Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Meeting Report
  • Published:

Advancing T cell–based cancer therapy with single-cell technologies

A Publisher Correction to this article was published on 05 February 2024

This article has been updated

To accelerate the development of T cell–based immunotherapies that are effective for more patients with cancer, there is an urgent need to decipher the precise attributes of the ideal therapeutic T cell. In March 2021, the Parker Institute of Cancer Immunotherapy and 10x Genomics partnered to bring together a group of T cell immunotherapy researchers and single-cell-technology innovators for a day’s workshop. Participants evaluated the current cutting edge of knowledge, identified areas for focused technology development, and put forward a call to action to the field. Insights were provided on how to best leverage single-cell technologies and key areas for future development were proposed — with the goal of facilitating a better understanding of T cell research and translation of this research into effective cancer immunotherapies. The key points of discussion that emerged from this workshop are summarized here.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Model for the design of effective T cell–based cancer therapies.

Change history

References

  1. Weber, E. W., Maus, M. V. & Mackall, C. L. Cell 181, 46–62 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tang, J. et al. Nat. Rev. Drug Discov. 17, 465–467 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Azizi, E. et al. Cell 174, 1293–1308.e36 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zheng, G. X. Y. et al. Nat. Commun. 8, 14049 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Stoeckius, M. et al. Nat. Methods 14, 865–868 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Satpathy, A. T. et al. Nat. Biotechnol. 37, 925–936 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lareau, C. A. et al. Nat. Biotechnol. 39, 451–461 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Mimitou, E. P. et al. Nat. Biotechnol. 39, 1246–1258 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Giles, J. R. et al. Immunity 55, 557–574.e7 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pardoll, D. Nat. Rev. Cancer 22, 252–264 (2012).

    Article  Google Scholar 

  11. Upadhaya, S. et al. Nat. Rev. Drug Discov. 21, 482–483 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Yost, K. E. et al. Nat. Med. 25, 1251–1259 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pai, J. A. et al. Preprint at bioRxiv https://doi.org/10.1101/2021.09.27.461389 (2021).

  14. Chen, P.-L. et al. Cancer Discov. 6, 827–837 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Stadtmauer, E. A. et al. Science https://doi.org/10.1126/science.aba7365 (2020).

    Article  PubMed  Google Scholar 

  16. Philip, M. & Schietinger, A. Nat. Rev. Imm. 22, 209–223 (2022).

    Article  CAS  Google Scholar 

  17. Sharpe, A. H. & Pauken, K. E. Nat. Rev. Immunol. 18, 153–167 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Eyquem, J. et al. Nature 543, 113–117 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hudson, W. H. et al. Immunity 51, 1043–1058.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dixit, A. et al. Cell 167, 1853–1866.e17 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Roth, T. L. et al. Cell 181, 728–744.e21 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gielis, S. et al. Front. Immunol. https://doi.org/10.3389/fimmu.2019.02820 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Jokinen, E., Huuhtanen, J., Mustjoki, S., Heinonen, M. & Lähdesmäki, H. PLOS Comput. Biol. 17, e1008814 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Montemurro, A. et al. Commun. Biol. 4, 1060 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sudmeier, L. J. et al. Cell Rep. Med. 3, 100620 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lee, Y. et al. Sci. Adv. https://doi.org/10.1126/sciadv.abg4755 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ben-Chetrit, N. et al. Preprint at bioRxiv https://doi.org/10.1101/2022.03.15.484516 (2022).

  28. Liu, C. C. et al. Lab. Invest. 102, 762–770 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Stuart, T. et al. Cell 177, 1888–1902.e21 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lopez, R. et al. Preprint at https://doi.org/10.48550/arXiv.1905.02269 (2019).

  31. Elosua-Bayes, M., Nieto, P., Mereu, E., Gut, I. & Heyn, H. Nucleic Acids Res. 49, e50 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cable, D. M. et al. Nat. Biotechnol. 40, 517–526 (2022).

    Article  CAS  PubMed  Google Scholar 

  33. Dries, R. et al. Genome Biol. 22, 78 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang, W. et al. Proc. Natl Acad. Sci. USA 117, 5442–5452 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Grosselin, K. et al. Nat. Genet. 51, 1060–1066 (2019).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samantha L. Bucktrout.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bucktrout, S.L., Banovich, N.E., Butterfield, L.H. et al. Advancing T cell–based cancer therapy with single-cell technologies. Nat Med 28, 1761–1764 (2022). https://doi.org/10.1038/s41591-022-01986-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41591-022-01986-x

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer