Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Programmable RNA base editing via targeted modifications

Abstract

Clustered regularly interspaced short palindromic repeats (CRISPR)-based genome editors are powerful tools in biology and hold great promise for the treatment of human diseases. Advanced DNA base editing tools, such as cytosine base editor and adenine base editor, have been developed to correct permanent mistakes in genetic material. However, undesired off-target edits would also be permanent, which poses a considerable risk for therapeutics. Alternatively, base editing at the RNA level is capable of correcting disease-causing mutations but does not lead to lasting genotoxic effects. RNA base editors offer temporary and reversible therapies and have been catching on in recent years. Here, we summarize some emerging RNA editors based on A-to-inosine, C-to-U and U-to-pseudouridine changes. We review the programmable RNA-targeting systems as well as modification enzyme-based effector proteins and highlight recent technological breakthroughs. Finally, we compare editing tools, discuss limitations and opportunities, and provide insights for the future directions of RNA base editing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: RNA-targeting platforms and effectors.
Fig. 2: Exogenous deaminase-mediated RNA base editors.
Fig. 3: Endogenous ADAR-based RNA A-to-I base editors.
Fig. 4: Programmable RNA pseudouridylation.
Fig. 5: Genetic variants associated with disease.

Similar content being viewed by others

References

  1. Landrum, M. J. et al. ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res. 44, D862–D868 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Van Alstyne, M. et al. Gain of toxic function by long-term AAV9-mediated SMN overexpression in the sensorimotor circuit. Nat. Neurosci. 24, 930–940 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Doudna, J. A. The promise and challenge of therapeutic genome editing. Nature 578, 229–236 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rees, H. A. & Liu, D. R. Base editing: precision chemistry on the genome and transcriptome of living cells. Nat. Rev. Genet. 19, 770–788 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gaudelli, N. M. et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Woolf, T. M., Chase, J. M. & Stinchcomb, D. T. Toward the therapeutic editing of mutated RNA sequences. Proc. Natl Acad. Sci. USA 92, 8298–8302 (1995).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang, X. et al. Develop a compact RNA base editor by fusing ADAR with engineered EcCas6e. Adv. Sci. 10, e2206813 (2023).

    Article  Google Scholar 

  9. O’Connell, M. R. et al. Programmable RNA recognition and cleavage by CRISPR/Cas9. Nature 516, 263–266 (2014).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  10. Marina, R. J., Brannan, K. W., Dong, K. D., Yee, B. A. & Yeo, G. W. Evaluation of engineered CRISPR–Cas-mediated systems for site-specific RNA editing. Cell Rep. 33, 108350 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Colognori, D., Trinidad, M. & Doudna, J. A. Precise transcript targeting by CRISPR–Csm complexes. Nat. Biotechnol. 41, 1256–1264 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Abudayyeh, O. O. et al. RNA targeting with CRISPR–Cas13. Nature 550, 280–284 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  13. Cox, D. B. T. et al. RNA editing with CRISPR–Cas13. Science 358, 1019–1027 (2017). The first study, to our knowledge, to achieve programmable RNA A-to-I base editing through a CRISPR-based RNA targeting system.

  14. Stafforst, T. & Schneider, M. F. An RNA-deaminase conjugate selectively repairs point mutations. Angew. Chem. Int. Ed. Engl. 51, 11166–11169 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Vogel, P., Schneider, M. F., Wettengel, J. & Stafforst, T. Improving site-directed RNA editing in vitro and in cell culture by chemical modification of the guideRNA. Angew. Chem. Int. Ed. Engl. 53, 6267–6271 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Hanswillemenke, A., Kuzdere, T., Vogel, P., Jékely, G. & Stafforst, T. Site-directed RNA editing in vivo can be triggered by the light-driven assembly of an artificial riboprotein. J. Am. Chem. Soc. 137, 15875–15881 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vogel, P. et al. Efficient and precise editing of endogenous transcripts with SNAP-tagged ADARs. Nat. Methods 15, 535–538 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Stroppel, A. S. et al. Harnessing self-labeling enzymes for selective and concurrent A-to-I and C-to-U RNA base editing. Nucleic Acids Res. 49, e95 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schneider, M. F., Wettengel, J., Hoffmann, P. C. & Stafforst, T. Optimal guideRNAs for re-directing deaminase activity of hADAR1 and hADAR2 in trans. Nucleic Acids Res. 42, e87 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Montiel-González, M. F., Vallecillo-Viejo, I. C. & Rosenthal, J. J. An efficient system for selectively altering genetic information within mRNAs. Nucleic Acids Res. 44, e157 (2016).

    PubMed  PubMed Central  Google Scholar 

  21. Sinnamon, J. R. et al. Site-directed RNA repair of endogenous Mecp2 RNA in neurons. Proc. Natl Acad. Sci. USA 114, E9395–e9402 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vallecillo-Viejo, I. C., Liscovitch-Brauer, N., Montiel-Gonzalez, M. F., Eisenberg, E. & Rosenthal, J. J. C. Abundant off-target edits from site-directed RNA editing can be reduced by nuclear localization of the editing enzyme. RNA Biol. 15, 104–114 (2018).

    Article  PubMed  Google Scholar 

  23. Montiel-Gonzalez, M. F., Vallecillo-Viejo, I., Yudowski, G. A. & Rosenthal, J. J. Correction of mutations within the cystic fibrosis transmembrane conductance regulator by site-directed RNA editing. Proc. Natl Acad. Sci. USA 110, 18285–18290 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sinnamon, J. R. et al. In vivo repair of a protein underlying a neurological disorder by programmable RNA editing. Cell Rep. 32, 107878 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Katrekar, D. et al. In vivo RNA editing of point mutations via RNA-guided adenosine deaminases. Nat. Methods 16, 239–242 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tohama, T., Sakari, M. & Tsukahara, T. Development of a single construct system for site-directed RNA editing using MS2–ADAR. Int. J. Mol. Sci. 21, 4943 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Azad, M. T. A., Bhakta, S. & Tsukahara, T. Site-directed RNA editing by adenosine deaminase acting on RNA for correction of the genetic code in gene therapy. Gene Ther. 24, 779–786 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. Bhakta, S., Azad, M. T. A. & Tsukahara, T. Genetic code restoration by artificial RNA editing of Ochre stop codon with ADAR1 deaminase. Protein Eng. Des. Sel. 31, 471–478 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Rauch, S. et al. Programmable RNA-guided RNA effector proteins built from human parts. Cell 178, 122–134 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Han, W. et al. Programmable RNA base editing with a single gRNA-free enzyme. Nucleic Acids Res. 50, 9580–9595 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Royan, S. et al. A synthetic RNA editing factor edits its target site in chloroplasts and bacteria. Commun. Biol. 4, 545 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ichinose, M. et al. U-to-C RNA editing by synthetic PPR-DYW proteins in bacteria and human culture cells. Commun. Biol. 5, 968 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Reautschnig, P. et al. CLUSTER guide RNAs enable precise and efficient RNA editing with endogenous ADAR enzymes in vivo. Nat. Biotechnol. 40, 759–768 (2022). The CLUSTER approach enhanced editing efficiency and reduced bystander editing.

  34. Monian, P. et al. Endogenous ADAR-mediated RNA editing in non-human primates using stereopure chemically modified oligonucleotides. Nat. Biotechnol. 40, 1093–1102 (2022). The first study, to our knowledge, that applied A-to-I editor in non-human primates.

  35. Qu, L. et al. Programmable RNA editing by recruiting endogenous ADAR using engineered RNAs. Nat. Biotechnol. 37, 1059–1069 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Merkle, T. et al. Precise RNA editing by recruiting endogenous ADARs with antisense oligonucleotides. Nat. Biotechnol. 37, 133–138 (2019).

    Article  CAS  PubMed  Google Scholar 

  37. Yi, Z. et al. Engineered circular ADAR-recruiting RNAs increase the efficiency and fidelity of RNA editing in vitro and in vivo. Nat. Biotechnol. 40, 946–955 (2022).

    Article  CAS  PubMed  Google Scholar 

  38. Katrekar, D. et al. Efficient in vitro and in vivo RNA editing via recruitment of endogenous ADARs using circular guide RNAs. Nat. Biotechnol. 40, 938–945 (2022). These two independent studies use circular guide RNAs to recruit endogenous ADAR.

  39. Song, J. et al. CRISPR-free, programmable RNA pseudouridylation to suppress premature termination codons. Mol. Cell 83, 139–155 (2023).

    Article  CAS  PubMed  Google Scholar 

  40. Adachi, H. et al. Targeted pseudouridylation: an approach for suppressing nonsense mutations in disease genes. Mol. Cell 83, 637–651 (2023). Programmable U-to-Ψ base editors rely on guide snoRNA to revert PTC-induced translation termination in mammalian cells.

  41. Zhao, X. & Yu, Y. T. Targeted pre-mRNA modification for gene silencing and regulation. Nat. Methods 5, 95–100 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Scheitl, C. P. M., Ghaem Maghami, M., Lenz, A. K. & Höbartner, C. Site-specific RNA methylation by a methyltransferase ribozyme. Nature 587, 663–667 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Booth, B. J. et al. RNA editing: expanding the potential of RNA therapeutics. Mol. Ther. 31, 1533–1549 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Abudayyeh, O. O. et al. A cytosine deaminase for programmable single-base RNA editing. Science 365, 382–386 (2019). The first study, to our knowledge, to achieve programmable RNA C-to-U base editing.

  45. Huang, X. et al. Programmable C-to-U RNA editing using the human APOBEC3A deaminase. EMBO J. 39, e104741 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gao, M. et al. Targeted manipulation of cellular RNA m6A methylation at the single-base level. ACS Chem. Biol. 17, 854–863 (2022).

    Article  CAS  PubMed  Google Scholar 

  47. Wilson, C., Chen, P. J., Miao, Z. & Liu, D. R. Programmable m6A modification of cellular RNAs with a Cas13-directed methyltransferase. Nat. Biotechnol. 38, 1431–1440 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liu, X. M., Zhou, J., Mao, Y., Ji, Q. & Qian, S. B. Programmable RNA N6-methyladenosine editing by CRISPR–Cas9 conjugates. Nat. Chem. Biol. 15, 865–871 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liu, Y. et al. REPAIRx, a specific yet highly efficient programmable A>I RNA base editor. EMBO J. 39, e104748 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Xu, C. et al. Programmable RNA editing with compact CRISPR–Cas13 systems from uncultivated microbes. Nat. Methods 18, 499–506 (2021).

    Article  CAS  PubMed  Google Scholar 

  51. Li, G. et al. Mini-dCas13X-mediated RNA editing restores dystrophin expression in a humanized mouse model of Duchenne muscular dystrophy. J. Clin. Invest. 133, e162809 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Xiao, Q. et al. Rescue of autosomal dominant hearing loss by in vivo delivery of mini dCas13X-derived RNA base editor. Sci. Transl. Med. 14, eabn0449 (2022).

    Article  CAS  PubMed  Google Scholar 

  53. Kannan, S. et al. Compact RNA editors with small Cas13 proteins. Nat. Biotechnol. 40, 194–197 (2022).

    Article  CAS  PubMed  Google Scholar 

  54. Latifi, N., Mack, A. M., Tellioglu, I., Di Giorgio, S. & Stafforst, T. Precise and efficient C-to-U RNA base editing with SNAP-CDAR-S. Nucleic Acids Res. 51, e84 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bhakta, S., Sakari, M. & Tsukahara, T. RNA editing of BFP, a point mutant of GFP, using artificial APOBEC1 deaminase to restore the genetic code. Sci. Rep. 10, 17304 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wettengel, J., Reautschnig, P., Geisler, S., Kahle, P. J. & Stafforst, T. Harnessing human ADAR2 for RNA repair—recoding a PINK1 mutation rescues mitophagy. Nucleic Acids Res. 45, 2797–2808 (2017).

    CAS  PubMed  Google Scholar 

  57. Fukuda, M. et al. Construction of a guide-RNA for site-directed RNA mutagenesis utilising intracellular A-to-I RNA editing. Sci. Rep. 7, 41478 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kaseniit, K. E. et al. Modular, programmable RNA sensing using ADAR editing in living cells. Nat. Biotechnol. 41, 482–487 (2023).

    Article  CAS  PubMed  Google Scholar 

  59. Jiang, K. et al. Programmable eukaryotic protein synthesis with RNA sensors by harnessing ADAR. Nat. Biotechnol. 41, 698–707 (2023).

    Article  CAS  PubMed  Google Scholar 

  60. Qian, Y. et al. Programmable RNA sensing for cell monitoring and manipulation. Nature 610, 713–721 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang, J., Zhao, Y.-T., Hu, L.-F. & Wang, Y. Monitoring promoter activity by RNA editing based reporter. Preprint at bioRxiv https://doi.org/10.1101/2022.03.30.486490 (2022).

  62. Ge, J. & Yu, Y. T. RNA pseudouridylation: new insights into an old modification. Trends Biochem. Sci. 38, 210–218 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Karikó, K., Buckstein, M., Ni, H. & Weissman, D. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 23, 165–175 (2005).

    Article  PubMed  Google Scholar 

  64. Karikó, K. et al. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol. Ther. 16, 1833–1840 (2008).

    Article  PubMed  Google Scholar 

  65. Dolgin, E. CureVac COVID vaccine let-down spotlights mRNA design challenges. Nature 594, 483 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  66. Karijolich, J. & Yu, Y. T. Converting nonsense codons into sense codons by targeted pseudouridylation. Nature 474, 395–398 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Karijolich, J., Yi, C. & Yu, Y. T. Transcriptome-wide dynamics of RNA pseudouridylation. Nat. Rev. Mol. Cell Biol. 16, 581–585 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Song, J. & Yi, C. Reading chemical modifications in the transcriptome. J. Mol. Biol. 432, 1824–1839 (2019).

    Article  PubMed  Google Scholar 

  69. Kiss, T., Fayet-Lebaron, E. & Jády, B. E. Box H/ACA small ribonucleoproteins. Mol. Cell 37, 597–606 (2010).

    Article  PubMed  Google Scholar 

  70. Angrisani, A., Turano, M., Paparo, L., Di Mauro, C. & Furia, M. A new human dyskerin isoform with cytoplasmic localization. Biochim. Biophys. Acta 1810, 1361–1368 (2011).

    Article  CAS  PubMed  Google Scholar 

  71. Belli, V. et al. A dynamic link between H/ACA snoRNP components and cytoplasmic stress granules. Biochim. Biophys. Acta Mol. Cell. Res. 1866, 118529 (2019).

    Article  CAS  PubMed  Google Scholar 

  72. Dabrowski, M., Bukowy-Bieryllo, Z. & Zietkiewicz, E. Translational readthrough potential of natural termination codons in eucaryotes—the impact of RNA sequence. RNA Biol. 12, 950–958 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Welch, E. M. et al. PTC124 targets genetic disorders caused by nonsense mutations. Nature 447, 87–91 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  74. Mort, M., Ivanov, D., Cooper, D. N. & Chuzhanova, N. A. A meta-analysis of nonsense mutations causing human genetic disease. Hum. Mutat. 29, 1037–1047 (2008).

    Article  CAS  PubMed  Google Scholar 

  75. Adachi, H. & Yu, Y. T. Pseudouridine-mediated stop codon readthrough in S. cerevisiae is sequence context-independent. RNA 26, 1247–1256 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Dabrowski, M., Bukowy-Bieryllo, Z. & Zietkiewicz, E. Advances in therapeutic use of a drug-stimulated translational readthrough of premature termination codons. Mol. Med. 24, 25 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Roy, B. et al. Ataluren stimulates ribosomal selection of near-cognate tRNAs to promote nonsense suppression. Proc. Natl Acad. Sci. USA 113, 12508–12513 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  78. Charlesworth, C. T. et al. Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nat. Med. 25, 249–254 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tang, X. E., Tan, S. X., Hoon, S. & Yeo, G. W. Pre-existing adaptive immunity to the RNA-editing enzyme Cas13d in humans. Nat. Med. 28, 1372–1376 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Teoh, P. J. et al. Aberrant hyperediting of the myeloma transcriptome by ADAR1 confers oncogenicity and is a marker of poor prognosis. Blood 132, 1304–1317 (2018).

    Article  CAS  PubMed  Google Scholar 

  81. Dai, Q. et al. Quantitative sequencing using BID-seq uncovers abundant pseudouridines in mammalian mRNA at base resolution. Nat. Biotechnol. 41, 344–354 (2023).

    Article  CAS  PubMed  Google Scholar 

  82. Small, I. D., Schallenberg-Rüdinger, M., Takenaka, M., Mireau, H. & Ostersetzer-Biran, O. Plant organellar RNA editing: what 30 years of research has revealed. Plant J. 101, 1040–1056 (2020).

    Article  CAS  PubMed  Google Scholar 

  83. Yin, Q. F. et al. Long noncoding RNAs with snoRNA ends. Mol. Cell 48, 219–230 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. Klimek-Tomczak, K. et al. Editing of hnRNP K protein mRNA in colorectal adenocarcinoma and surrounding mucosa. Br. J. Cancer 94, 586–592 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Niavarani, A. et al. APOBEC3A is implicated in a novel class of G-to-A mRNA editing in WT1 transcripts. PLoS ONE 10, e0120089 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Li, X. et al. Base-resolution mapping reveals distinct m1A methylome in nuclear- and mitochondrial-encoded transcripts. Mol. Cell 68, 993–1005 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  87. Guo, J. & Niu, W. Genetic code expansion through quadruplet codon decoding. J. Mol. Biol. 434, 167346 (2022).

    Article  CAS  PubMed  Google Scholar 

  88. Roundtree, I. A., Evans, M. E., Pan, T. & He, C. Dynamic RNA modifications in gene expression regulation. Cell 169, 1187–1200 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  90. Rauch, S., Jones, K. A. & Dickinson, B. C. Small molecule-inducible RNA-targeting systems for temporal control of RNA regulation. ACS Cent. Sci. 6, 1987–1996 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program (grant no. 2019YFA0802201 to C.Y.), the National Natural Science Foundation of China (grant nos. 92153303 and 21825701 to C.Y.), the Ministry of Agriculture and Rural Affairs of China (grant no. NK2022010102 to C.Y.) and funding from the Beijing Municipal Science & Technology Commission (grant no. Z231100002723005 to C.Y.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengqi Yi.

Ethics declarations

Competing interests

C.Y. is a founder of Modit therapeutics. J.S. and Y.Z. declare no competing interests.

Peer review

Peer review information

Nature Chemical Biology thanks Bryan Dickinson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1 and 2.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, J., Zhuang, Y. & Yi, C. Programmable RNA base editing via targeted modifications. Nat Chem Biol 20, 277–290 (2024). https://doi.org/10.1038/s41589-023-01531-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-023-01531-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing