Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immunological impact of cell death signaling driven by radiation on the tumor microenvironment

Abstract

Therapeutic irradiation of the tumor microenvironment causes differential activation of pro-survival and pro-death pathways in malignant, stromal, endothelial and immune cells, hence causing a profound cellular and biological reconfiguration via multiple, non-redundant mechanisms. Such mechanisms include the selective elimination of particularly radiosensitive cell types and consequent loss of specific cellular functions, the local release of cytokines and danger signals by dying radiosensitive cells, and altered cytokine secretion by surviving radioresistant cells. Altogether, these processes create chemotactic and immunomodulatory cues for incoming and resident immune cells. Here we discuss how cytoprotective and cytotoxic signaling modules activated by radiation in specific cell populations reshape the immunological tumor microenvironment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Principles of TME reshaping by RT-driven stress signaling.
Fig. 2: Effects of anti-apoptotic signaling in irradiated cells on the TME.
Fig. 3: Effects of pro-apoptotic signaling in irradiated cells on the TME.

Similar content being viewed by others

References

  1. Galluzzi, L. et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 25, 486–541 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kuban, D. A. et al. Long-term results of the M. D. Anderson randomized dose-escalation trial for prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 70, 67–74 (2008).

    Article  PubMed  Google Scholar 

  3. Ngwa, W. et al. Using immunotherapy to boost the abscopal effect. Nat. Rev. Cancer 18, 313–322 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Deutsch, E., Chargari, C., Galluzzi, L. & Kroemer, G. Optimising efficacy and reducing toxicity of anticancer radioimmunotherapy. Lancet Oncol. 20, e452–e463 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Demaria, S., Coleman, C. N. & Formenti, S. C. Radiotherapy: changing the game in immunotherapy. Trends Cancer 2, 286–294 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Baumann, M. et al. Radiation oncology in the era of precision medicine. Nat. Rev. Cancer 16, 234–249 (2016).

    CAS  PubMed  Google Scholar 

  7. Galluzzi, L., Yamazaki, T. & Kroemer, G. Linking cellular stress responses to systemic homeostasis. Nat. Rev. Mol. Cell Biol. 19, 731–745 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Dagogo-Jack, I. & Shaw, A. T. Tumour heterogeneity and resistance to cancer therapies. Nat. Rev. Clin. Oncol. 15, 81–94 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. Ward, J. F. Complexity of damage produced by ionizing radiation. Cold Spring Harb. Symp. Quant. Biol. 65, 377–382 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Scully, R., Panday, A., Elango, R. & Willis, N. A. DNA double-strand break repair-pathway choice in somatic mammalian cells. Nat. Rev. Mol. Cell Biol. 20, 698–714 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chabanon, R. M. et al. PARP inhibition enhances tumor cell-intrinsic immunity in ERCC1-deficient non-small cell lung cancer. J. Clin. Invest. 129, 1211–1228 (2019). This reference offers an elegant demonstration that PARP1 inhibition has immunostimulatory effects that originate from accrued type I IFN secretion by cancer cells downstream of cGAS-STING signaling.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Dillon, M. T. et al. ATR inhibition potentiates the radiation-induced inflammatory tumor microenvironment. Clin. Cancer Res. 25, 3392–3403 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Heijink, A. M. et al. BRCA2 deficiency instigates cGAS-mediated inflammatory signaling and confers sensitivity to tumor necrosis factor-alpha-mediated cytotoxicity. Nat. Commun. 10, 100 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Vanpouille-Box, C., Demaria, S., Formenti, S. C. & Galluzzi, L. Cytosolic DNA sensing in organismal tumor control. Cancer Cell 34, 361–378 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. Dunphy, G. et al. Non-canonical activation of the DNA sensing adaptor STING by ATM and IFI16 mediates NF-κB signaling after nuclear DNA damage.Mol. Cell 71, 745–760.e745 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu, H. et al. Nuclear cGAS suppresses DNA repair and promotes tumorigenesis. Nature 563, 131–136 (2018). This reference reported that the knockdown of cGAS suppresses DNA damage and inhibits tumor growth, both in vitro and in vivo, as a consequence of improved PARP1 functions and hence increased genomic stability.

    Article  CAS  PubMed  Google Scholar 

  17. Ghosh, R., Roy, S. & Franco, S. PARP1 depletion induces RIG-I-dependent signaling in human cancer cells. PLoS One 13, e0194611 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Vanpouille-Box, C., Hoffmann, J. A. & Galluzzi, L. Pharmacological modulation of nucleic acid sensors – therapeutic potential and persisting obstacles. Nat. Rev. Drug. Discov. 18, 845–867 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Pilie, P. G., Tang, C., Mills, G. B. & Yap, T. A. State-of-the-art strategies for targeting the DNA damage response in cancer. Nat. Rev. Clin. Oncol. 16, 81–104 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Turajlic, S., Sottoriva, A., Graham, T. & Swanton, C. Resolving genetic heterogeneity in cancer. Nat. Rev. Genet. 20, 404–416 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Sato, H. et al. DNA double-strand break repair pathway regulates PD-L1 expression in cancer cells. Nat. Commun. 8, 1751 (2017). This reference demonstrates that BRCA2 limits the ability of CHEK1 activation by radiation therapy to promote the exposure of PD-L1 on the membrane of cancer cells, hence preventing them from driving T cell exhaustion.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Vendetti, F. P. et al. ATR kinase inhibitor AZD6738 potentiates CD8+ T cell-dependent antitumor activity following radiation. J. Clin. Invest. 128, 3926–3940 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wilkins, A. C., Patin, E. C., Harrington, K. J. & Melcher, A. A. The immunological consequences of radiation-induced DNA damage. J. Pathol. 247, 606–614 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. Gasser, S., Orsulic, S., Brown, E. J. & Raulet, D. H. The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature 436, 1186–1190 (2005). This reference demonstrates that cells responding to DNA damage expose increased amounts of NKG2D ligands on their surface, and thus are prone to activate NK cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Soriani, A. et al. ATM-ATR-dependent up-regulation of DNAM-1 and NKG2D ligands on multiple myeloma cells by therapeutic agents results in enhanced NK-cell susceptibility and is associated with a senescent phenotype. Blood 113, 3503–3511 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Lopez-Soto, A., Gonzalez, S., Smyth, M. J. & Galluzzi, L. Control of metastasis by NK cells. Cancer Cell 32, 135–154 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Lambrecht, B. N., Vanderkerken, M. & Hammad, H. The emerging role of ADAM metalloproteinases in immunity. Nat. Rev. Immunol. 18, 745–758 (2018).

