Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structures of the human cholecystokinin receptors bound to agonists and antagonists

Abstract

Cholecystokinin receptors, CCKAR and CCKBR, are important neurointestinal peptide hormone receptors and play a vital role in food intake and appetite regulation. Here, we report three crystal structures of the human CCKAR in complex with different ligands, including one peptide agonist and two small-molecule antagonists, as well as two cryo-electron microscopy structures of CCKBR–gastrin in complex with Gi2 and Gq, respectively. These structures reveal the recognition pattern of different ligand types and the molecular basis of peptide selectivity in the cholecystokinin receptor family. By comparing receptor structures in different conformational states, a stepwise activation process of cholecystokinin receptors is proposed. Combined with pharmacological data, our results provide atomic details for differential ligand recognition and receptor activation mechanisms. These insights will facilitate the discovery of potential therapeutics targeting cholecystokinin receptors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overall structures of the CCKAR and CCKBR.
Fig. 2: Small-molecule ligand-binding pocket of CCKRs.
Fig. 3: Comparison of peptide binding in CCKRs.
Fig. 4: Activation process of CCKAR.

Similar content being viewed by others

Data availability

Atomic coordinates for the structures of CCKAR–lintitript, CCKAR–devazepide and CCKAR–NN9056 have been deposited in the RCSB PDB under accession codes 7F8U, 7F8Y and 7F8X. Atomic coordinates and cryo-EM density maps for the structures of inactive CCKBR–gastrin-Gi and CCKBR–gastrin-Gq have been deposited in the RCSB Protein Data Bank (PDB) under accession codes 7F8V and 7F8W, and the Electron Microscopy Data Bank (EMDB) under accession codes EMD-31493 and EMD-31494.

References

  1. Johnsen, A. H. Phylogeny of the cholecystokinin/gastrin family. Front. Neuroendocrinol. 19, 73–99 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Rehfeld, J. F., Friis-Hansen, L., Goetze, J. P. & Hansen, T. V. O. The biology of cholecystokinin and gastrin peptides. Curr. Top. Med. Chem. 7, 1154–1165 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Deschenes, R. J. et al. Cloning and sequence analysis of a cDNA encoding rat preprocholecystokinin. Proc. Natl Acad. Sci. USA 81, 726–730 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rehfeld, J. F. Cholecystokinin–from local gut hormone to ubiquitous messenger. Front Endocrinol. (Lausanne) 8, 47 (2017).

    Article  Google Scholar 

  5. Schubert, M. L. & Rehfeld, J. F. Gastric peptides–gastrin and somatostatin. Compr. Physiol. 10, 197–228 (2020).

    Google Scholar 

  6. Wank, S. A. Cholecystokinin receptors. Am. J. Physiol. 269, G628–G646 (1995).

    CAS  PubMed  Google Scholar 

  7. Dufresne, M., Seva, C. & Fourmy, D. Cholecystokinin and gastrin receptors. Physiol. Rev. 86, 805–847 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Foucaud, M. et al. Insights into the binding and activation sites of the receptors for cholecystokinin and gastrin. Regul. Pept. 145, 17–23 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Rehfeld, J. F. Gastrointestinal hormones and their targets. Adv. Exp. Med. Biol. 817, 157–175 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Scemama, J. L. et al. Cck and gastrin inhibit adenylate-cyclase activity through a pertussis toxin-sensitive mechanism in the tumoral rat pancreatic acinar cell-line Ar 4-2j. FEBS Lett. 242, 61–64 (1988).

    Article  CAS  PubMed  Google Scholar 

  11. Yassin, R. R. & Abrams, J. T. Gastrin induces IP3 formation through phospholipase C-gamma 1 and pp60(c-src) kinase. Peptides 19, 47–55 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Ritter, R. C., Covasa, M. & Matson, C. A. Cholecystokinin: proofs and prospects for involvement in control of food intake and body weight. Neuropeptides 33, 387–399 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Crawley, J. N. & Corwin, R. L. Biological actions of cholecystokinin. Peptides 15, 731–755 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Noble, F. & Roques, B. P. CCK-B receptor: chemistry, molecular biology, biochemistry and pharmacology. Prog. Neurobiol. 58, 349–379 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Irwin, N., Hunter, K., Montgomery, I. A. & Flatt, P. R. Comparison of independent and combined metabolic effects of chronic treatment with (pGlu-Gln)-CCK-8 and long-acting GLP-1 and GIP mimetics in high fat-fed mice. Diabetes Obes. Metab. 15, 650–659 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Trevaskis, J. L. et al. Synergistic metabolic benefits of an exenatide analogue and cholecystokinin in diet-induced obese and leptin-deficient rodents. Diabetes Obes. Metab. 17, 61–73 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Evans, B. E. et al. Design of potent, orally effective, nonpeptidal antagonists of the peptide hormone cholecystokinin. Proc. Natl Acad. Sci. USA 83, 4918–4922 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gully, D. et al. Peripheral biological activity of SR 27897: a new potent non-peptide antagonist of CCKA receptors. Eur. J. Pharmacol. 232, 13–19 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Sensfuss, U. et al. Structure–activity relationships and characterization of highly selective, long-acting, peptide-based cholecystokinin 1 receptor agonists. J. Med. Chem. 62, 1407–1419 (2019).

    Article  PubMed  Google Scholar 

  20. Christoffersen, B. O. et al. Long-acting CCK analogue NN9056 lowers food intake and body weight in obese Gottingen Minipigs. Int. J. Obes. 44, 447–456 (2020).

    Article  CAS  Google Scholar 

  21. Orikawa, Y. et al. Z-360, a novel therapeutic agent for pancreatic cancer, prevents up-regulation of ephrin B1 gene expression and phosphorylation of NR2B via suppression of interleukin-1 beta production in a cancer-induced pain model in mice. Mol. Pain 6, 72 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chau, I. et al. Gastrazole (JB95008), a novel CCK2/gastrin receptor antagonist, in the treatment of advanced pancreatic cancer: results from two randomised controlled trials. Br. J. Cancer 94, 1107–1115 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lu, L., Zhang, B., Liu, Z. & Zhang, Z. Reactivation of cocaine conditioned place preference induced by stress is reversed by cholecystokinin-B receptors antagonist in rats. Brain Res. 954, 132–140 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Huppi, K., Siwarski, D., Pisegna, J. R. & Wank, S. Chromosomal localization of the gastric and brain receptors for cholecystokinin (Cckar and Cckbr) in human and mouse. Genomics 25, 727–729 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Zhou, Q. T. et al. Common activation mechanism of class A GPCRs. eLife 8, e50279 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  26. White, J. F. et al. Structure of the agonist-bound neurotensin receptor. Nature 490, 508–550 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shihoya, W. et al. Activation mechanism of endothelin ETB receptor by endothelin-1. Nature 537, 363–368 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Chen, S. H. et al. Human substance P receptor binding mode of the antagonist drug aprepitant by NMR and crystallography. Nat. Commun. 10, 638 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhuang, Y. et al. Structure of formylpeptide receptor 2–Gi complex reveals insights into ligand recognition and signaling. Nat. Commun. 11, 885 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Krishna Kumar, K. et al. Structure of a signaling cannabinoid receptor 1–G protein complex. Cell 176, 448–458 e412 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Xing, C. et al. Cryo-EM structure of the human cannabinoid receptor CB2–Gi signaling complex. Cell 180, 645–654 e613 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hill, D. R. & Woodruff, G. N. Differentiation of central cholecystokinin receptor-binding sites using the nonpeptide antagonists Mk-329 and L-365,260. Brain Res. 526, 276–283 (1990).

    Article  CAS  PubMed  Google Scholar 

  33. Satoh, Y. et al. Studies on a novel, potent and orally effective cholecystokinin A antagonist, FK-480. Synthesis and structure–activity relationships of FK-480 and related compounds. Chem. Pharm. Bull. (Tokyo) 42, 2071–2083 (1994).

    Article  CAS  Google Scholar 

  34. Cawston, E. E. et al. Molecular basis for binding and subtype selectivity of 1,4-benzodiazepine antagonist ligands of the cholecystokinin receptor. J. Biol. Chem. 287, 18618–18635 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Saito, A., Sankaran, H., Goldfine, I. D. & Williams, J. A. Cholecystokinin receptors in the brain: characterization and distribution. Science 208, 1155–1156 (1980).

    Article  CAS  PubMed  Google Scholar 

  36. Gigoux, V. et al. Met-195 of the cholecystokinin-A receptor interacts with the sulfated tyrosine of cholecystokinin and is crucial for receptor transition to high affinity state. J. Biol. Chem. 273, 14380–14386 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Fourniezaluski, M. C. et al. Conformational analysis and structural activity relationships of cholecystokinin peptides. Ann. N. Y. Acad. Sci. 448, 598–600 (1985).

    Article  CAS  Google Scholar 

  38. Holladay, M. W. et al. Synthesis and biological activity of CCK heptapeptide analogues. Effects of conformational constraints and standard modifications on receptor subtype selectivity, functional activity in vitro, and appetite suppression in vivo. J. Med. Chem. 35, 2919–2928 (1992).

    Article  CAS  PubMed  Google Scholar 

  39. Huang, S. C. et al. Importance of sulfation of gastrin or cholecystokinin (CCK) on affinity for gastrin and CCK receptors. Peptides 10, 785–789 (1989).

    Article  CAS  PubMed  Google Scholar 

  40. Silvente-Poirot, S., Dufresne, M., Vaysse, N. & Fourmy, D. The peripheral cholecystokinin receptors. Eur. J. Biochem. 215, 513–529 (1993).

    Article  CAS  PubMed  Google Scholar 

  41. Laskowski, R. A. & Swindells, M. B. LigPlot+: multiple ligand–protein interaction diagrams for drug discovery. J. Chem. Inf. Model. 51, 2778–2786 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Maeda, S. et al. Development of an antibody fragment that stabilizes GPCR/G-protein complexes. Nat. Commun. 9, 3712 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Draper-Joyce, C. J. et al. Structure of the adenosine-bound human adenosine A1 receptor–Gi complex. Nature 558, 559–563 (2018).

    Article  CAS  PubMed  Google Scholar 

  44. Kabsch, W. Xds. Acta Crystallogr. D. Biol. Crystallogr. 66, 125–132 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Adams, P. D. et al. The Phenix software for automated determination of macromolecular structures. Methods 55, 94–106 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D. Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  PubMed  Google Scholar 

  48. Peisley, A. & Skiniotis, G. 2D projection analysis of GPCR complexes by negative stain electron microscopy. Methods Mol. Biol. 1335, 29–38 (2015).

    Article  PubMed  Google Scholar 

  49. Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).

    Article  PubMed  Google Scholar 

  50. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang, K. Gctf: real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kucukelbir, A., Sigworth, F. J. & Tagare, H. D. Quantifying the local resolution of cryo-EM density maps. Nat. Methods 11, 63–65 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Goddard, T. D. et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018).

    Article  CAS  PubMed  Google Scholar 

  55. Williams, C. J. et al. MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci. 27, 293–315 (2018).

    Article  CAS  PubMed  Google Scholar 

  56. Lee, J. et al. CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J. Chem. Theory Comput. 12, 405–413 (2016).

    Article  CAS  PubMed  Google Scholar 

  57. Klauda, J. B. et al. Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J. Phys. Chem. B 114, 7830–7843 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Vanommeslaeghe, K. et al. CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem. 31, 671–690 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Pronk, S. et al. GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29, 845–854 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Key R&D Programs of China 2018YFA0507000 (H.E.X., S.Z., M.-W.W., B.W. and Q. Zhao); CAS Strategic Priority Research Program XDB37030100 (B.W. and Q.Z.); the National Science Foundation of China grants 31825010 (B.W.), 31800621 (S.H.), 21704064 (Q. Zhou), 81773792 and 81973373 (D.Y.), 31770796 (Y.J.), 31971178 (S.Z.), 81872915 and 82073904 (M.-W.W.) and 81525024 (Q.Zhao); National Science and Technology Major Project of China – Key New Drug Creation and Manufacturing Program 2018ZX09735–001 (M.-W.W.) and 2018ZX09711002–002–005 (D.Y.); and Science and Technology Commission of Shanghai Municipality grant (18XD1404800). The synchrotron radiation experiments were performed at the BL41XU of SPring-8 with approval of the Japan Synchrotron Radiation Research Institute (Proposal no. 2019A2543, 2019B2543, 2019A2541 and 2019B2541). We thank the beam line staff members K. Hasegawa, N. Mizuno, T. Kawamura and H. Murakami of the BL41XU for help with X-ray data collection. The cryo-EM data were collected at the Cryo-Electron Microscopy Research Center, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences. The authors thank the staff at the SIMM Cryo-Electron Microscopy Research Center for their technical support.

Author information

Authors and Affiliations

Authors

Contributions

X.Z. optimized the construct, purified the CCKAR protein, performed crystallization trials, solved the structure, performed signaling assays and helped with manuscript preparation. C.H. optimized the construct, purified the CCKBR protein, performed crystallization trials, solved the structure, performed signaling assays and helped with manuscript preparation. M.W. processed the cryo-EM data and solved the structures of CCKBR. D.Y., W.F., A.D. and J.W. designed and performed the receptor binding and functional assays. Q. Zhou performed molecular dynamics simulation and docking studies, and helped with manuscript preparation. Y.Z. helped with signaling assay design and manuscript preparation. H.Z. collected X-ray diffraction data. X.C. helped with protein expression. Z.Y. participated in manuscript preperation. Y.J. solved the cryo-EM structures of CCKAR–G protein complexes. U.S. designed and synthesized the ligands. Q.T. asissited in the cryo-EM data collection. S.H. helped with structure determination. S.R.-R. helped with ligand selection and data analysis. H.E.X. helped with analysis of cryo-EM structures of CCKAR–G protein complexes and manuscript preparation. S.Z. oversaw molecular dynamics simulation and docking studies, and edited the manuscript. M.-W.W. oversaw the binding and signaling assays, and edited the manuscript. B.W. and Q. Zhao initiated the project, planned and supervised the research, and wrote the manuscript with inputs from all co-authors.

Corresponding authors

Correspondence to Suwen Zhao, Ming-Wei Wang, Beili Wu or Qiang Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Chemical Biology thanks Zhenhua Shao, Irina Tikhonova and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Structures of the ligands in the CCKAR and CCKBR complexes and molecular dynamic simulations.

a, Devazepide. b, Lintitript. c, NN9056. d, Gastrin-17. e, CCK-8. f, CCK-8ns.

Extended Data Fig. 2 CCKAR crystals and lattice packing.

ac, Crystals of CCKAR–T4L in complex with devazepide (a), lintitript (b) and NN9056 (c). d, Lattice packing of CCKAR–T4L–devazepide crystals with CCKAR depicted in green, T4L in grey and devazepide shown as spheres in blue. The main contacts contained nonpolar interactions among CCKAR molecules mediated by helices I and V and interactions between ECL2 and ECL3 of CCKAR and T4L. The packing patterns of CCKAR–T4L–lintitript and CCKAR–T4L–NN9056 are the same as CCKAR–T4L–devazepide.

Extended Data Fig. 3 Cryo-EM data processing of the CCKBR–gastrin-17–Gi2 and CCKBR–gastrin-17–Gq complexes.

a, Representative cryo-EM image and 2D averages of the CCKBR–gastrin-17–Gi2 complex. The cryo-EM results are repeated for three independent experiments. b, Representative cryo-EM image and 2D averages of CCKBR–gastrin-17–Gq complex. The cryo-EM results are repeated for three independent experiments. c, Workflow of cryo-EM data processing with cryo-EM map colored according to local resolution (Å) for the CCKBR–gastrin-17–Gi2 complex. d, Workflow of cryo-EM data processing with cryo-EM map colored according to local resolution (Å) for the CCKBR–gastrin-17–Gq complex. e, Gold-standard FSC curves and cross-validation of model to cryo-EM density map of CCKBR–gastrin-17–Gi2. FSC curve for the final model versus the final map, FSCwork curve, FSCfree curve and FSC curve are shown in black, red, blue and orange, respectively. f, Gold-standard FSC curves and cross-validation of model to cryo-EM density map of CCKBR–gastrin-17–GqiN. The curves are colored as the same as CCKBR–gastrin-17–Gi2.

Extended Data Fig. 4 Gi2 and Gq binding comparison in the CCKBR–gastrin-17 complexes.

a, Superposition of CCKBR–gastrin-17–Gi2 and CCKBR–gastrin-17–Gq complex structures. The structures are aligned based on receptor region. The CCKBRs are shown in bright-orange and tv_yellow cartoons for Gi2 and Gq complexes, respectively. The Gi2 trimers are shown in smudge, lime green and green cartoons, and the Gq trimers are shown in warm-pink, deep-salmon and salmon cartoons, respectively. Side view of Gi2 (b) and Gq (c) binding to the receptor from the same angle. The structures are colored according to panel (a).

Extended Data Fig. 5 Cut-view of orthosteric sites of CCKAR and CCKBR.

a, CCKAR–lintitript. b, CCKAR–devazepide. c, CCKAR–NN9056. d, CCKAR–CCK-8. e, CCKBR–gastrin-17.

Extended Data Fig. 6 Comparison of the CCKAR structures.

Extracellular (top), side (middle) and intracellular (bottom) views of agonist NN9056-bound (pale-yellow), antagonist-bound (pale-green for devazepide and wheat for lintitript), and both agonist and G protein bound CCKAR structures. G proteins are omitted for clarity. Conformational changes are indicated with black arrows.

Supplementary information

Supplementary Information

Supplementary Tables 1–6.

Reporting Summary

Supplementary Data 1

Statistical source data for Supplementary Information.

Supplementary Data 2

Statistical source data for Supplementary Information.

Supplementary Data 3

Statistical source data for Supplementary Information.

Supplementary Data 4

Statistical source data for Supplementary Information.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., He, C., Wang, M. et al. Structures of the human cholecystokinin receptors bound to agonists and antagonists. Nat Chem Biol 17, 1230–1237 (2021). https://doi.org/10.1038/s41589-021-00866-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-021-00866-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing