
nature methods Volume 20 | October 2023 | 1443–1444 | 1443

https://doi.org/10.1038/s41592-023-01990-0

Correspondence

napari-imagej: ImageJ ecosystem access
from napari

T
he Python image processing com-
munity has seen rapid growth
from new members across many
domains and with varying levels
of software proficiency. Much

of this growth is driven by the accessibility

of the scientific Python software stack1–3.
The napari application for n-dimensional
image visualization and analysis could further
this growth by fulfilling the need for a con-
venient and powerful graphical interface built
atop these technologies4. The plug-in-based

model of napari promotes extensibility,
sharing and modularity, and the rapidly
growing napari community is doing an
excellent job driving the development of
needed features to accelerate and broaden
napari’s utility.

 Check for updates

Searches keywordsQueries

Populates

Selects

Generates

PyImageJ

Presses

Launches

Presses

Transfers

a

b

User

User

Fig. 1 | napari-imagej execution mechanisms. a, Headless ImageJ ecosystem
routines are executable directly from the napari interface by typing search terms
into the napari-imagej search bar. A napari widget for executing a routine can
then be generated by selecting any of the corresponding results shown in the
panel beneath. b, The ImageJ button in the napari-imagej toolbar launches the

ImageJ user interface. From this interface, any ImageJ ecosystem routine can be
executed, including third-party plug-ins. Multidimensional image data can be
passed between the napari and ImageJ interfaces using the transfer buttons, also
located in the napari-imagej toolbar.

http://www.nature.com/naturemethods
https://doi.org/10.1038/s41592-023-01990-0
http://crossmark.crossref.org/dialog/?doi=10.1038/s41592-023-01990-0&domain=pdf

nature methods Volume 20 | October 2023 | 1443–1444 | 1444

Correspondence

Meanwhile, the ImageJ software ecosys-
tem5,6, beginning with the original ImageJ
and now supported by ImageJ2 (ref. 7) and
Fiji8, has developed over decades into a flour-
ishing community for n-dimensional image
processing in Java9. This maturity makes
the ImageJ ecosystem a prime candidate for
collaboration, and there is already demand
from napari users for popular ImageJ func-
tions. While some ImageJ features have been
or will be ported to napari, this approach can-
not practically scale throughout the entire
ImageJ ecosystem. A direct port would sub-
stantially increase the maintenance burden on
developers, distracting from work that might
address new problems in the napari commu-
nity. A more ideal solution would be for napari
and ImageJ to integrate directly, removing the
need to keep plug-in ports in sync between
the two.

Integrating the ImageJ ecosystem into
napari presents two main challenges. The first
is cross-language operation: ImageJ-based
tools run on the Java platform, resulting in
considerable technical barriers when attempt-
ing to integrate them into a Python program.
A mechanism is needed to call Java code from
Python, allowing users to access new and
existing ImageJ routines simply and transpar-
ently. The second challenge is accessibility:
napari users from the Python community may
be unfamiliar with Java and ImageJ terminol-
ogy and structure. A solution should enable
these users to utilize the strengths of both
ecosystems without needing to learn two
separate applications.

The PyImageJ project10 provides a robust
solution for Python-based ImageJ access,
including its data structures and plug-ins.
However, PyImageJ is a library for program-
mers, requiring explicit conversion of Python
data structures such as NumPy images into
equivalent Java structures before they can be
passed to ImageJ routines. To make ImageJ
truly accessible from napari with no additional
programming, we developed another layer on
top of PyImageJ, automating data conversions
and enabling access to ImageJ functionality
within one unified napari interface.

This new layer, called napari-imagej, pro-
vides an accessible and comprehensive solu-
tion to ImageJ ecosystem access from napari.
As a napari plug-in, napari-imagej is avail-
able on all operating systems supported by
both napari and PyImageJ, including Linux,
macOS and Windows. Through a configura-
tion dialog, napari-imagej users can customize
their ImageJ2 installation, allowing efficient
access to all ImageJ ecosystem functionality,

including ImageJ, ImageJ2, Fiji and third-party
plug-ins. The napari-imagej plug-in provides
two different mechanisms for accessing
ImageJ ecosystem functionality, both built
on the same foundation.

Much of the ImageJ ecosystem, includ-
ing the ImageJ2 platform and the plug-ins
designed for it, can be run in a headless
mode without visible ImageJ components.
All headless routines are discovered by the
search service within ImageJ2 and integrated
directly into napari within a new napari
widget (Fig. 1a). By presenting these routines
via this mechanism, napari-imagej minimizes
both the display footprint and the amount of
Java and ImageJ terminology exposed to the
user while maintaining comparable perfor-
mance to usage from within the ImageJ user
interface (see for benchmarking analysis).
Third-party plug-ins and scripts written for
the ImageJ2 platform are also automatically
exposed in the search results, maximizing
extensibility.

Many plug-ins and macros written for the
original ImageJ were not designed to run with-
out the ImageJ graphical interface visible. To
enable workflows that include these routines,
we also provide additional controls to launch
the ImageJ interface and to explicitly trans-
fer napari layers to and from ImageJ (Fig. 1b).
While the headless widget-based approach
described above is promoted for its flexibil-
ity and cleaner integration within napari, all
ImageJ ecosystem functionality can be run
using this graphical method, including both
ImageJ2 and original ImageJ plug-ins.

To run headless ImageJ routines, napari-
imagej transparently converts inputs from
napari to their ImageJ ecosystem equiva-
lents. Input types supported by napari-imagej
include napari image, shapes and points
layers; napari labels; napari surfaces; and
Python built-in types such as numeric values
and strings of text. By performing these con-
versions on behalf of the user, napari-imagej
minimizes the burden of using ImageJ routines
written in other languages.

The napari-imagej plug-in builds on the
foundation of PyImageJ to make the ImageJ
ecosystem accessible within the Python
ecosystem. Users can utilize ImageJ and
Fiji directly in napari, without explicit data
conversion and in tandem with other napari
plug-ins, opening the door to more expressive
and interoperable workflows.

Data availability
All data used for napari-imagej use cases are
available via https://napari.imagej.net/.

Code availability
The source code, documentation, tutorials
and use cases for napari-imagej, which is made
available under the open-source BSD 2-clause
license, can be found online at https://napari.
imagej.net/.

Gabriel J. Selzer1, Curtis T. Rueden   1,
Mark C. Hiner1, Edward L. Evans III 1,2,
Kyle I. S. Harrington3 &
Kevin W. Eliceiri   1,2,4,5
1Center for Quantitative Cell Imaging,
University of Wisconsin at Madison,
Madison, WI, USA. 2Morgridge Institute
for Research, Madison, WI, USA. 3Chan
Zuckerberg Initiative, Redwood City, CA, USA.
4Department of Biomedical Engineering,
University of Wisconsin at Madison, Madison,
WI, USA. 5Department of Medical Physics,
University of Wisconsin at Madison, Madison,
WI, USA.

 e-mail: eliceiri@wisc.edu

Published online: 18 August 2023

References
1. Harris, C. R. et al. Nature 585, 357–362 (2020).
2. Virtanen, P. et al. Nat. Methods 17, 261–272 (2020).
3. van der Walt, S. et al. PeerJ 2, e453 (2014).
4. Sofroniew, N. et al. napari: a multi-dimensional image

viewer for Python. Zenodo https://doi.org/10.5281/
zenodo.7276432 (2022).

5. Schindelin, J., Rueden, C. T., Hiner, M. C. & Eliceiri, K. W.
Mol. Reprod. Dev. 82, 518–529 (2015).

6. Schroeder, A. B. et al. Protein Sci. 30, 234–249 (2021).
7. Rueden, C. T. et al. BMC Bioinformatics 18, 529 (2017).
8. Schindelin, J. et al. Nat. Methods 9, 676–682 (2012).
9. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. Nat.

Methods 9, 671–675 (2012).
10. Rueden, C. T. et al. Nat. Methods 19, 1326–1327 (2022).

Acknowledgements
The napari-imagej developers thank T. Lambert, G. Bokota,
D. D. Pop, J. Nunez-Iglesias and all of the napari core
developers for their assistance on the integration with
the napari application; T. Burke for collaboration on
Python-based image labelings; and N. Chiaruttini and
J. Chacko for early user testing and feedback. This work
has been supported by the National Institutes of Health
(P41GM135019) to K.W.E., Chan Zuckerberg Initiative
funding to G.J.S., C.T.R. and K.W.E., and additional internal
funding from the Laboratory for Optical and Computational
Instrumentation and the Morgridge Institute for Research.

Author contributions
Project concept and design was done by G.J.S., C.T.R.,
M.C.H. and K.W.E.; napari-imagej coding development and
implementation by G.J.S., C.T.R., K.I.S.H. and M.C.H.; case
work by G.J.S., M.C.H., E.L.E., K.I.S.H. and K.W.E.; manuscript
organizing and writing by G.J.S., C.T.R., M.C.H., E.L.E. and
K.W.E.; and funding and project administration by K.W.E.

Competing Interests
The authors declare no competing interests.

Additional information
Peer review information Nature Methods thanks Juan Nunez-
Iglesias and Guillaume Jacquemet for their contribution to
the peer review of this work.

http://www.nature.com/naturemethods
https://napari.imagej.net/en/latest/Benchmarking.html
https://napari.imagej.net/
https://napari.imagej.net/
https://napari.imagej.net/
http://orcid.org/0000-0001-7055-6707
http://orcid.org/0000-0003-0278-4227
http://orcid.org/0000-0001-8678-670X
mailto:eliceiri@wisc.edu
https://doi.org/10.5281/zenodo.7276432
https://doi.org/10.5281/zenodo.7276432

	napari-imagej: ImageJ ecosystem access from napari
	Acknowledgements
	Fig. 1 napari-imagej execution mechanisms.