    Article  CAS  PubMed  Google Scholar 

  28. Grossenbacher, S. K., Canter, R. J. & Murphy, W. J. Natural killer cell immunotherapy to target stem-like tumor cells. J. Immunother. Cancer 4, 19 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Vitale, I., Manic, G., De Maria, R., Kroemer, G. & Galluzzi, L. DNA damage in stem cells. Mol. Cell 66, 306–319 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Bottcher, J. P. et al. NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control. Cell 172, 1022–1037.e1014 (2018). This reference identifies the ability of NK cells to recruit conventional type I DCs to the tumor bed by secreting the chemoattractants CCL5 and XCL1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Son, C. H. et al. Combination treatment with decitabine and ionizing radiation enhances tumor cells susceptibility of T cells. Sci. Rep. 6, 32470 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Taniguchi, K. & Karin, M. NF-κB, inflammation, immunity and cancer: coming of age. Nat. Rev. Immunol. 18, 309–324 (2018). This reference is a comprehensive review of the multifaceted roles of NF-κB-dependent immunomodulation in cancer.

    Article  CAS  PubMed  Google Scholar 

  33. He, H., Chang, R., Zhang, T., Yang, C. & Kong, Z. ATM mediates DAB2IP-deficient bladder cancer cell resistance to ionizing radiation through the p38MAPK and NF-κB signaling pathway. Mol. Med. Rep. 16, 1216–1222 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ishikawa, H. & Barber, G. N. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455, 674–678 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nakajima, S. & Kitamura, M. Bidirectional regulation of NF-κB by reactive oxygen species: a role of unfolded protein response. Free Radic. Biol. Med. 65, 162–174 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Janus, P. et al. Pro-inflammatory cytokine and high doses of ionizing radiation have similar effects on the expression of NF-κB-dependent genes. Cell Signal. 46, 23–31 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Opferman, J. T. et al. Development and maintenance of B and T lymphocytes requires antiapoptotic MCL-1. Nature 426, 671–676 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Alavian, K. N. et al. Bcl-xL regulates metabolic efficiency of neurons through interaction with the mitochondrial F1FO ATP synthase. Nat. Cell Biol. 13, 1224–1233 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bantug, G. R., Galluzzi, L., Kroemer, G. & Hess, C. The spectrum of T cell metabolism in health and disease. Nat. Rev. Immunol. 18, 19–34 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Corbet, C. & Feron, O. Tumour acidosis: from the passenger to the driver’s seat. Nat. Rev. Cancer 17, 577–593 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. Chen, Y. et al. IL-6 signaling promotes DNA repair and prevents apoptosis in CD133+ stem-like cells of lung cancer after radiation. Radiat. Oncol. 10, 227 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Hou, Y. et al. Non-canonical NF-κB antagonizes STING sensor-mediated DNA sensing in radiotherapy. Immunity 49, 490–503.e494 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bakhoum, S. F. et al. Chromosomal instability drives metastasis through a cytosolic DNA response. Nature 553, 467–472 (2018). This reference reports that indolent cGAS signaling caused by chromosomal instability favors non-canonical NF-κB activation in support of tumor progression and metastatic dissemination.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Grinberg-Bleyer, Y. et al. NF-κB c-Rel is crucial for the regulatory T cell immune checkpoint in cancer. Cell 170, 1096–1108.e1013 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Galluzzi, L. et al. Molecular definitions of autophagy and related processes. EMBO J. 36, 1811–1836 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Guo, Z., Kozlov, S., Lavin, M. F., Person, M. D. & Paull, T. T. ATM activation by oxidative stress. Science 330, 517–521 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Rybstein, M. D., Bravo-San Pedro, J. M., Kroemer, G. & Galluzzi, L. The autophagic network and cancer. Nat. Cell Biol. 20, 243–251 (2018).

    Article  CAS  PubMed  Google Scholar 

  48. Clarke, A. J. & Simon, A. K. Autophagy in the renewal, differentiation and homeostasis of immune cells. Nat. Rev. Immunol. 19, 170–183 (2019).

    Article  CAS  PubMed  Google Scholar 

  49. Lan, Y. Y., Londono, D., Bouley, R., Rooney, M. S. & Hacohen, N. Dnase2a deficiency uncovers lysosomal clearance of damaged nuclear DNA via autophagy. Cell Rep. 9, 180–192 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bartsch, K. et al. Absence of RNase H2 triggers generation of immunogenic micronuclei removed by autophagy. Hum. Mol. Genet. 26, 3960–3972 (2017). This reference demonstrates that the deletion of RNase H2 favors the formation of cGAS-activating micronuclei that are efficiently disposed of by autophagy.

    Article  CAS  PubMed  Google Scholar 

  51. Prabakaran, T. et al. Attenuation of cGAS-STING signaling is mediated by a p62/SQSTM1-dependent autophagy pathway activated by TBK1. EMBO J. 37, e97858 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Konno, H., Konno, K. & Barber, G. N. Cyclic dinucleotides trigger ULK1 (ATG1) phosphorylation of STING to prevent sustained innate immune signaling. Cell 155, 688–698 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. Nakahira, K. et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol. 12, 222–230 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Sliter, D. A. et al. Parkin and PINK1 mitigate STING-induced inflammation. Nature 561, 258–262 (2018). This reference elegantly highlights the ability of mitochondrial autophagy to prevent excessive, potentially detrimental cGAS-STING signaling.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Endo, S. et al. Autophagy is required for activation of pancreatic stellate cells, associated with pancreatic cancer progression and promotes growth ofpancreatic tumors in mice.Gastroenterology 152, 1492–1506.e1424 (2017).

    Article  CAS  PubMed  Google Scholar 

  56. Hafner, A., Bulyk, M. L., Jambhekar, A. & Lahav, G. The multiple mechanisms that regulate p53 activity and cell fate. Nat. Rev. Mol. Cell Biol. 20, 199–210 (2019).

    Article  CAS  PubMed  Google Scholar 

  57. Pei, J., Kruger, W. D. & Testa, J. R. High-resolution analysis of 9p loss in human cancer cells using single nucleotide polymorphism-based mapping arrays. Cancer Genet. Cytogenet. 170, 65–68 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Dou, Z. et al. Autophagy mediates degradation of nuclear lamina. Nature 527, 105–109 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Munoz-Fontela, C., Mandinova, A., Aaronson, S. A. & Lee, S. W. Emerging roles of p53 and other tumour-suppressor genes in immune regulation. Nat. Rev. Immunol. 16, 741–750 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Acosta, J. C. et al. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat. Cell Biol. 15, 978–990 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mori, T. et al. Identification of the interferon regulatory factor 5 gene (IRF-5) as a direct target for p53. Oncogene 21, 2914–2918 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Iannello, A., Thompson, T. W., Ardolino, M., Lowe, S. W. & Raulet, D. H. p53-dependent chemokine production by senescent tumor cells supports NKG2D-dependent tumor elimination by natural killer cells. J. Exp. Med. 210, 2057–2069 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wang, B., Niu, D., Lai, L. & Ren, E. C. p53 increases MHC class I expression by upregulating the endoplasmic reticulum aminopeptidase ERAP1. Nat. Commun. 4, 2359 (2013).

    Article  PubMed  Google Scholar 

  64. Yoon, K. W. et al. Control of signaling-mediated clearance of apoptotic cells by the tumor suppressor p53. Science 349, 1261669 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Fulda, S. et al. Activation of the CD95 (APO-1/Fas) pathway in drug- and γ-irradiation-induced apoptosis of brain tumor cells. Cell Death Differ. 5, 884–893 (1998).

    Article  CAS  PubMed  Google Scholar 

  66. He, X. Y. et al. p53 in the myeloid lineage modulates an inflammatory microenvironment limiting initiation and invasion of intestinal tumors. Cell Rep. 13, 888–897 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. Lujambio, A. et al. Non-cell-autonomous tumor suppression by p53. Cell 153, 449–460 (2013). This reference reports that p53-dependent cellular senescence in non-transformed hepatic stellate cells is instrumental for the maintenance of tissue homeostasis and the prevention of liver oncogenesis.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Kruiswijk, F., Labuschagne, C. F. & Vousden, K. H. p53 in survival, death and metabolic health: a lifeguard with a licence to kill. Nat. Rev. Mol. Cell Biol. 16, 393–405 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Kim, T. K. et al. Interferon regulatory factor 3 activates p53-dependent cell growth inhibition. Cancer Lett. 242, 215–221 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Galluzzi, L., Buque, A., Kepp, O., Zitvogel, L. & Kroemer, G. Immunogenic cell death in cancer and infectious disease. Nat. Rev. Immunol. 17, 97–111 (2017).

    Article  CAS  PubMed  Google Scholar 

  71. Ma, Y. et al. Anticancer chemotherapy-induced intratumoral recruitment and differentiation of antigen-presenting cells. Immunity 38, 729–741 (2013).

    Article  CAS  PubMed  Google Scholar 

  72. Michaud, M. et al. Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 334, 1573–1577 (2011). This reference elegantly demonstrates that robust autophagic responses are required for dying cancer cells to release ATP in amounts that are compatible with the recruitment and activation of DC precursors.

    Article  CAS  PubMed  Google Scholar 

  73. Ghiringhelli, F. et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1β-dependent adaptive immunity against tumors. Nat. Med. 15, 1170–1178 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Di Virgilio, F., Sarti, A. C., Falzoni, S., De Marchi, E. & Adinolfi, E. Extracellular ATP and P2 purinergic signalling in the tumour microenvironment. Nat. Rev. Cancer 18, 601–618 (2018).

    Article  PubMed  CAS  Google Scholar 

  75. Golden, E. B. et al. Radiation fosters dose-dependent and chemotherapy-induced immunogenic cell death. Oncoimmunology 3, e28518 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Panaretakis, T. et al. Mechanisms of pre-apoptotic calreticulin exposure in immunogenic cell death. EMBO J. 28, 578–590 (2009). This reference presents the mechanistic characterization of the signal transduction modules involved in the exposure of CALR on the surface of cancer cells undergoing ICD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bezu, L. et al. eIF2α phosphorylation is pathognomonic for immunogenic cell death. Cell Death Differ. 25, 1375–1393 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Song, M. et al. IRE1α-XBP1 controls T cell function in ovarian cancer by regulating mitochondrial activity. Nature 562, 423–428 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Cubillos-Ruiz, J. R. et al. ER stress sensor XBP1 controls anti-tumor immunity by disrupting dendritic cell homeostasis. Cell 161, 1527–1538 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Advani, R. et al. CD47 blockade by Hu5F9-G4 and rituximab in non-Hodgkin’s lymphoma. N. Engl. J. Med. 379, 1711–1721 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Galluzzi, L., Lopez-Soto, A., Kumar, S. & Kroemer, G. Caspases connect cell-death signaling to organismal homeostasis. Immunity 44, 221–231 (2016).

    Article  CAS  PubMed  Google Scholar 

  82. Van Opdenbosch, N. & Lamkanfi, M. Caspases in cell death, inflammation, and disease. Immunity 50, 1352–1364 (2019).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  83. Kang, T. B., Yang, S. H., Toth, B., Kovalenko, A. & Wallach, D. Caspase-8 blocks kinase RIPK3-mediated activation of the NLRP3 inflammasome. Immunity 38, 27–40 (2013).

    Article  CAS  PubMed  Google Scholar 

  84. Nagata, S. Apoptosis and clearance of apoptotic cells. Annu. Rev. Immunol. 36, 489–517 (2018).

    Article  CAS  PubMed  Google Scholar 

  85. Rodriguez-Ruiz, M. E. et al. Apoptotic caspases inhibit abscopal responses to radiation and identify a new prognostic biomarker for breast cancer patients. Oncoimmunology 8, 1655964 (2019). This reference demonstrates that apoptotic caspases limit the ability of RT to drive potent immune responses with systemic outreach as they inhibit type I IFN secretion by irradiated cancer cells.

    Article  Google Scholar 

  86. Buqué, A., Rodriguez-Ruiz, M. E., Fucikova, J. & Galluzzi, L. Apoptotic caspases cut down the immunogenicity of radiation. Oncoimmunology 8, e1655364 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  87. White, M. J. et al. Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production. Cell 159, 1549–1562 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ning, X. et al. Apoptotic caspases suppress type I interferon production via the cleavage of cGAS, MAVS, and IRF3. Mol. Cell 74, 19–31.e17 (2019).

    Article  CAS  PubMed  Google Scholar 

  89. Zelenay, S. et al. Cyclooxygenase-dependent tumor growth through evasion of immunity. Cell 162, 1257–1270 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Huang, Q. et al. Caspase 3-mediated stimulation of tumor cell repopulation during cancer radiotherapy. Nat. Med. 17, 860–866 (2011). This reference delineates a CASP3-dependent mechanism through which radiosensitive cancer cells succumbing to RT release PGE 2, ultimately favoring tumor repopulation by radioresistant cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Feng, X. et al. Caspase 3 in dying tumor cells mediates post-irradiation angiogenesis. Oncotarget 6, 32353–32367 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Luthi, A. U. et al. Suppression of interleukin-33 bioactivity through proteolysis by apoptotic caspases. Immunity 31, 84–98 (2009).

    Article  CAS  PubMed  Google Scholar 

  93. Wang, Y. et al. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature 547, 99–103 (2017).

    Article  CAS  PubMed  Google Scholar 

  94. Vitale, I., Galluzzi, L., Castedo, M. & Kroemer, G. Mitotic catastrophe: a mechanism for avoiding genomic instability. Nat. Rev. Mol. Cell Biol. 12, 385–392 (2011).

    Article  CAS  PubMed  Google Scholar 

  95. Vitale, I. et al. Illicit survival of cancer cells during polyploidization and depolyploidization. Cell Death Differ. 18, 1403–1413 (2011).

    Article  CAS  PubMed  Google Scholar 

  96. Mackenzie, K. J. et al. cGAS surveillance of micronuclei links genome instability to innate immunity. Nature 548, 461–465 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Harding, S. M. et al. Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature 548, 466–470 (2017). Refs. 96,97 demonstrate that micronuclei accumulating over the course of mitotic catastrophe driven by RT are the major drivers of cGAS-STING signaling and consequent type I IFN secretion.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Vanpouille-Box, C. et al. DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity. Nat. Commun. 8, 15618 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Senovilla, L. et al. An immunosurveillance mechanism controls cancer cell ploidy. Science 337, 1678–1684 (2012). This reference is an elegant demonstration that hyperploid cancer cells are under preferential immunosurveillance, as compared to their euploid counterparts, reflecting, at least in part, constitutive CALR exposure on the membrane.

    Article  CAS  PubMed  Google Scholar 

  100. Acebes-Huerta, A. et al. Drug-induced hyperploidy stimulates an antitumor NK cell response mediated by NKG2D and DNAM-1 receptors. Oncoimmunology 5, e1074378 (2016).

    Article  PubMed  CAS  Google Scholar 

  101. Davoli, T., Uno, H., Wooten, E. C. & Elledge, S. J. Tumor aneuploidy correlates with markers of immune evasion and with reduced response to immunotherapy. Science 355, eaaf8399 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Vanden Berghe, T., Linkermann, A., Jouan-Lanhouet, S., Walczak, H. & Vandenabeele, P. Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat. Rev. Mol. Cell Biol. 15, 135–147 (2014).

    Article  CAS  PubMed  Google Scholar 

  103. Murakami, T. et al. Critical role for calcium mobilization in activation of the NLRP3 inflammasome. Proc. Natl Acad. Sci. USA 109, 11282–11287 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Allam, R. et al. Mitochondrial apoptosis is dispensable for NLRP3 inflammasome activation but non-apoptotic caspase-8 is required for inflammasome priming. EMBO Rep. 15, 982–990 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Patrushev, M. et al. Mitochondrial permeability transition triggers the release of mtDNA fragments. Cell Mol. Life Sci. 61, 3100–3103 (2004).

    Article  CAS  PubMed  Google Scholar 

  106. McArthur, K. et al. BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis. Science 359, eaao6047 (2018). This reference provides compelling data in support of the ability of cGAS to detect mitochondrial DNA herniating into the cytosol across BAX/BAK1 oligomers upon MOMP.

    Article  PubMed  CAS  Google Scholar 

  107. Riley, J. S. et al. Mitochondrial inner membrane permeabilisation enables mtDNA release during apoptosis. EMBO J. 37, e99238 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Galluzzi, L., Kepp, O. & Kroemer, G. Mitochondria: master regulators of danger signalling. Nat. Rev. Mol. Cell Biol. 13, 780–788 (2012).

    Article  CAS  PubMed  Google Scholar 

  109. Vaseva, A. V. et al. p53 opens the mitochondrial permeability transition pore to trigger necrosis. Cell 149, 1536–1548 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Snyder, A. G. et al. Intratumoral activation of the necroptotic pathway components RIPK1 and RIPK3 potentiates antitumor immunity. Sci. Immunol. 4, eaaw2004 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Eil, R. et al. Ionic immune suppression within the tumour microenvironment limits T cell effector function. Nature 537, 539–543 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Aaes, T. L. et al. Vaccination with necroptotic cancer cells induces efficient anti-tumor immunity. Cell Rep. 15, 274–287 (2016).

    Article  CAS  PubMed  Google Scholar 

  113. Yatim, N. et al. RIPK1 and NF-κB signaling in dying cells determines cross-priming of CD8+ T cells. Science 350, 328–334 (2015). Refs. 112,113 demonstrate that necroptotic RCD can be perceived as immunogenic, and hence drive antigen-specific immune responses in the absence of external adjuvants.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Yan, G. et al. A RIPK3-PGE2 circuit mediates myeloid-derived suppressor cell-potentiated colorectal carcinogenesis. Cancer Res. 78, 5586–5599 (2018).

    Article  CAS  PubMed  Google Scholar 

  115. Wang, W. et al. RIP1 kinase drives macrophage-mediated adaptive immune tolerance in pancreatic cancer. Cancer Cell 34, 757–774.e757 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Nehs, M. A. et al. Necroptosis is a novel mechanism of radiation-induced cell death in anaplastic thyroid and adrenocortical cancers. Surgery 150, 1032–1039 (2011).

    Article  PubMed  Google Scholar 

  117. Das, A. et al. RIP1 and RIP3 complex regulates radiation-induced programmed necrosis in glioblastoma. Tumour Biol. 37, 7525–7534 (2016).

    Article  CAS  PubMed  Google Scholar 

  118. Werthmoller, N., Frey, B., Wunderlich, R., Fietkau, R. & Gaipl, U. S. Modulation of radiochemoimmunotherapy-induced B16 melanoma cell death by the pan-caspase inhibitor zVAD-fmk induces anti-tumor immunity in a HMGB1-, nucleotide- and T-cell-dependent manner. Cell Death Dis. 6, e1761 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Liu, X. et al. Key roles of necroptotic factors in promoting tumor growth. Oncotarget 7, 22219–22233 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Wang, H. H. et al. Ablative hypofractionated radiation therapy enhances non-small cell lung cancer cell killing via preferential stimulation of necroptosis in vitro and in vivo. Int. J. Radiat. Oncol. Biol. Phys. 101, 49–62 (2018).

    Article  PubMed  Google Scholar 

  121. Chen, J., Kuroki, S., Someda, M. & Yonehara, S. Interferon-γ induces the cell surface exposure of phosphatidylserine by activating the protein MLKL in the absence of caspase-8 activity. J. Biol. Chem. 294, 11994–12006 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Martincorena, I. et al. Universal patterns of selection in cancer and somatic tissues. Cell 171, 1029–1041.e21 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wen, Q., Liu, J., Kang, R., Zhou, B. & Tang, D. The release and activity of HMGB1 in ferroptosis. Biochem. Biophys. Res. Commun. 510, 278–283 (2019).

    Article  CAS  PubMed  Google Scholar 

  124. Wang, W. et al. CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy. Nature 569, 270–274 (2019). This reference reports the ability of CD8 + T cells to mediate ferroptosis in cancer cells as a consequence of system x c - inhibition by IFN-γ.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Yang, W. S. et al. Regulation of ferroptotic cancer cell death by GPX4. Cell 156, 317–331 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Lang, X. et al. Radiotherapy and immunotherapy promote tumoral lipid oxidation and ferroptosis via synergistic repression of SLC7A11. Cancer Discov. https://doi.org/10.1158/2159-8290.CD-19-0338 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Pan, X. et al. Erastin decreases radioresistance of NSCLC cells partially by inducing GPX4-mediated ferroptosis. Oncol. Lett. 17, 3001–3008 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Basit, F. et al. Mitochondrial complex I inhibition triggers a mitophagy-dependent ROS increase leading to necroptosis and ferroptosis in melanoma cells. Cell Death Dis. 8, e2716 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Song, X. et al. FANCD2 protects against bone marrow injury from ferroptosis. Biochem. Biophys. Res. Commun. 480, 443–449 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Zhang, Y. et al. BAP1 links metabolic regulation of ferroptosis to tumour suppression. Nat. Cell Biol. 20, 1181–1192 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Jiang, L. et al. Ferroptosis as a p53-mediated activity during tumour suppression. Nature 520, 57–62 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Xie, Y. et al. The tumor suppressor p53 limits ferroptosis by blocking DPP4 activity. Cell Rep. 20, 1692–1704 (2017).

    Article  CAS  PubMed  Google Scholar 

  133. Fernandes-Alnemri, T., Yu, J. W., Datta, P., Wu, J. & Alnemri, E. S. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 458, 509–513 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Jorgensen, I., Rayamajhi, M. & Miao, E. A. Programmed cell death as a defence against infection. Nat. Rev. Immunol. 17, 151–164 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Hu, B. et al. The DNA-sensing AIM2 inflammasome controls radiation-induced cell death and tissue injury. Science 354, 765–768 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Liu, Y. G. et al. NLRP3 inflammasome activation mediates radiation-induced pyroptosis in bone marrow-derived macrophages. Cell Death Dis. 8, e2579 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Klug, F. et al. Low-dose irradiation programs macrophage differentiation to an iNOS+/M1 phenotype that orchestrates effective T cell immunotherapy. Cancer Cell 24, 589–602 (2013). This reference highlights the ability of low-dose RT to drive the repolarization of M2-like TAMs into their M1-like counterparts in support of adaptive anticancer immunity.

    Article  CAS  PubMed  Google Scholar 

  138. Corrales, L. et al. Antagonism of the STING pathway via activation of the AIM2 inflammasome by intracellular DNA. J. Immunol. 196, 3191–3198 (2016).

    Article  CAS  PubMed  Google Scholar 

  139. Yu, J. et al. Inflammasome activation leads to Caspase-1-dependent mitochondrial damage and block of mitophagy. Proc. Natl Acad. Sci. USA 111, 15514–15519 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Fouquerel, E. et al. ARTD1/PARP1 negatively regulates glycolysis by inhibiting hexokinase 1 independent of NAD+ depletion. Cell Rep. 8, 1819–1831 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Yang, Z. et al. PARP-1 mediates LPS-induced HMGB1 release by macrophages through regulation of HMGB1 acetylation. J. Immunol. 193, 6114–6123 (2014).

    Article  CAS  PubMed  Google Scholar 

  142. Jiao, S. et al. PARP inhibitor upregulates PD-L1 expression and enhances cancer-associated immunosuppression. Clin. Cancer Res. 23, 3711–3720 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Apetoh, L. et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat. Med. 13, 1050–1059 (2007).

    Article  CAS  PubMed  Google Scholar 

  144. Christmann, M., Tomicic, M. T., Aasland, D., Berdelle, N. & Kaina, B. Three prime exonuclease I (TREX1) is Fos/AP-1 regulated by genotoxic stress and protects against ultraviolet light and benzo(a)pyrene-induced DNA damage. Nucleic Acids Res. 38, 6418–6432 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Wang, Y. et al. A nuclease that mediates cell death induced by DNA damage and poly(ADP-ribose) polymerase-1. Science 354, aad6872 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Lord, C. J. & Ashworth, A. BRCAness revisited. Nat. Rev. Cancer 16, 110–120 (2016).

    Article  CAS  PubMed  Google Scholar 

  147. Moore, K. et al. Maintenance olaparib in patients with newly diagnosed advanced ovarian cancer. N. Engl. J. Med. 379, 2495–2505 (2018).

    Article  CAS  PubMed  Google Scholar 

  148. Clarke, N. et al. Olaparib combined with abiraterone in patients with metastatic castration-resistant prostate cancer: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Oncol. 19, 975–986 (2018).

    Article  CAS  PubMed  Google Scholar 

  149. Yard, B. D. et al. A genetic basis for the variation in the vulnerability of cancer to DNA damage. Nat. Commun. 7, 11428 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Good, J. S. & Harrington, K. J. The hallmarks of cancer and the radiation oncologist: updating the 5Rs of radiobiology. Clin. Oncol. (R. Coll. Radiol.) 25, 569–577 (2013).

    Article  CAS  Google Scholar 

  151. Czabotar, P. E., Lessene, G., Strasser, A. & Adams, J. M. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat. Rev. Mol. Cell Biol. 15, 49–63 (2014).

    Article  CAS  PubMed  Google Scholar 

  152. Hill, R. P. The changing paradigm of tumour response to irradiation. Br. J. Radiol. 90, 20160474 (2017).

    Article  PubMed  Google Scholar 

  153. Faget, D. V., Ren, Q. & Stewart, S. A. Unmasking senescence: context-dependent effects of SASP in cancer. Nat. Rev. Cancer 19, 439–453 (2019).

    Article  CAS  PubMed  Google Scholar 

  154. Mariathasan, S. et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554, 544–548 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Tauriello, D. V. F. et al. TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis. Nature 554, 538–543 (2018). Refs. 154,155 demonstrate that the immunosuppressive effects of TGF-β1 also involve the generation of a stromal reaction that prevents tumor infiltration by T cells.

    Article  CAS  PubMed  Google Scholar 

  156. Coppe, J. P., Desprez, P. Y., Krtolica, A. & Campisi, J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu. Rev. Pathol. 5, 99–118 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Demaria, M. et al. Cellular senescence promotes adverse effects of chemotherapy and cancer relapse. Cancer Discov. 7, 165–176 (2017).

    Article  CAS  PubMed  Google Scholar 

  158. Maeda, A. et al. In vivo imaging reveals significant tumor vascular dysfunction and increased tumor hypoxia-inducible factor-1α expression induced by high single-dose irradiation in a pancreatic tumor model. Int. J. Radiat. Oncol. Biol. Phys. 97, 184–194 (2017).

    Article  CAS  PubMed  Google Scholar 

  159. Lafargue, A. et al. Ionizing radiation induces long-term senescence in endothelial cells through mitochondrial respiratory complex II dysfunction and superoxide generation. Free Radic. Biol. Med. 108, 750–759 (2017).

    Article  CAS  PubMed  Google Scholar 

  160. Wang, Y., Boerma, M. & Zhou, D. Ionizing radiation-induced endothelial cell senescence and cardiovascular diseases. Radiat. Res. 186, 153–161 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Moding, E. J. et al. Atm deletion with dual recombinase technology preferentially radiosensitizes tumor endothelium. J. Clin. Invest. 124, 3325–3338 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Park, H. J., Griffin, R. J., Hui, S., Levitt, S. H. & Song, C. W. Radiation-induced vascular damage in tumors: implications of vascular damage in ablative hypofractionated radiotherapy (SBRT and SRS). Radiat. Res. 177, 311–327 (2012).

    Article  CAS  PubMed  Google Scholar 

  163. Sofia Vala, I. et al. Low doses of ionizing radiation promote tumor growth and metastasis by enhancing angiogenesis. PLoS One 5, e11222 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Lerman, O. Z. et al. Low-dose radiation augments vasculogenesis signaling through HIF-1-dependent and -independent SDF-1 induction. Blood 116, 3669–3676 (2010).

    Article  CAS  PubMed  Google Scholar 

  165. Guipaud, O. et al. The importance of the vascular endothelial barrier in the immune-inflammatory response induced by radiotherapy. Br. J. Radiol. 91, 20170762 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Liao, J. K. Linking endothelial dysfunction with endothelial cell activation. J. Clin. Invest. 123, 540–541 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Hendry, S. A. et al. The role of the tumor vasculature in the host immune response: implications for therapeutic strategies targeting the tumor microenvironment. Front. Immunol. 7, 621 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Fokas, E. et al. NVP-BEZ235 and NVP-BGT226, dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitors, enhance tumor and endothelial cell radiosensitivity. Radiat. Oncol. 7, 48 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Kim, E. J., Lee, Y. J., Kang, S. & Lim, Y. B. Ionizing radiation activates PERK/eIF2α/ATF4 signaling via ER stress-independent pathway in human vascular endothelial cells. Int. J. Radiat. Biol. 90, 306–312 (2014).

    Article  CAS  PubMed  Google Scholar 

  170. Rodriguez-Ruiz, M. E. et al. Intercellular adhesion molecule-1 and vascular cell adhesion molecule are induced by ionizing radiation on lymphatic endothelium. Int. J. Radiat. Oncol. Biol. Phys. 97, 389–400 (2017).

    Article  CAS  PubMed  Google Scholar 

  171. Kalluri, R. The biology and function of fibroblasts in cancer. Nat. Rev. Cancer 16, 582–598 (2016).

    Article  CAS  PubMed  Google Scholar 

  172. Tommelein, J. et al. Radiotherapy-activated cancer-associated fibroblasts promote tumor progression through paracrine IGF1R activation. Cancer Res. 78, 659–670 (2018).

    Article  CAS  PubMed  Google Scholar 

  173. Hellevik, T. et al. Cancer-associated fibroblasts from human NSCLC survive ablative doses of radiation but their invasive capacity is reduced. Radiat. Oncol. 7, 59 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Gorchs, L. et al. Cancer-associated fibroblasts from lung tumors maintain their immunosuppressive abilities after high-dose irradiation. Front Oncol. 5, 87 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Arshad, A., Deutsch, E. & Vozenin, M. C. Simultaneous irradiation of fibroblasts and carcinoma cells repress the secretion of soluble factors able to stimulate carcinoma cell migration. PLoS One 10, e0115447 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Wang, Z., Tang, Y., Tan, Y., Wei, Q. & Yu, W. Cancer-associated fibroblasts in radiotherapy: challenges and new opportunities. Cell Commun. Signal. 17, 47 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Wang, Y. et al. Cancer-associated fibroblasts promote irradiated cancer cell recovery through autophagy. EBioMedicine 17, 45–56 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Shi, Y., Du, L., Lin, L. & Wang, Y. Tumour-associated mesenchymal stem/stromal cells: emerging therapeutic targets. Nat. Rev. Drug Discov. 16, 35–52 (2017).

    Article  CAS  PubMed  Google Scholar 

  179. Isella, C. et al. Stromal contribution to the colorectal cancer transcriptome. Nat. Genet. 47, 31–319 (2015).

    Article  CAS  Google Scholar 

  180. Vitale, I., Manic, G., Galassi, C. & Galluzzi, L. Stress responses in stromal cells and tumor homeostasis. Pharmacol. Ther. 200, 55–68 (2019).

    Article  CAS  PubMed  Google Scholar 

  181. Schaue, D. & McBride, W. H. T lymphocytes and normal tissue responses to radiation. Front. Oncol. 2, 119 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Moreno-Villanueva, M. et al. Single-cell RNA-sequencing identifies activation of TP53 and STAT1 pathways in human T lymphocyte subpopulations in response to ex vivo radiation exposure. Int. J. Mol. Sci. 20, E2316 (2019).

    Article  PubMed  CAS  Google Scholar 

  183. Yao, Z., Jones, J., Kohrt, H. & Strober, S. Selective resistance of CD44hi T cells to p53-dependent cell death results in persistence of immunologic memory after total body irradiation. J. Immunol. 187, 4100–4108 (2011).

    Article  CAS  PubMed  Google Scholar 

  184. Bogdandi, E. N. et al. Effects of low-dose radiation on the immune system of mice after total-body irradiation. Radiat. Res. 174, 480–489 (2010).

    Article  CAS  PubMed  Google Scholar 

  185. Heylmann, D., Badura, J., Becker, H., Fahrer, J. & Kaina, B. Sensitivity of CD3/CD28-stimulated versus non-stimulated lymphocytes to ionizing radiation and genotoxic anticancer drugs: key role of ATM in the differential radiation response. Cell Death Dis. 9, 1053 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Pugh, J. L. et al. Histone deacetylation critically determines T cell subset radiosensitivity. J. Immunol. 193, 1451–1458 (2014).

    Article  CAS  PubMed  Google Scholar 

  187. Qu, Y. et al. Gamma-ray resistance of regulatory CD4+CD25+Foxp3+ T cells in mice. Radiat. Res. 173, 148–157 (2010).

    Article  CAS  PubMed  Google Scholar 

  188. Liu, S. et al. Effects of radiation on T regulatory cells in normal states and cancer: mechanisms and clinical implications. Am. J. Cancer Res. 5, 3276–3285 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Falcke, S. E. et al. Clinically relevant radiation exposure differentially impacts forms of cell death in human cells of the innate and adaptive immune system. Int. J. Mol. Sci. 19, E3574 (2018).

    Article  PubMed  Google Scholar 

  190. Belka, C. et al. Impact of localized radiotherapy on blood immune cells counts and function in humans. Radiother. Oncol. 50, 199–204 (1999).

    Article  CAS  PubMed  Google Scholar 

  191. Zheng, X. et al. Recovery profiles of T-cell subsets following low-dose total body irradiation and improvement with cinnamon. Int. J. Radiat. Oncol. Biol. Phys. 93, 1118–1126 (2015).

    Article  CAS  PubMed  Google Scholar 

  192. Arina, A. et al. Tumor-reprogrammed resident T cells resist radiation to control tumors. Nat. Commun. 10, 3959 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Mulder, W. J. M., Ochando, J., Joosten, L. A. B., Fayad, Z. A. & Netea, M. G. Therapeutic targeting of trained immunity. Nat. Rev. Drug Discov. 18, 553–566 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Bauer, M. et al. Human monocytes are severely impaired in base and DNA double-strand break repair that renders them vulnerable to oxidative stress. Proc. Natl Acad. Sci. USA 108, 21105–21110 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Persa, E., Szatmari, T., Safrany, G. & Lumniczky, K. In vivo irradiation of mice induces activation of dendritic cells. Int. J. Mol. Sci. 19, 2391 (2018).

    Article  PubMed Central  CAS  Google Scholar 

  196. Chun, S. H. et al. Effect of low dose radiation on differentiation of bone marrow cells into dendritic cells. Dose Response 11, 374–384 (2012).

    PubMed  PubMed Central  Google Scholar 

  197. Merrick, A. et al. Immunosuppressive effects of radiation on human dendritic cells: reduced IL-12 production on activation and impairment of naive T-cell priming. Br. J. Cancer 92, 1450–1458 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Alcantara-Hernandez, M. et al. High-dimensional phenotypic mapping of human dendritic cells reveals interindividual variation and tissue specialization. Immunity 47, 1037–1050.e1036 (2017). This reference offers a high-dimensional phenotypic characterization of human DCs, revealing considerable degrees of inter-individual variation and tissue specialization.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Shigematsu, A. et al. Effects of low-dose irradiation on enhancement of immunity by dendritic cells. J. Radiat. Res. 48, 51–55 (2007).

    Article  CAS  PubMed  Google Scholar 

  200. Jahns, J. et al. Influence of low dose irradiation on differentiation, maturation and T-cell activation of human dendritic cells. Mutat. Res. 709–710, 32–39 (2011).

    Article  PubMed  CAS  Google Scholar 

  201. Diamond, J. M. et al. Exosomes shuttle TREX1-sensitive IFN-stimulatory dsDNA from irradiated cancer cells to DCs. Cancer Immunol. Res. 6, 910–920 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Cassetta, L. & Pollard, J. W. Targeting macrophages: therapeutic approaches in cancer. Nat. Rev. Drug Discov. 17, 887–904 (2018).

    Article  CAS  PubMed  Google Scholar 

  203. Leblond, M. M. et al. M2 macrophages are more resistant than M1 macrophages following radiation therapy in the context of glioblastoma. Oncotarget 8, 72597–72612 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Vitale, I., Manic, G., Coussens, L. M., Kroemer, G. & Galluzzi, L. Macrophages and metabolism in the tumor microenvironment. Cell Metab. 30, 36–50 (2019).

    Article  CAS  PubMed  Google Scholar 

  205. Xu, J. et al. CSF1R signaling blockade stanches tumor-infiltrating myeloid cells and improves the efficacy of radiotherapy in prostate cancer. Cancer Res. 73, 2782–2794 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Wang, S. C., Yu, C. F., Hong, J. H., Tsai, C. S. & Chiang, C. S. Radiation therapy-induced tumor invasiveness is associated with SDF-1-regulated macrophage mobilization and vasculogenesis. PLoS One 8, e69182 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Hughes, R. et al. Perivascular M2 macrophages stimulate tumor relapse after chemotherapy. Cancer Res. 75, 3479–3491 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Wenes, M. et al. Macrophage metabolism controls tumor blood vessel morphogenesis and metastasis. Cell Metab. 24, 701–715 (2016).

    Article  CAS  PubMed  Google Scholar 

  209. Labadie, B. W., Bao, R. & Luke, J. J. Reimagining IDO pathway inhibition in cancer immunotherapy via downstream focus on the tryptophan-kynureninearyl hydrocarbon axis. Clin. Cancer Res. 25, 1462–1471 (2019).

    Article  PubMed  CAS  Google Scholar 

  210. Tsai, C. S. et al. Macrophages from irradiated tumors express higher levels of iNOS, arginase-I and COX-2, and promote tumor growth. Int. J. Radiat. Oncol. Biol. Phys. 68, 499–507 (2007).

    Article  CAS  PubMed  Google Scholar 

  211. DeNardo, D. G. & Ruffell, B. Macrophages as regulators of tumour immunity and immunotherapy. Nat. Rev. Immunol. 19, 369–382 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Nadella, V. et al. Low dose radiation primed iNOS + M1macrophages modulate angiogenic programming of tumor derived endothelium. Mol. Carcinog. 57, 1664–1671 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Luke, J. J., Bao, R., Sweis, R. F., Spranger, S. & Gajewski, T. F. WNT/β-catenin pathway activation correlates with immune exclusion across human cancers. Clin. Cancer Res 25, 3074–3083 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Travis, M. A. & Sheppard, D. TGF-β activation and function in immunity. Annu. Rev. Immunol. 32, 51–82 (2014).

    Article  CAS  PubMed  Google Scholar 

  215. Wang, H., Mu, X., He, H. & Zhang, X. D. Cancer radiosensitizers. Trends Pharmacol. Sci. 39, 24–48 (2018).

    Article  CAS  PubMed  Google Scholar 

  216. Singh, R., Letai, A. & Sarosiek, K. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat. Rev. Mol. Cell Biol. 20, 175–193 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Tait, S. W. & Green, D. R. Mitochondria and cell death: outer membrane permeabilization and beyond. Nat. Rev. Mol. Cell Biol. 11, 621–632 (2010).

    Article  CAS  PubMed  Google Scholar 

  218. Galluzzi, L. et al. Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ. 22, 58–73 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are indebted to G. Manic (Regina Elena National Cancer Institute, Rome, Italy) for help with the preparation of display items. M.E.R.R. is supported by the FEOR/CRIS Foundation. I.V. is supported by the Associazione Italiana per la Ricerca sul Cancro (AIRC, IG 2017, grant number 20417) and a startup grant from the Italian Institute for Genomic Medicine (Turin, Italy). K.J.H. acknowledges support from the Royal Marsden/Institute of Cancer Research NIHR Biomedical Research Centre, Oracle Cancer Trust, Rosetrees Trust and The Mark Donegan Foundation. L.G. is supported by a Breakthrough Level 2 grant from the US Department of Defense, Breast Cancer Research Program (#BC180476P1); by a startup grant from the Department of Radiation Oncology at Weill Cornell Medicine (New York, US); by industrial collaborations with Lytix (Oslo, Norway) and Phosplatin (New York, US); and by donations from Phosplatin (New York, US), the Luke Heller TECPR2 Foundation (Boston, US) and Sotio a.s. (Prague, Czech Republic).

Author information

Authors and Affiliations

Authors

Contributions

L.G. conceived the paper. M.E.R.R., I.V. and L.G. wrote the first version of the manuscript and designed display items with inputs from K.J.H. and I.M. I.V. prepared display items under supervision from L.G. L.G. addressed comments raised by reviewers. All authors approved the final version of the article.

Corresponding author

Correspondence to Lorenzo Galluzzi.

Ethics declarations

Competing interests

I.M. receives grants form Roche, AstraZeneca, Alligator and Bristol Myers. I.M. has consulted for Bristol-Myers, Bayer, Roche, AstraZeneca, F-Star, Genmab, Seattle Genetics, Merck Serono, MSD, Alligator and Bioncotech. L.G. provides remunerated consulting to OmniSEQ, Astra Zeneca, Inzen, Boehringer Ingelheim and the Luke Heller TECPR2 Foundation, and he is member of the Scientific Advisory Committee of OmniSEQ.

Additional information

Editor recognition statement Zoltan Fehervari was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodriguez-Ruiz, M.E., Vitale, I., Harrington, K.J. et al. Immunological impact of cell death signaling driven by radiation on the tumor microenvironment. Nat Immunol 21, 120–134 (2020). https://doi.org/10.1038/s41590-019-0561-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41590-019-0561-4

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer