
Nature Biotechnology

nature biotechnology

https://doi.org/10.1038/s41587-023-02079-xBrief Communication

Disentanglement of single-cell data with 
biolord

Zoe Piran    1, Niv Cohen1, Yedid Hoshen1 & Mor Nitzan    1,2,3 

Biolord is a deep generative method for disentangling single-cell multi-omic 
data to known and unknown attributes, including spatial, temporal and 
disease states, used to reveal the decoupled biological signatures over 
diverse single-cell modalities and biological systems. By virtually shifting 
cells across states, biolord generates experimentally inaccessible samples, 
outperforming state-of-the-art methods in predictions of cellular response 
to unseen drugs and genetic perturbations. Biolord is available at https://
github.com/nitzanlab/biolord.

A cell’s gene expression profile simultaneously encodes information 
about multiple attributes, such as cell type, tissue of origin and differen-
tiation stage (Fig. 1a). Single-cell technologies can provide information 
about such expression profiles for cellular populations at single-cell 
resolution. Yet, it is still a major challenge to decode the measured gene 
expression, disentangling the processes from one another. A disentan-
gled representation can uncover the existence and characteristics of 
diverse biological processes, allowing the reconstruction of multiple 
attributes of cellular identity such as response to perturbations and 
infection progression. Earlier studies suggested using factor analysis1,2 
or non-negative matrix factorization3 to identify programs associated 
with different attributes. Recently, computational methods that spe-
cialize in disentanglement for a specific task were suggested; among 
the addressed tasks are decoupling perturbation response4–8, disen-
tangling group-specific attributes9 or out-of-distribution sampling 
of single-cell data10,11. However, these are either task-specific and do 
not address the general disentanglement problem, rely on linearity 
and independence assumptions, cannot integrate multiple types of 
information beyond the single-cell measurements or do not provide 
a generic reconstruction procedure.

In machine learning, disentanglement methods view the world 
as generated by an unknown forward process that maps the genera-
tive factors (attributes) into the observable data. For example, an 
image of a car is generated by several attributes such as model and 
pose. The objective of disentanglement is to invert this process, 
for example, mapping the car image into variables representing its 
model and pose. The disentangled representation can then be used 
for data manipulation, generating unseen combinations of model and 
pose. Analogously, in the biological setting, given labeled single-cell 
data, for example, cell type and age annotations (known attributes), 

a disentangled representation will decouple known attributes, cell 
type and age, from the unknown attributes. The unknown attributes 
correspond to a cell-specific signature, for example, related to batch 
effects, biological noise or unclassified biological processes. The disen-
tangled representation can be used for data generation, manipulation 
and deriving biological insight (for example, predicting the measured 
features of unobserved combinations of cell type and age or identifying 
driver genes of certain cell type or state).

Using recent advances in disentanglement from the computer 
vision field12,13, we present biolord (biological representation disen-
tanglement), a deep generative framework for learning disentangled 
representations in single-cell data (Methods). To disentangle single-cell 
data into its underlying attributes, we assume a training set consisting 
of single-cell measurements, each with partial supervision over a lim-
ited set of known attributes. For example, the known attributes may be 
cell-type labels, measurement time or perturbation values; attributes 
may be categorical (discrete; for example, cell type) or ordered (con-
tinuous; for example, age). Given the partial supervision, biolord finds 
a disentangled latent space, consisting of embeddings for each known 
attribute and an embedding for the remaining unknown attributes in 
the data (Fig. 1b). On top of these, biolord learns a generator, which 
maps the representations of the known and unknown attributes into 
observable single-cell data. It can, in turn, use the disentangled latent 
space to predict single-cell measurements for different cell states 
across variations in internal or external conditions. Successful dis-
entanglement is obtained by inducing information constraints; the 
model’s loss function attempts to maximize the accuracy of the recon-
struction (enforcing completeness) while minimizing the information 
encoded in the unknown attributes (limiting its capacity). We modify 
the original framework, dedicated to image analysis12,13, to account for 
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age and cell-type attributes (Supplementary Notes 1 and 2 and  
Supplementary Figs. 1–3). Moreover, we can associate measured 
features with a cell state. At last, biolord can be applied to a par-
tially labeled dataset and used to obtain labeling over the entire 
dataset (attribute classification). We apply this to a spatiotemporal  
Plasmodium infection atlas to complete the missing classification of a 
distinct state (initially provided only for the latest time point), thereby 
allowing us to study the transient trajectory toward the infected state. 
We implemented biolord using the scvi-tools library14 and made it 
available at https://github.com/nitzanlab/biolord.

Biolord accurately predicts cellular perturbation 
response
Accurate prediction of molecular responses to drug or genetic per-
turbations is central to our understanding of cellular behavior and 
translational medicine. Hence, many computational tools are dedicated 

the features of single-cell data through architecture and design choices 
(Fig. 1b and Supplementary Note 1; Methods). Furthermore, we present 
an extension to the framework, biolord-classify, which can be applied to 
datasets with partially labeled attributes and provides a classification 
for missing labels (Methods; Extended Data Fig. 1).

The generality of the framework allows its application to diverse 
biological settings that can be studied with a rich set of downstream 
analysis tasks (Fig. 1c; Methods). Using the generative aspect of the 
model, we can make counterfactual predictions, predicting unseen 
cellular states and performing data manipulation. Applied for the 
prediction of responses to unseen drugs or gene perturbations, biolord 
outperforms state-of-the-art methods dedicated to this task. The 
decomposed latent space representation allows studying the differ-
ent attributes and their inner structure independently. For exam-
ple, this representation of the human fetal chromatin atlas revealed 
the relationships between tissue, sample estimated post-conceptual 
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Fig. 1 | The biolord framework for disentanglement of known and unknown 
attributes. a, Single-cell data encode multiple attributes of cellular identity. b, 
Schematic overview of the biolord model; given single-cell measurements and 
labels for observed attributes, biolord encodes each attribute separately along 
with a single encoding of the unknown attributes. These define a decomposed 
latent space that is the input for the generative module providing measurement 
predictions. c, Biolord can be used for multiple downstream tasks. From left 
to right—latent space representation: the decomposed latent space can be 
used to obtain insights into the underlying structure of individual attributes. 
Counterfactual predictions: given a control cell and unseen (target) labels as 
input, biolord can predict the gene expression of the unseen cellular states and 
study the changes in gene expression that correspond to a manipulation of a 
cell’s attribute. Association of features to state: by manipulating the known 
attributes, biolord can identify measured features associated with the different 
possible states, for example, by manipulating control cells to an infected state 

and identifying genes associated with infection. Attribute classification: using 
the semi-supervised biolord architecture, cells can be labeled with missing 
attributes. d, Schematic overview for obtaining counterfactual predictions. We 
take as input measurements of a set of reference cells with varying assignment(s) 
to the attribute over which predictions are made. For example, we take as 
input control cells along with multiple drugs that can be applied to generate 
counterfactual predictions as to how the gene expression profiles of these 
cells would have been shifted given each drug (Methods). e, An evaluation 
of biolord’s performance on predictions of unseen drugs over the sci-Plex 3 
dataset that includes ~650,000 single-cell transcriptomes from three cancer cell 
lines exposed to 188 compounds16. Results are reported for the 10 μM dosage, 
considered to be the strictest setting since measurements show the largest 
deviation from control state, which makes them hardest to predict. Mean and 
variance are reported over ten different random seed initializations of each 
model. Figure panels a–d are created with BioRender.com.
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to this task5–8,15 (Supplementary Note 3). Among these are chemCPA5, 
for drug response prediction, GEARS6 for genetic perturbations and 
PerturbNet8, which addresses both (Supplementary Note 3). Cellular 
response prediction can be framed as a disentanglement task, aimed 
at decoupling perturbation response from the underlying cell state, 
and therefore can be approached by biolord. For the drug response 
prediction task, we use the sci-Plex 3 dataset that includes ~650,000 
single-cell transcriptomes from three cancer cell lines exposed to 188 
compounds at four different dosages and control samples16 (Supple-
mentary Fig. 4).

To allow generalization to unseen drugs, we take advantage of exist-
ing prior knowledge and obtain chemically informed embedding of the 
drugs using RDKit features5,17. For each cell, the features of each drug, 
alongside its dosage, cell line and corresponding scRNA-seq measure-
ments, are given as input to biolord (Methods; Supplementary Note 
3). Biolord’s learned latent representation is biologically informative; 
it reveals drug organization according to known corresponding path-
ways, and better captures underlying drug organization, relative to the 
chemically informed RDKit features used as input, both qualitatively 
and quantitatively (adjusted Rand index RDKit: 0.03, biolord: 0.16; 
Supplementary Fig. 4). To further evaluate the quality of biolord’s drugs 
representation, we employ the uncertainty measure suggested by ref. 
5, assessing the ability to predict the drug’s pathway from the k-nearest 
neighbor (k-NN) graph of the embedding space (Methods). Compared 
to RDKit, biolord’s uncertainty measure is found to be lower on average 
and more concentrated (distribution evaluated over all drugs; RDKit: 
0.32 ± 0.008, biolord: 0.19 ± 0.005; Supplementary Fig. 4).

We use the trained biolord model to obtain counterfactual predic-
tions for nine unseen drugs (reported among the most effective drugs 
in sci-Plex 3 data16, following the choice suggested in ref. 5). Specifically, 
we generate the expression prediction for control cells with labels 
of unseen compounds. Performance is evaluated using the r2 score 
between the real measurements of cells exposed to the unseen com-
pounds and the counterfactual predictions (Fig. 1d; Methods). Biolord 
outperforms a naive baseline (comparing real measurements of unseen 
compounds to the control measurements), as well as state-of-the-art 
models, chemCPA and chemCPA-pre (Fig. 1e, Supplementary Fig. 4 and 
Supplementary Note 3). Although not provided with the additional 
information used by chemCPA-pre, biolord provides more accurate pre-
dictions (mean r2; chemCPA-pre: 0.51 ± 0.0062, biolord: 0.76 ± 0.0005). 
Biolord also outperforms PerturbNet8 (Supplementary Note 3) and is 
robust to data subsampling, retaining high prediction accuracy (mean 
r2: 0.63 ± 0.0003) over 10% of the data (Supplementary Fig. 5).

To demonstrate biolord’s application to the genetic perturbation 
setting, we consider two genetic perturbation screens that use the 
Perturb-seq assay18. The first is a dataset consisting of 81 one-gene 
perturbations suggested by ref. 19, and the second is a dataset sug-
gested in ref. 20 that includes 131 two-gene perturbations and 105 
one-gene perturbations. In this setting, to allow for generalization, 
we use features that are based on edges in a GO term graph defined 
over genetic perturbations as defined in ref. 6 (Methods). We show 
that biolord outperforms GEARS in the prediction of unseen one-gene 
perturbation (normalized mean squared error, one of one gene unseen; 
GEARS: 0.47; biolord: 0.37) and two-gene perturbations (normalized 
mean squared error, two of two genes unseen; GEARS: 0.53; biolord: 
0.50, one of one gene unseen; GEARS: 0.39; biolord: 0.35, zero of two 
genes unseen; GEARS: 0.28; biolord: 0.20; Methods; Supplementary 
Note 3 and Extended Data Fig. 2).

Counterfactual predictions expose infection 
gene programs
The collection of spatiotemporal single-cell atlases is continuously 
expanding, each capturing a complex biological setting. Among the 
computational challenges is disentangling the diverse attributes, 
thereby associating the measured features with distinct cell states. 

Focusing on a spatiotemporal single-cell atlas of Plasmodium infection 
progression in the mouse liver21, we show that biolord can obtain a dis-
entangled representation that allows for uncovering infection-related 
attributes. Single-cell data, including host and parasite transcriptome, 
were collected from infected mice at five time points post-infection (2, 
12, 24, 30 and 36 h post-infection (hpi)), as well as from control mice, 
not exposed to the parasite (control; Fig. 2a and Extended Data Fig. 3). 
To classify hepatocytes as infected or uninfected, the authors relied 
on GFP content in the parasite transcriptome21 (Fig. 2b). Using biolord, 
we aimed at decoupling the changes in gene expression in the host 
hepatocytes induced by the infection from the variability rooted in 
previously established spatiotemporal processes22,23—either in spatial 
zonation across liver lobules radial axis or in temporal variation along 
the time of day (Fig. 2a and Extended Data Fig. 3).

We train a biolord model with hepatocytes from injected mice 
(infected and uninfected) and control mice, along with additional 
known attributes; namely providing as input the host transcriptome, 
status classification (infected/uninfected/control), spatial zone (peri-
portal/pericentral) and time (2, 12, 24, 30, 36 hpi or control; Fig. 2c 
and Supplementary Note 4; Methods). The model is then used to 
make counterfactual predictions over the population of control 
cells coupled to infected status. Since the status (infected) is the 
only attribute modified in the input to the biolord model, for a given 
cell, observed changes in gene expression are driven only by this 
attribute (Methods).

To assess these infection-related changes at the level of individ-
ual cells, we use a dependent t test for paired samples. The pairs are 
defined as the original observed expression and the infected state 
counterfactual prediction. We performed the test for each gene and 
used the results as input for gene set enrichment analysis (GSEA), 
which revealed an increase in the expression of genes associated with 
immune and stress pathways in infected hepatocytes (Fig. 2d). These 
findings are in accordance with previous reports21. However, in the 
original analysis, the comparisons between infected and uninfected 
hepatocytes had to be done for cells that were matched in terms of 
spatial lobule coordinates and sampling time. As described above, 
using biolord’s counterfactual predictions over control cells allowed 
for global integrated analysis.

Exposing transient trajectories toward infection 
states
So far, we have assumed full supervision over known attributes (for a 
known attribute, all cells are labeled); however, this is not always the 
case. Often only a subset of the cells is annotated. In such cases, we 
can leverage these partial labels to classify the remaining cells using 
biolord-classify, a biolord model coupled with a classifier for each 
attribute, used for the prediction of missing labels (Extended Data  
Fig. 1 and Supplementary Note 1; Methods). The spatiotemporal 
single-cell atlas for Plasmodium infection21, presented above, provides 
an example of such a setting. Afriat et al.21 identified a subpopulation 
of cells that shows a pattern of vacuole breakdown, termed ‘abortive 
hepatocytes’. In the scRNA-seq data, this population was identified 
only at the latest time point (36 hpi; Fig. 2e and Extended Data Fig. 4). 
However, in analyzing smFISH images, the existence of this population 
was verified as early as 24 hpi21. This motivated to use biolord-classify to 
classify abortive cells within the scRNA-seq data at earlier time points 
or, in other words, identify the cells that would have progressed to 
become identifiably abortive at 36 hpi.

We train a biolord-classify model over hepatocytes at late time 
points (24, 30 and 36 hpi) using the host transcriptome along with 
partial state classification and complete supervision over spatial zone 
and time as inputs (Supplementary Notes 1 and 4). The biolord-classify 
model is used to label cells at earlier time points (24 and 30 hpi) as 
abortive or productive, thus predicting a temporally extended abortive 
population (Fig. 2f; Methods).

http://www.nature.com/naturebiotechnology
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Fig. 2 | Recovering transient states by classifying unknown cell states using 
biolord. a,b, UMAPs of the single-cell atlas of the Plasmodium liver stage21. Cells 
are colored by time after infection (a) and reported classification to infected/
uninfected and control cells (b). c, UMAP of the original control cells with their 
counterfactual predictions (c-pred.) for infected/uninfected state; cells are 
colored by the corresponding state. d, GSEA of genes found to be associated with 
the infected state based on biolord’s counterfactual predictions of the infection 
state in control cells. H denotes Hallmark gene sets; K denotes KEGG gene sets 
(Padj is calculated using a permutation test with Benjamini–Hochberg correction). 
e,f, UMAPs of the infected cells from intermediate to late time points in the 
single-cell atlas of the Plasmodium liver stage21. Cells are colored by the reported 
abortive/productive classification of cells at 36 hpi (e) and biolord’s classification 
of all infected cells as abortive/productive (f). The inset shows the fraction 

of abortive cells at each time point (24 hpi, 0.016; 30 hpi, 0.057 and 36 hpi, 
0.215). g, Box plot comparing abortive and productive cells shows that abortive 
hepatocytes retain a smaller fraction of Plasmodium transcriptome across all 
time points. Middle line in box plot, median; box boundary, IQR; whiskers,  
1.5× IQR; minimum and maximum, not indicated in the box plot; gray dots, 
points beyond the minimum or maximum whisker (Mann–Whitney–Wilcoxon 
test two-sided with Benjamini–Hochberg correction: 24 and 30 hpi (n = 1,823 
cells across two states); biolord-classify < 0.0001, 36 hpi (n = 1,083 cells across 
two states); original < 0.0001; ****P ≤ 0.0001). h, Abortive cells present an over-
expression of interferon response as demonstrated by an increase in interferon 
regulatory factors and response-associated genes. The dendrogram ordering of 
the groups shows a trajectory from productive to abortive cells ordered by hpi. 
IQR, interquartile range.
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The extended abortive population preserves host gene expres-
sion trends observed in the original 36 hpi population. Namely, rep-
resentative genes found to be upregulated in abortive hepatocytes at 
36 hpi21 are statistically significantly upregulated in predicted abortive 
cells across all time points (Extended Data Fig. 5). Furthermore, cells 
predicted to be abortive by biolord show reduced levels of Plasmo-
dium transcripts and appear at earlier phases of Plasmodium-based 
pseudotime, consistent with findings regarding the original abortive 
population at 36 hpi21, although these attributes were not used to train 
the biolord-classify model (Fig. 2g and Extended Data Fig. 5; Methods). 
Additionally, we recover the periportal bias of the abortive population21 
in the newly classified abortive cells (Extended Data Fig. 5).

The increased IFN response across all time points, demonstrated 
by the over-expression of interferon regulatory factors (Irf3/Irf7/Irf9), 
which regulate the transcription of type I IFNs, and an increase in 
IFNα, IFNγ genes demonstrated by the extended abortive popula-
tion are consistent with the hypothesis linking the abortive state to 
interferon-mediated innate immune response induced by the Plas-
modium liver stage (Fig. 2h)21,24,25. Furthermore, biolord captures a 
transient trajectory of cellular states, showing a gradual increase in 
IFN signal across time within the abortive subpopulation (Fig. 2h).

Discussion
To summarize, we demonstrated biolord’s application to a wide  
variety of tasks, considering diverse single-cell modalities and bio-
logical systems, showcasing the range of insights such disentangled 
representations can provide.

While here we focused on disentangled representations with respect 
to known attributes, an intriguing follow-up direction is to study the 
representation of unknown attributes. In addition, similar to other dis-
entanglement methods, it is unclear what is the desired outcome when 
attributes are correlated. This will not adversely affect the result when 
aiming to predict previously seen combinations (for example, if measure-
ments of cell type X in tissue Y are provided). However, predictions over 
unseen combinations may yield unpredictable results, which is a known 
limitation of neural networks. With that, by providing a decomposed 
latent space, biolord allows extracting the underlying structure of each 
biological attribute independently, mitigating the above limitations. At 
last, as with any deep generative framework, biolord suffers from the 
lack of direct interpretability. We overcome this by suggesting various 
downstream analysis tools, using both the decoupled latent embedding 
and the generative model, providing biological insight and interpret-
ability in feature (for example, gene expression) space.

To conclude, biolord provides a step toward decoupling cellular 
identities encoded in single-cell data. It elucidates the effects of the 
different components on the overall observed expression, thereby 
providing new insights and better utilization of multi-omic data.

Online content
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maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
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Methods
Latent optimization as an inductive bias in disentanglement
Latent optimization is a critical component of our approach. Typical 
representation disentanglement approaches use an encoder to map the 
original data samples into latent codes. This is often called amortized 
inference. While having an encoder network to map samples to codes 
is convenient, Gabbay and Hoshen12 showed that this approach may 
achieve subpar results. The reason is that at the beginning of training, 
an encoder (which is randomly initialized) maps all sample attributes 
to each latent code, both known and unknown. While the loss function 
encourages disentanglement (removal of the known attribute), the 
random initialization of the encoder causes the optimization to begin 
from a perfectly entangled state. Later training iterations struggle to 
remove this entanglement entirely.

In contrast, randomly initialized latent codes trivially do not con-
tain any information on known or unknown attributes. While training, 
the latent code corresponding to each sample becomes more informa-
tive over the unknown attribute, while the disentanglement objectives 
ensure that it does not gain information over the known attribute. 
Intuitively, preventing the gain of unwanted information is easier 
than losing existing information. To conclude, latent optimization 
helps achieve more disentangled latent codes by providing a better 
initialization for the learning process.

It is important to note that the results obtained in ref. 12 directly 
apply to the biological setting presented here. As detailed above, the 
challenge, which is resolved by the latent optimization, is with respect 
to the labeled attributes. As these are the labels provided along with the 
sample (image or single-cell measurements), they are identical in both 
settings. Hence, the latent optimization allows us to obtain meaningful 
latent codes with respect to the target attributes.

The biolord model
Biolord is a deep learning generative framework, composed of multiple 
modules that are jointly optimized. The input to biolord is a dataset of 
D = [(xc, yc)]

n
c=1, where n is the number of cells. For each cell c, xc ∈ ℝM  

stands for the M measured features (for example, a vector of gene 
expression counts or peak counts from M genes), and yc is a set of size 
K representing the known cell attributes, for example, cell-type label, 
tissue of origin or age. As we elaborate below, within yc, we make a 
distinction between categorical and ordered attributes when con-
structing its corresponding latent space. In accordance, each of the K 
elements in the set yc may be of a different dimension. Given the input 
dataset D, the biolord pipeline consists of two main components, 
defined and trained simultaneously (construction details are provided 
in the following subsections and Supplementary Note 1):

	1.	 Decomposed latent space—for each known attribute, a dedi-
cated subnetwork is constructed. The architecture of each 
subnetwork is chosen based on the attributes’ type (categorical 
or ordered), and the user can modify additional hyperparam-
eters. We denote zy as the output of each subnetwork, which is 
the latent space corresponding to an attribute (categorical or 
ordered) in yc, and zu as the latent space of unknown attributes 
(Fig. 1b).

	2.	 Generative module—the generator G takes the concatenated 
decomposed latent space as input and outputs a prediction for 
the measured features.

It is important to note that the optimization of the above, the 
decomposed latent space and the generative prediction, is done jointly, 
such that the embeddings in the decomposed latent space are opti-
mized with respect to the reconstruction error of the generator.

Known attributes latent space. Given the known attribute set, yc, a 
dedicated subnetwork is constructed for each of the K attributes to 
represent its corresponding latent space. Here we make a distinction 

between categorical attributes, where similar cells share class labels, 
and ordered attributes, in which distances between the attribute’s 
features encode similarity. In our definition of ordered attributes, we 
consider continuous variables as well as categorical ordinal variables, 
as the important aspect is that attribute’s features contain structural 
information. Furthermore, measured categorical ordinal variables 
(such as age) often represent a sample of continuous variables. With 
this, we construct the different subnetworks as follows:

•	 Categorical attribute subnetworks—these are defined using the 
embedding module such that the latent code, zy, is shared between 
all cells belonging to the same label. The embeddings are opti-
mized directly, namely applying latent optimization through the 
objective function of the complete model.

•	 Ordered attribute subnetworks—to use the structure of  
each of the ordered attributes, we use encoders; multilayer per-
ceptrons (MLPs) with default values of depth = 2, width = 256. The 
MLPs map the input features to a corresponding latent space, zy, 
which is optimized using the objective function of the complete 
model.

Unknown attributes latent embedding. We learn the unknown attrib-
utes’ representation by optimizing per-sample embeddings directly. 
We use a regularized embedding subnetwork, an embedding module 
to which Gaussian noise, η, a random variable η ∼ 𝒩𝒩(0,σ2I ) , with a  
fixed variance value σ, is added (Supplementary Note 1). The output is 
a unique latent code, zu, for each cell, independent of gene expression 
or known attributes, optimized during training using latent 
optimization.

With that, optimizing a unique code for each cell may hinder our 
disentanglement efforts; the model may encode the entire expression 
information with the latent code of unknown attributes and ignore the 
attribute-specific encoding. Following Gabbay and Hoshen12, to ensure 
that known attribute information does not leak into the representation 
of the unknown attributes, we regularize it into two manners. First, we 
introduce the additive Gaussian noise to the embeddings, and second, 
we add an activation penalty term to the loss, limiting the magnitude 
of the embedding, thus inducing the minimality loss term,

ℒmin = λ‖zu‖
2,

where λ is a hyperparameter weighting this term. Together, these 
enforce the minimality of shared information between the representa-
tion of unknown attributes and known attributes. That is, the represen-
tation of unknown attributes is optimized to minimize the information 
it encompasses regarding known attributes.

Generator module. The generator G is constructed as a decoder 
network, parameterized by θ, which takes as input the concatenated 
decomposed latent space, and outputs a parametrization of the expres-
sion distribution of the measured features (given by the mean and 
variance),

P = Gθ ({zy}
K
y=1, zu + η) .

Depending on the data provided as input to the model, preproc-
essed log-normalized data, raw counts or peaks, the distribution,  
P, can follow a Gaussian distribution, a zero-inflated negative binomial 
or Poisson, respectively14,26. To define the reconstruction, and com-
pleteness loss term, we use the respective negative log-likelihood loss 
for each distribution, NLL (x|Gθ). Following the original model presented 
by Gabbay and Hoshen12, we include a mean squared error term, con-
cerning the predicted means, μθ, as provided by, Gθ, MSE (x,μθ), tuned 
by τ (‘reconstruction_loss’) hyperparameter. This allows us to directly 
optimize the mean predictions, for all choices of parametric 

http://www.nature.com/naturebiotechnology


Nature Biotechnology

Brief Communication https://doi.org/10.1038/s41587-023-02079-x

distribution modeling (Supplementary Note 1). Hence we can write the 
completeness term as,

ℒcmp = NLL (x|Gθ) + τMSE (x,μθ) .

Model optimization. Combining the above, we can write the complete 
model objective as a composition of two terms. The first term induces 
completeness by optimizing the accuracy of the generator, and the 
second term enforces the minimality of information shared between 
the representations of known and unknown attributes,

ℒbiolord = ℒcmp + ℒmin

Since the different components defined above are jointly opti-
mized, the embeddings within the decomposed latent space along 
with the generator’s predicted output are influenced by input measure-
ments as well as the known attribute labels.

Biolord-classify: biological representation disentanglement 
with partial labels
To perform semi-supervised disentanglement, a setting in which we 
have missing labels for a subset of cells, we adopt the derivation pre-
sented in ref. 13. In addition to the biolord model components described 
above (the decomposed latent space and generative module), we 
include a classifier, C ∈ 𝒞𝒞, for each categorical attribute, and a regressor, 
R ∈ ℛ, for each ordered attribute, which are trained together with 
previous components.

The classifier (regressor) takes as input the gene expression and 
outputs the class label/features. For cells with missing labels, the clas-
sifier’s (regressors) output is used to complete the decomposed latent 
representation (Extended Data Fig. 1). To train the classifiers (regres-
sors), we add a term to the existing loss function that encourages the 
correct prediction for the samples for which labels are available. For 
the classifiers, we use the categorical cross-entropy loss, H (y,C (x)). For 
the regressors, we use the mean squared error loss between the output 
and provided features, MSE ( y,R (x)). In all cases, the loss is evaluated 
only over cells for which labels are provided (denoted by the sets XS,YS). 
The classification loss is then provided by,

ℒcls = ∑
C∈𝒞𝒞

H (YSC ,C (X
S)) + ∑

R∈ℛ
MSE (YSR ,R (X

S)) ,

where YSC (Y
S
R) denotes the set of labels (features) associated with the 

respective classifier, C (regressor, R). ℒcls is added to the biolord objec-
tive, such that all components are now trained jointly,

ℒbiolord−classify = ℒcmp + ℒmin + ℒcls.

By including the classification module (classifiers and regressors) 
as part of the biolord training procedure, we allow training of a biolord 
model in a semi-supervised setting, since the classifiers and regressors 
are used to impute missing labels used as input for the decomposed 
latent cells. Furthermore, the imputed labels can be used in down-
stream analysis of the data (Fig. 1c).

Biolord-enabled downstream analysis
Biolord enables diverse downstream analysis tasks using the 
decoupled latent representation, the generative pipeline and the 
biolord-classify module (Fig. 1c). Within the biolord framework, we 
provide utility functions to enable this analysis. The downstream 
tasks are given as follows:

	1.	 Latent space representation—the latent space embeddings 
provide insight into the structure within a specific attribute and 
between the different attributes. The latent representation is a 

set of vectors mapping the states of the known attributes to a 
nlatent dimensional state. Any downstream analysis tool can be 
now applied to expose properties and relationships between 
the states, for example, correlation analysis, clustering or lower 
dimensional representation. The latent representation can be 
used to explore structure between different labels of a given 
attribute, for example, using a correlation matrix, or to study 
interactions between the different attributes by considering a 
concatenated representation.

	2.	 Uncertainty evaluation—uncertainty measures provide a proxy 
to assess the generalizability of a model. We use an evalua-
tion metric presented in ref. 5 which allows quantifying the 
uncertainty of an attribute over its latent representation when 
additional covariates associated with the attribute are known, 
for example, pathway association of the drug attribute, and pro-
vide its implementation in the biolord package. The uncertainty 
is defined by the inability to predict the covariate (the drug’s 
pathway) from the k-NN graph of the attribute’s latent space 
representation. Formally, we define,

ui = ∑
j∈𝒩𝒩i

1
logd (i, j)

× H (C𝒩𝒩i ) ,

where 𝒩𝒩i is the set of neighbors of value i, d is a distance measure and 
H is the Shannon entropy, and C𝒩𝒩i is the covariate vector associated 
with neighbors of i based on the latent representation.
	3.	 Counterfactual predictions—the biolord module can take a 

specific cell instance and modify its known attributes. The 
unknown attribute embedding obtained by biolord captures 
a cell-specific embedding. Hence, when passing as input the 
measured features of a cell along with different labels for known 
attribute(s) of interest, the cell-specific attributes representa-
tion will remain constant (the unknown attribute embedding) 
and only the embeddings of modified known attributes will 
change. Since the embeddings are the input for the generative 
module providing the predictions, all observed changes are in-
duced by the modification of the known attribute(s). To obtain 
counterfactual prediction in practice, we take a set of reference 
cells, for example, control cells in an infection dataset, and use 
their measured features along with any combination of known 
attributes (for example, modify the state label considering 
infected case) as input to a trained biolord model. This allows us 
to first sample unseen biological states and more importantly 
obtain a controlled set of samples where we are guaranteed that 
all observed changes in the measured features are a result of the 
modified attribute (Fig. 1d).

	4.	 Association of features to state—pairing the counterfactual 
predictions with a statistical test allows us to recover a set of 
features (for example, genes) that encode the given observed 
state. Here we explicitly decouple the modified attribute from 
the underlying cell state; hence, observed changes in the pre-
dictions are induced by the modified attributes.

	5.	 Classification—the biolord-classify module can extend the 
labeling of partially labeled attributes. This provides complete 
labeling of the data that can in principle be further inspected 
and used as input for diverse downstream analysis pipelines.

Datasets, training and evaluation
Sci-Plex 3. The sci-Plex 3 dataset16 contains measurements for 649,340 
cells across 7,561 genes from three human cancer cell lines—A549, 
MCF7 and K562 with perturbations for 188 drugs at four different dos-
ages, 10 nM, 100 nM, 1 μM and 10 μM. We use a preprocessed anndata 
file provided in ref. 5, downloaded from https://f003.backblazeb2.
com/file/chemCPA-datasets/sciplex_complete_middle_subset.h5ad.  

http://www.nature.com/naturebiotechnology
https://f003.backblazeb2.com/file/chemCPA-datasets/sciplex_complete_middle_subset.h5ad
https://f003.backblazeb2.com/file/chemCPA-datasets/sciplex_complete_middle_subset.h5ad


Nature Biotechnology

Brief Communication https://doi.org/10.1038/s41587-023-02079-x

To the downloaded anndata file, we add RDKit features17 using chem-
prop package27 and an out-of-distribution split, keeping nine unseen 
drugs for validation—Dacinostat, Givinostat, Belinostat, Hesperadin, 
Quisinostat, Alvespimycin, Tanespimycin, TAK-901 and Flavopiridol.

Training parameters. We train a biolord model over the processed 
gene expression. We use RDKit chemically informed features embed-
ding of the drugs17, as well as the dosage as ordered attributes. The cell 
line is passed as a categorical attribute. We used Weights & Biases28 for 
experiment tracking and hyperparameter tuning. Hyperparameter 
details are provided in Supplementary Note 3.

Evaluation and benchmarks. Following the setting provided by ref. 
5, we evaluate the prediction accuracy using the coefficient of deter-
mination r2 (r2 score), calculated between a model’s counterfactual 
predictions and the ground-truth measurements on all genes.

The included benchmarks were as follows:

	1.	 naive baseline—the r2 score is evaluated between control, unper-
turbed cells (per cell line) and the respective drug-treated cells.

	2.	 chemCPA5—the standalone setting that trains the drug encod-
ing network directly on the single-cell data using reported 
optimal hyperparameters5.

	3.	 chemCPA-pre5—a pretrained model, for which the drug encod-
ing network was trained over bulk RNA high-throughput screen 
(L1000)29. The pretrained model was kindly shared with us by 
the authors of chemCPA5. Hyperparameter tuning for all adver-
sary parameters was performed.

	4.	 PerturbNet8—the model consists of three networks, a perturba-
tion representation network, a cellular representation network 
and a mapping network. For the perturbation representation 
network, we use the pretrained model provided by ref. 8 trained 
on the ZINC dataset30. The remaining networks were trained  
following the example provided in the PerturbNet online 
Github repository. The cellular representation network was 
trained over the anndata file described above. The mapping 
network was trained over the latent representation provided by 
both trained models.

Further details regarding all frameworks are provided in  
Supplementary Note 3.

Genetic perturbations. Perturb-seq (one-gene). The Perturb-seq 
dataset19 contains measurements of 65,899 cells across 5,060 genes, 
including 81 one-gene perturbations and control cells. We use the 
preprocessed anndata provided by GEARS6. To obtain meaningful 
features (representing the genetic perturbations), we use the pertur-
bation edges in the GEARS’ Gene Ontology (GO) graph. The GO graph 
was originally generated by adding weighted edges between genes 
that share a significant number of GO terms6. Lastly, for training, we 
consider only the averaged expression over each perturbation and 
the control cells.

Perturb-seq (two-gene). The Perturb-seq dataset20 contains meas-
urements of 89,357 cells across 5,045 genes, including 131 two-gene 
perturbations, 105 one-gene perturbations and control cells. We use the 
preprocessed anndata object provided by GEARS6. As above, we lever-
age the GEARS’ GO graph to obtain meaningful features that represent 
the genetic perturbations. For training, we consider only the averaged 
expression over one-gene perturbations and the control cells. To obtain 
predictions over the two-gene perturbations, we approximate the dif-
ference in expression as the sum of the difference in prediction of each 
one-gene perturbation.

Training parameters. We train a biolord model using the mean expres-
sion for perturbation in the train set. We follow the setting defined in 

GEARS that considers five different train-test-validation splits differing 
in the set of unseen perturbations. For the two-gene perturbation set-
ting, we make the distinction in one of five splits between perturbations 
for which two, one or zero of the two-gene perturbations are unseen 
during training. We use the GO term features as an ordered attribute 
for the model. We used Weights & Biases28 for experiment tracking and 
hyperparameter tuning (Supplementary Note 3).

Evaluation and benchmarks. Following the procedure suggested in 
ref. 6, we evaluate the normalized mean squared error in the predic-
tion of unseen perturbations. Normalization is done with respect to 
predictions in a ‘no perturb’ setting, that is predictions that there was 
no effect of performing a perturbation; hence, the unperturbed cell 
state is the same as the post-perturbed one.

For benchmarking, we compare our performance to GEARS6,  
running the evaluation using the setting provided in their reproduc-
ibility repository (https://github.com/yhr91/gears_misc/blob/main/
paper/fig2_train.py).

Spatiotemporal single-cell atlas of the Plasmodium liver 
stage. To study the liver stage of the malaria parasite Plasmodium,  
Afriat et al.21 molecularly characterized thousands of infected and 
uninfected hepatocytes at five time points post-infection (2, 12, 24, 30 
and 36). We downloaded the preprocessed annotated data provided by 
the authors from Zenodo31. The data annotations include the following:

•	 coarse_time: denoting the number of hpi when the cells were 
collected (or control).

•	 eta_normalized: a spatial zonation score based on zonation 
marker genes which were used to classify the cells as periportal/
pericentral.

•	 pseudotime: calculated using Monocle over the normalized data 
of the infected hepatocyte PBA genes subset.

•	 status: infection status inferred by FACS sorting of the hepatocytes.
•	 abortive: classification of cells at 36 hpi as abortive/productive 

based on clustering of host transcriptome.

Training parameters. We define two biolord settings, as described 
below. Hyperparameters for reported results are provided in Sup-
plementary Note 4.

Infected state analysis over the complete dataset. A biolord model is 
defined over hepatocytes from injected mice (infected and uninfected), 
as well as control mice (the dataset excluding mock and mosquito bitten 
samples). As input, we use the host transcriptome (restricted to 8,355 
genes used in the original publication) along with status classification 
(infected/uninfected/control), spatial zone (periportal/pericentral) 
and time (2, 12, 24, 30, 36 hpi or control).

Abortive state classification. A biolord-classify model was trained 
over infected hepatocytes at 24, 30 and 36 hpi. The host transcriptome 
(restricted to highly variable genes) along with spatial zone (periportal/
pericentral), time (24, 30 and 36 hpi), a stress_score (computed using 
scanpy’s32 function ‘scanpy.tl.score_genes()’ with stress genes21) and the 
partial abortive state classification for 36 hpi (abortive/productive). We 
introduce the stress_score to disentangle the stress signal, reported in 
the original publication21, from the abortive signature.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
Datasets analyzed in this manuscript are publicly available. Processed 
data files can be downloaded from figshare (https://figshare.com/
projects/biolord_datasets/160085).
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The original datasets analyzed in the current study are available at
• �Sci-Plex3: https://f003.backblazeb2.com/file/chemCPA-datasets/

sciplex_complete_middle_subset.h5ad, a preprocessed file provided 
by ref. 5.

• �Perturb-seq (one-gene): https://dataverse.harvard.edu/api/access/
datafile/6154020, preprocessed data and additional files provided 
by ref. 6.

• �Perturb-seq (two-gene): https://dataverse.harvard.edu/api/access/
datafile/6894431, preprocessed data and additional files provided 
by ref. 6.

• �Fetal chromatin accessibility atlas: https://doi.org/10.6084/
m9.figshare.24886248.v1, a preprocessed file provided by ref. 33.

• �Spatiotemporal single-cell atlas of the Plasmodium liver stage: 
publicly available at GSE181725 or as processed Seurat object at  
https://zenodo.org/record/7081863.

Code availability
We implemented biolord using the scvi-tools library14 and 
using cookiecutter-scverse (https://github.com/scverse/
cookiecutter-scverse) as a template for the package. The package is 
released as open-source software at https://github.com/nitzanlab/
biolord. Documentation is available at https://biolord.readthedocs.
io. The code to reproduce the results is available at https://github.com/
nitzanlab/biolord_reproducibility.
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Extended Data Fig. 1 | A detailed schematic illustration of biolord. a, The 
semi-supervised biolord architecture, biolord-classify. To handle partial labels 
we add classifiers to the standard biolord model. The whole framework is 

optimized jointly (Methods). b, An illustration of the biolord loss terms with 
respect to the different model attributes. Figure panels a and b are created with 
BioRender.com.
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Extended Data Fig. 2 | Biolord outperforms GEARS6 in predictions of genetic 
perturbations outcome. a,b, The normalized mean squared error (MSE) in 
the prediction of post genetic perturbation expression of top 20 differentially 
expressed (DE) genes per perturbation. a, The MSE in the prediction of an unseen 
one-gene perturbation in the Perturb-seq (one-gene) dataset by Adamson et al.19. 
b, The MSE in the prediction of two-gene perturbations in the Perturb-seq (two-
gene) dataset by Norman et al.20 evaluated over perturbations for which: 2, 1 or  
0 of the independent two-gene perturbations are unseen. We use the 

normalization as defined by Roohani et al. in GEARS6. This normalization is done 
with respect to a ‘No perturbation’ model which predicts that there was no effect 
induced by the perturbation implying that the unperturbed cell state is the same 
as the post-perturbed one. In all boxplots middle line, median; box boundary, 
interquartile range (IQR); whiskers, 1.5× IQR; minimum and maximum, not 
indicated in the box plot; gray dots, points beyond the minimum or maximum 
whisker.
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Extended Data Fig. 3 | Biolord applied to the single-cell atlas of the 
Plasmodium liver stage21. a, Experimental schematic. GFP+ parasites are 
injected into mice and liver samples are extracted at different time points. 
Hepatocytes are classified as infected/uninfected using FACS sorting. Control 
samples are collected from healthy mice. Figure is created with BioRender.

com. b, UMAP of the single-cell atlas of the Plasmodium liver stage; cells 
are colored by spatial zone. c, UMAP of the original control cells with their 
counterfactual predictions (c-pred.) for infected/uninfected state; cells are 
colored by spatial zone.
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Extended Data Fig. 4 | Application of biolord-classify to late time points of Plasmodium infection. a,b, UMAP of cells from late time points, 24, 30, and 36 hours 
post infection (hpi); cells colored by spatial zone (a) or hpi (b).
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Extended Data Fig. 5 | Gene expression patterns are recovered in abortive 
hepatocytes identified by biolord-classify. a–d, Violin plots of representative 
genes upregulated in abortive hepatocytes. Mann-Whitney-Wilcoxon test 
two-sided with Benjamini-Hochberg correction P-values. Cxcl10; 24 and 30 hpi 
(biolord-classify) < 0.0001, 36 hpi (original) < 0.0001 (a), Sqstm1; 24 and 30 hpi 
(biolord-classify) < 0.0001, 36 hpi (original) < 0.0001 (b), Mdm2; 24 and 30 hpi 
(biolord-classify) < 0.0001, 36 hpi (original) < 0.0001 (c), Cdkn1a; 24 and 30 hpi 
(biolord-classify) < 0.0001, 36 hpi (original) < 0.0001 (d). e, Boxplots comparing 
abortive and productive cells show that in accordance with the original 
abortive hepatocytes population, biolord classified abortive hepatocytes are 
more periportally zonated compared with productive hepatocytes; the y-axis 
represents zonation score and scores corresponding to Periportal/Pericentral 

spatial zones are indicated (Methods, Mann-Whitney-Wilcoxon test two-sided 
with Benjamini-Hochberg correction P-values: 24 and 30 hpi (biolord-classify) 
< 0.0001, 36 hpi (original) < 0.0001. f, The abortive population is concentrated 
at early pseudotime. Pseudotime was evaluated over parasite mRNA21 
(Mann-Whitney-Wilcoxon test two-sided with Benjamini-Hochberg correction 
P-values: 24 and 30 hpi (biolord-classify) < 0.0001, 36 hpi (original) < 0.0001). 
All statistical tests at 24 and 30 hpi are reported for n = 1,823 cells across two 
states; and at 36 hpi for n = 1,083 cells across two states. In all plots middle line, 
median; box boundary, interquartile range (IQR); whiskers, 1.5× IQR; minimum 
and maximum, not indicated. In (a)-(d) the symmetric kernel density estimate is 
shown and in (e)-(f) gray dots, points beyond the minimum or maximum whisker. 
***P ≤ 0.001, ****P ≤ 0.0001.
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