeng, M. et al. Cell Chem. Biol. 24, 1005–1016.e1003 (2017).

    Article  PubMed  CAS  Google Scholar 

  12. Kawabata, T. & Go, N. Proteins 68, 516–529 (2007).

    Article  PubMed  CAS  Google Scholar 

  13. Backus, K. M. et al. Nature 534, 570–574 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Zhao, Q. et al. J. Am. Chem. Soc. 139, 680–685 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Hacker, S. M. et al. Nat. Chem. 9, 1181–1190 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Hanke, J. H. et al. J. Biol. Chem. 271, 695–701 (1996).

    Article  PubMed  CAS  Google Scholar 

  17. Bishop, A. C. et al. Nature 407, 395–401 (2000).

    Article  PubMed  CAS  Google Scholar 

  18. Ostrem, J. M., Peters, U., Sos, M. L., Wells, J. A. & Shokat, K. M. Nature 503, 548–551 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Hunter, J. C. et al. Proc. Natl Acad. Sci. USA 111, 8895–8900 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander V. Statsyuk.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Statsyuk, A.V. Let K-Ras activate its own inhibitor. Nat Struct Mol Biol 25, 435–437 (2018). https://doi.org/10.1038/s41594-018-0066-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-018-0066-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing