Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Mechanosensing through immunoreceptors

An Author Correction to this article was published on 04 November 2019

This article has been updated

Abstract

The immune response is orchestrated by a variety of immune cells. The function of each cell is determined by the collective signals from various immunoreceptors, whose expression and activity depend on the developmental stages of the cell and its environmental context. Recent studies have highlighted the presence of mechanical force on several immunoreceptor–ligand pairs and the important role of force in regulating their interaction and function. In this Perspective, we use the T cell antigen receptor as an example with which to review the current understanding of the mechanosensing properties of immunoreceptors. We discuss the types of forces that immunoreceptors may encounter and the effects of force on ligand bonding, conformational change and the triggering of immunoreceptors, as well as the effects of force on the downstream signal transduction, cell-fate decisions and effector function of immune cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Immune cells are subjected to external forces from, and apply endogenous forces to, their surroundings, which can be measured by biophysical techniques.
Fig. 2: Single-molecule force techniques for applying forces to immuneoreceptors on immune cells.
Fig. 3: Force-regulated pMHC conformations determine TCR–MHC dynamic bonds.
Fig. 4: TCR mechanotransduction via dynamic catch.

Similar content being viewed by others

Change history

  • 04 November 2019

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. Mempel, T. R., Henrickson, S. E. & Von Andrian, U. H. T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature 427, 154–159 (2004).

    CAS  PubMed  Google Scholar 

  2. Hui, K. L., Balagopalan, L., Samelson, L. E. & Upadhyaya, A. Cytoskeletal forces during signaling activation in Jurkat T-cells. Mol. Biol. Cell 26, 685–695 (2015).

    PubMed  PubMed Central  Google Scholar 

  3. Bashour, K. T. et al. CD28 and CD3 have complementary roles in T-cell traction forces. Proc. Natl Acad. Sci. USA 111, 2241–2246 (2014).

    CAS  PubMed  Google Scholar 

  4. Bashour, K. T. et al. Cross talk between CD3 and CD28 is spatially modulated by protein lateral mobility. Mol. Cell. Biol. 34, 955–964 (2014).

    PubMed  PubMed Central  Google Scholar 

  5. Liu, Y. et al. DNA-based nanoparticle tension sensors reveal that T-cell receptors transmit defined pN forces to their antigens for enhanced fidelity. Proc. Natl Acad. Sci. USA 113, 5610–5615 (2016).

    CAS  PubMed  Google Scholar 

  6. Ma, V. P. et al. Ratiometric tension probes for mapping receptor forces and clustering at intermembrane junctions. Nano Lett. 16, 4552–4559 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Colin-York, H. et al. Cytoskeletal control of antigen-dependent T cell activation. Cell Rep. 26, 3369–3379.e3365 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang, J. et al. Profiling the origin, dynamics, and function of traction force in B cell activation. Sci. Signal. 11, eaai9192 (2018).

    PubMed  Google Scholar 

  9. Wan, Z. et al. The activation of IgM- or isotype-switched IgG- and IgE-BCR exhibits distinct mechanical force sensitivity and threshold. eLife 4, e06925 (2015).

    PubMed Central  Google Scholar 

  10. Nowosad, C. R., Spillane, K. M. & Tolar, P. Germinal center B cells recognize antigen through a specialized immune synapse architecture. Nat. Immunol. 17, 870–877 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Spillane, K. M. & Tolar, P. B cell antigen extraction is regulated by physical properties of antigen-presenting cells. J. Cell Biol. 216, 217–230 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Wan, Z. et al. PI(4,5)P2 determines the threshold of mechanical force-induced B cell activation. J. Cell Biol. 217, 2565–2582 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu, B. et al. The cellular environment regulates in situ kinetics of T-cell receptor interaction with peptide major histocompatibility complex. Eur. J. Immunol. 45, 2099–2110 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Das, D. K. et al. Force-dependent transition in the T-cell receptor β-subunit allosterically regulates peptide discrimination and pMHC bond lifetime. Proc. Natl Acad. Sci. USA 112, 1517–1522 (2015).

    CAS  PubMed  Google Scholar 

  15. Liu, B., Chen, W., Evavold, B. D. & Zhu, C. Accumulation of dynamic catch bonds between TCR and agonist peptide-MHC triggers T cell signaling. Cell 157, 357–368 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Hong, J. et al. Force-regulated in situ TCR-peptide-bound MHC class ii kinetics determine functions of CD4+ T cells. J. Immunol. 195, 3557–3564 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Hong, J. et al. A TCR mechanotransduction signaling loop induces negative selection in the thymus. Nat. Immunol. 19, 1379–1390 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Sibener, L. V. et al. Isolation of a structural mechanism for uncoupling T cell receptor signaling from peptide-MHC binding. Cell 174, 672–687.e627 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Wu, P. et al. Mechano-regulation of peptide-MHC class I conformations determines TCR antigen recognition. Mol. Cell 73, 1015–1027.e7 (2019).

    CAS  PubMed  Google Scholar 

  20. Mallis, R. J. et al. Pre-TCR ligand binding impacts thymocyte development before αβTCR expression. Proc. Natl Acad. Sci. USA 112, 8373–8378 (2015).

    CAS  PubMed  Google Scholar 

  21. Das, D. K. et al. Pre-T cell receptors (pre-TCRs) leverage Vβ complementarity determining regions (CDRs) and hydrophobic patch in mechanosensing thymic self-ligands. J. Biol. Chem. 291, 25292–25305 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Marshall, B. T. et al. Direct observation of catch bonds involving cell-adhesion molecules. Nature 423, 190–193 (2003).

    CAS  PubMed  Google Scholar 

  23. Sarangapani, K. K. et al. Low force decelerates L-selectin dissociation from P-selectin glycoprotein ligand-1 and endoglycan. J. Biol. Chem. 279, 2291–2298 (2004).

    CAS  PubMed  Google Scholar 

  24. Kong, F., García, A. J., Mould, A. P., Humphries, M. J. & Zhu, C. Demonstration of catch bonds between an integrin and its ligand. J. Cell Biol. 185, 1275–1284 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen, W., Lou, J. & Zhu, C. Forcing switch from short- to intermediate- and long-lived states of the αA domain generates LFA-1/ICAM-1 catch bonds. J. Biol. Chem. 285, 35967–35978 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Nishi, H. et al. Neutrophil FcγRIIA promotes IgG-mediated glomerular neutrophil capture via Abl/Src kinases. J. Clin. Invest. 127, 3810–3826 (2017).

    PubMed  PubMed Central  Google Scholar 

  27. Kim, S. T. et al. The αβ T cell receptor is an anisotropic mechanosensor. J. Biol. Chem. 284, 31028–31037 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Li, Y.-C. et al. Cutting edge: mechanical forces acting on T cells immobilized via the TCR complex can trigger TCR signaling. J. Immunol. 184, 5959–5963 (2010).

    CAS  PubMed  Google Scholar 

  29. Pryshchep, S., Zarnitsyna, V. I., Hong, J., Evavold, B. D. & Zhu, C. Accumulation of serial forces on TCR and CD8 frequently applied by agonist antigenic peptides embedded in MHC molecules triggers calcium in T cells. J. Immunol. 193, 68–76 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Hu, K. H. & Butte, M. J. T cell activation requires force generation. J. Cell Biol. 213, 535–542 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Feng, Y. et al. Mechanosensing drives acuity of αβ T-cell recognition. Proc. Natl Acad. Sci. USA 114, E8204–E8213 (2017).

    CAS  PubMed  Google Scholar 

  32. Basu, R. et al. Cytotoxic T cells use mechanical force to potentiate target cell killing. Cell 165, 100–110 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Natkanski, E. et al. B cells use mechanical energy to discriminate antigen affinities. Science 340, 1587–1590 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Judokusumo, E., Tabdanov, E., Kumari, S., Dustin, M. L. & Kam, L. C. Mechanosensing in T lymphocyte activation. Biophys. J. 102, L5–L7 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Saitakis, M. et al. Different TCR-induced T lymphocyte responses are potentiated by stiffness with variable sensitivity. eLife 6, e23190 (2017).

    PubMed  PubMed Central  Google Scholar 

  36. Wahl, A. et al. Biphasic mechanosensitivity of T cell receptor-mediated spreading of lymphocytes. Proc. Natl Acad. Sci. USA 116, 5908–5913 (2019).

    CAS  PubMed  Google Scholar 

  37. Wan, Z. et al. B cell activation is regulated by the stiffness properties of the substrate presenting the antigens. J. Immunol. 190, 4661–4675 (2013).

    CAS  PubMed  Google Scholar 

  38. Zeng, Y. et al. Substrate stiffness regulates B-cell activation, proliferation, class switch, and T-cell-independent antibody responses in vivo. Eur. J. Immunol. 45, 1621–1634 (2015).

    CAS  PubMed  Google Scholar 

  39. Shaheen, S. et al. Substrate stiffness governs the initiation of B cell activation by the concerted signaling of PKCβ and focal adhesion kinase. eLife 6, e23060 (2017).

    PubMed  PubMed Central  Google Scholar 

  40. O’Connor, R. S. et al. Substrate rigidity regulates human T cell activation and proliferation. J. Immunol. 189, 1330–1339 (2012).

    PubMed  PubMed Central  Google Scholar 

  41. Kim, S. T. et al. TCR mechanobiology: torques and tunable structures linked to early T cell signaling. Front. Immunol. 3, 76 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen, W. & Zhu, C. Mechanical regulation of T-cell functions. Immunol. Rev. 256, 160–176 (2013).

    CAS  PubMed  Google Scholar 

  43. Brazin, K. N. et al. Structural features of the αβTCR mechanotransduction apparatus that promote pMHC discrimination. Front. Immunol. 6, 441 (2015).

    PubMed  PubMed Central  Google Scholar 

  44. Reinherz, E. L. & Wang, J. H. Codification of bidentate pMHC interaction with TCR and its co-receptor. Trends Immunol. 36, 300–306 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Hivroz, C. & Saitakis, M. Biophysical aspects of T lymphocyte activation at the immune synapse. Front. Immunol. 7, 46 (2016).

    PubMed  PubMed Central  Google Scholar 

  46. Basu, R. & Huse, M. Mechanical communication at the immunological synapse. Trends Cell Biol. 27, 241–254 (2017).

    PubMed  Google Scholar 

  47. Chen, Y., Ju, L., Rushdi, M., Ge, C. & Zhu, C. Receptor-mediated cell mechanosensing. Mol. Biol. Cell 28, 3134–3155 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Huse, M. Mechanical forces in the immune system. Nat. Rev. Immunol. 17, 679–690 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Tolar, P. Cytoskeletal control of B cell responses to antigens. Nat. Rev. Immunol. 17, 621–634 (2017).

    CAS  PubMed  Google Scholar 

  50. Upadhyaya, A. Mechanosensing in the immune response. Semin. Cell Dev. Biol. 71, 137–145 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Feng, Y., Reinherz, E. L. & Lang, M. J. αβ T cell receptor mechanosensing forces out serial engagement. Trends Immunol. 39, 596–609 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Spillane, K. M. & Tolar, P. Mechanics of antigen extraction in the B cell synapse. Mol. Immunol. 101, 319–328 (2018).

    CAS  PubMed  Google Scholar 

  53. Pageon, S. V., Govendir, M. A., Kempe, D. & Biro, M. Mechanoimmunology: molecular-scale forces govern immune cell functions. Mol. Biol. Cell 29, 1919–1926 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Rossy, J., Laufer, J. M. & Legler, D. F. Role of mechanotransduction and tension in T cell function. Front. Immunol. 9, 2638 (2018).

    PubMed  PubMed Central  Google Scholar 

  55. Kim, J. K., Shin, Y. J., Ha, L. J., Kim, D. H. & Kim, D. H. Unraveling the mechanobiology of the immune system. Adv. Healthc. Mater. 8, e1801332 (2019).

    PubMed  Google Scholar 

  56. Zhu, C., Chen, Y. & Ju, L. Dynamic bonds and their roles in mechanosensing. Curr. Opin. Chem. Biol. (in the press).

  57. Aramesh, M., Stoycheva, D., Raaz, L. & Klotzsch, E. Engineering T-cell activation for immunotherapy by mechanical forces. Curr. Opin. Biomed. Eng. 10, 134–141 (2019).

    Google Scholar 

  58. Wan, Z., Shaheen, S., Chau, A., Zeng, Y. & Liu, W. Imaging: gear up for mechano-immunology. Cell. Immunol. https://doi.org/10.1016/j.cellimm.2019.103926 (2019).

  59. Saggu, G. et al. Cis interaction between sialylated FcγRIIA and the αI-domain of Mac-1 limits antibody-mediated neutrophil recruitment. Nat. Commun. 9, 5058 (2018).

    PubMed  PubMed Central  Google Scholar 

  60. McEver, R. P. & Zhu, C. Rolling cell adhesion. Annu. Rev. Cell Dev. Biol. 26, 363–396 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Murugesan, S. et al. Formin-generated actomyosin arcs propel T cell receptor microcluster movement at the immune synapse. J. Cell Biol. 215, 383–399 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Hong, J., Murugesan, S., Betzig, E. & Hammer, J. A. Contractile actomyosin arcs promote the activation of primary mouse T cells in a ligand-dependent manner. PLoS One 12, e0183174 (2017).

    PubMed  PubMed Central  Google Scholar 

  63. Luca, V. C. et al. Notch-Jagged complex structure implicates a catch bond in tuning ligand sensitivity. Science 355, 1320–1324 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Kolawole, E. M., Andargachew, R., Liu, B., Jacobs, J. R. & Evavold, B. D. 2D kinetic analysis of TCR and CD8 coreceptor for LCMV GP33 epitopes. Front. Immunol. 9, 2348 (2018).

    PubMed  PubMed Central  Google Scholar 

  65. Brazin, K. N. et al. The T cell antigen receptor α transmembrane domain coordinates triggering through regulation of bilayer immersion and CD3 subunit associations. Immunity 49, 829–841.e826 (2018).

    CAS  PubMed  Google Scholar 

  66. Majstoravich, S. et al. Lymphocyte microvilli are dynamic, actin-dependent structures that do not require Wiskott-Aldrich syndrome protein (WASp) for their morphology. Blood 104, 1396–1403 (2004).

    CAS  PubMed  Google Scholar 

  67. Cai, E. et al. Visualizing dynamic microvillar search and stabilization during ligand detection by T cells. Science 356, eaal3118 (2017).

    PubMed  PubMed Central  Google Scholar 

  68. Jung, Y. et al. Three-dimensional localization of T-cell receptors in relation to microvilli using a combination of superresolution microscopies. Proc. Natl Acad. Sci. USA 113, E5916–E5924 (2016).

    CAS  PubMed  Google Scholar 

  69. Wucherpfennig, K. W., Gagnon, E., Call, M. J., Huseby, E. S. & Call, M. E. Structural biology of the T-cell receptor: insights into receptor assembly, ligand recognition, and initiation of signaling. Cold Spring Harb. Perspect. Biol. 2, a005140 (2010).

    PubMed  PubMed Central  Google Scholar 

  70. Barda-Saad, M. et al. Dynamic molecular interactions linking the T cell antigen receptor to the actin cytoskeleton. Nat. Immunol. 6, 80–89 (2005).

    CAS  PubMed  Google Scholar 

  71. Klieger, Y. et al. Unique ζ-chain motifs mediate a direct TCR-actin linkage critical for immunological synapse formation and T-cell activation. Eur. J. Immunol. 44, 58–68 (2014).

    CAS  PubMed  Google Scholar 

  72. Comrie, W. A. & Burkhardt, J. K. Action and traction: cytoskeletal control of receptor triggering at the immunological synapse. Front. Immunol. 7, 68 (2016).

    PubMed  PubMed Central  Google Scholar 

  73. Zhang, Y. et al. Platelet integrins exhibit anisotropic mechanosensing and harness piconewton forces to mediate platelet aggregation. Proc. Natl Acad. Sci. USA 115, 325–330 (2018).

    CAS  PubMed  Google Scholar 

  74. Liu, B., Chen, W. & Zhu, C. Molecular force spectroscopy on cells. Annu. Rev. Phys. Chem. 66, 427–451 (2015).

    CAS  PubMed  Google Scholar 

  75. Fiore, V. F., Ju, L., Chen, Y., Zhu, C. & Barker, T. H. Dynamic catch of a Thy-1-α5β1+syndecan-4 trimolecular complex. Nat. Commun. 5, 4886 (2014).

    CAS  PubMed  Google Scholar 

  76. Lou, J. & Zhu, C. A structure-based sliding-rebinding mechanism for catch bonds. Biophys. J. 92, 1471–1485 (2007).

    CAS  PubMed  Google Scholar 

  77. Yago, T. et al. Platelet glycoprotein Ibα forms catch bonds with human WT vWF but not with type 2B von Willebrand disease vWF. J. Clin. Invest. 118, 3195–3207 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Lee, C. Y. et al. Actin depolymerization under force is governed by lysine 113:glutamic acid 195-mediated catch-slip bonds. Proc. Natl Acad. Sci. USA 110, 5022–5027 (2013).

    CAS  PubMed  Google Scholar 

  79. Chowell, D. et al. Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy. Science 359, 582–587 (2018).

    CAS  Google Scholar 

  80. Roy, N. H., MacKay, J. L., Robertson, T. F., Hammer, D. A. & Burkhardt, J. K. Crk adaptor proteins mediate actin-dependent T cell migration and mechanosensing induced by the integrin LFA-1. Sci. Signal. 11, eaat3178 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Elosegui-Artola, A., Trepat, X. & Roca-Cusachs, P. Control of mechanotransduction by molecular clutch dynamics. Trends Cell Biol. 28, 356–367 (2018).

    CAS  PubMed  Google Scholar 

  82. Grashoff, C. et al. Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466, 263–266 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Ringer, P. et al. Multiplexing molecular tension sensors reveals piconewton force gradient across talin-1. Nat. Methods 14, 1090–1096 (2017).

    CAS  PubMed  Google Scholar 

  84. Elosegui-Artola, A. et al. Mechanical regulation of a molecular clutch defines force transmission and transduction in response to matrix rigidity. Nat. Cell Biol. 18, 540–548 (2016).

    CAS  PubMed  Google Scholar 

  85. Beddoe, T. et al. Antigen ligation triggers a conformational change within the constant domain of the αβ T cell receptor. Immunity 30, 777–788 (2009).

    CAS  PubMed  Google Scholar 

  86. Krogsgaard, M. et al. Evidence that structural rearrangements and/or flexibility during TCR binding can contribute to T cell activation. Mol. Cell 12, 1367–1378 (2003).

    CAS  PubMed  Google Scholar 

  87. Lee, J. K. et al. T cell cross-reactivity and conformational changes during TCR engagement. J. Exp. Med. 200, 1455–1466 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Reiser, J. B. et al. A T cell receptor CDR3β loop undergoes conformational changes of unprecedented magnitude upon binding to a peptide/MHC class I complex. Immunity 16, 345–354 (2002).

    CAS  PubMed  Google Scholar 

  89. van der Merwe, P. A. & Dushek, O. Mechanisms for T cell receptor triggering. Nat. Rev. Immunol. 11, 47–55 (2011).

    PubMed  Google Scholar 

  90. Kuhns, M. S. & Davis, M. M. TCR signaling emerges from the sum of many parts. Front. Immunol. 3, 159 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Lee, M. S. et al. A mechanical switch couples T cell receptor triggering to the cytoplasmic juxtamembrane regions of CD3ζζ. Immunity 43, 227–239 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Chang, V. T. et al. Initiation of T cell signaling by CD45 segregation at ‘close contacts’. Nat. Immunol. 17, 574–582 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. James, J. R. & Vale, R. D. Biophysical mechanism of T-cell receptor triggering in a reconstituted system. Nature 487, 64–69 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Valitutti, S., Müller, S., Cella, M., Padovan, E. & Lanzavecchia, A. Serial triggering of many T-cell receptors by a few peptide-MHC complexes. Nature 375, 148–151 (1995).

    CAS  PubMed  Google Scholar 

  95. McKeithan, T. W. Kinetic proofreading in T-cell receptor signal transduction. Proc. Natl Acad. Sci. USA 92, 5042–5046 (1995).

    CAS  PubMed  Google Scholar 

  96. Dushek, O., Das, R. & Coombs, D. A role for rebinding in rapid and reliable T cell responses to antigen. PLOS Comput. Biol. 5, e1000578 (2009).

    PubMed  PubMed Central  Google Scholar 

  97. Lever, M., Maini, P. K., van der Merwe, P. A. & Dushek, O. Phenotypic models of T cell activation. Nat. Rev. Immunol. 14, 619–629 (2014).

    CAS  PubMed  Google Scholar 

  98. Siller-Farfán, J. A. & Dushek, O. Molecular mechanisms of T cell sensitivity to antigen. Immunol. Rev. 285, 194–205 (2018).

    PubMed  Google Scholar 

  99. Stefanová, ŠtefanováI. et al. TCR ligand discrimination is enforced by competing ERK positive and SHP-1 negative feedback pathways. Nat. Immunol. 4, 248–254 (2003).

    PubMed  Google Scholar 

  100. Yang, W. et al. Dynamic regulation of CD28 conformation and signaling by charged lipids and ions. Nat. Struct. Mol. Biol. 24, 1081–1092 (2017).

    CAS  PubMed  Google Scholar 

  101. Aleksic, M. et al. Dependence of T cell antigen recognition on T cell receptor-peptide MHC confinement time. Immunity 32, 163–174 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Huang, J. et al. The kinetics of two-dimensional TCR and pMHC interactions determine T-cell responsiveness. Nature 464, 932–936 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Jiang, N. et al. Two-stage cooperative T cell receptor-peptide major histocompatibility complex-CD8 trimolecular interactions amplify antigen discrimination. Immunity 34, 13–23 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Adams, J. J. et al. T cell receptor signaling is limited by docking geometry to peptide-major histocompatibility complex. Immunity 35, 681–693 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Zarnitsyna, V. & Zhu, C. T cell triggering: insights from 2D kinetics analysis of molecular interactions. Phys. Biol. 9, 045005 (2012).

    PubMed  Google Scholar 

  106. Zhu, C., Jiang, N., Huang, J., Zarnitsyna, V. I. & Evavold, B. D. Insights from in situ analysis of TCR-pMHC recognition: response of an interaction network. Immunol. Rev. 251, 49–64 (2013).

    PubMed  PubMed Central  Google Scholar 

  107. Liu, B. et al. 2D TCR-pMHC-CD8 kinetics determines T-cell responses in a self-antigen-specific TCR system. Eur. J. Immunol. 44, 239–250 (2014).

    CAS  PubMed  Google Scholar 

  108. O’Donoghue, G. P., Pielak, R. M., Smoligovets, A. A., Lin, J. J. & Groves, J. T. Direct single molecule measurement of TCR triggering by agonist pMHC in living primary T cells. eLife 2, e00778 (2013).

    PubMed  PubMed Central  Google Scholar 

  109. Pielak, R. M. et al. Early T cell receptor signals globally modulate ligand:receptor affinities during antigen discrimination. Proc. Natl Acad. Sci. USA 114, 12190–12195 (2017).

    CAS  PubMed  Google Scholar 

  110. Altan-Bonnet, G., Germain, R. N. & Modeling, T. Modeling T cell antigen discrimination based on feedback control of digital ERK responses. PLoS Biol. 3, e356 (2005).

    PubMed  PubMed Central  Google Scholar 

  111. Liu, C. S. C. et al. Cutting edge: Piezo1 mechanosensors optimize human T cell activation. J. Immunol. 200, 1255–1260 (2018).

    CAS  PubMed  Google Scholar 

  112. Lillemeier, B. F. et al. TCR and Lat are expressed on separate protein islands on T cell membranes and concatenate during activation. Nat. Immunol. 11, 90–96 (2010).

    CAS  PubMed  Google Scholar 

  113. Yokosuka, T. et al. Newly generated T cell receptor microclusters initiate and sustain T cell activation by recruitment of Zap70 and SLP-76. Nat. Immunol. 6, 1253–1262 (2005).

    CAS  PubMed  Google Scholar 

  114. Yokosuka, T. et al. Spatiotemporal regulation of T cell costimulation by TCR-CD28 microclusters and protein kinase C θ translocation. Immunity 29, 589–601 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Yokosuka, T. et al. Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2. J. Exp. Med. 209, 1201–1217 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Pageon, S. V. et al. Functional role of T-cell receptor nanoclusters in signal initiation and antigen discrimination. Proc. Natl Acad. Sci. USA 113, E5454–E5463 (2016).

    CAS  PubMed  Google Scholar 

  117. Brunner-Weinzierl, M. C. & Rudd, C. E. CTLA-4 and PD-1 control of T-cell motility and migration: implications for tumor immunotherapy. Front. Immunol. 9, 2737 (2018).

    PubMed  PubMed Central  Google Scholar 

  118. LaCroix, A. S., Lynch, A. D., Berginski, M. E. & Hoffman, B. D. Tunable molecular tension sensors reveal extension-based control of vinculin loading. eLife 7, e33927 (2018).

    PubMed  PubMed Central  Google Scholar 

  119. Jurchenko, C. & Salaita, K. S. Lighting up the force: investigating mechanisms of mechanotransduction using fluorescent tension probes. Mol. Cell. Biol. 35, 2570–2582 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. June, C. H., O’Connor, R. S., Kawalekar, O. U., Ghassemi, S. & Milone, M. C. CAR T cell immunotherapy for human cancer. Science 359, 1361–1365 (2018).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by grants from the US National Institutes of Health (U01CA214354, R01AI124680, R01GM122489 and R21Al135753 to C.Z.), from the National Basic Research Program of China (2015CB910800 to W.C. and 2014CB910202 to J.L.) and from the National Science Foundation of China (31470900 and 31522021 to W.C. and 11672317 and 31222022 to J.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Zhu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, C., Chen, W., Lou, J. et al. Mechanosensing through immunoreceptors. Nat Immunol 20, 1269–1278 (2019). https://doi.org/10.1038/s41590-019-0491-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41590-019-0491-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing