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Scalable genetic screening for regulatory 
circuits using compressed Perturb-seq

Douglas Yao    1, Loic Binan2, Jon Bezney2,13, Brooke Simonton2, 
Jahanara Freedman2, Chris J. Frangieh2,3, Kushal Dey    4,14, 
Kathryn Geiger-Schuller5, Basak Eraslan5, Alexander Gusev    2,6,7,16, 
Aviv Regev2,14,15 & Brian Cleary8,9,10,11,12,16 

Pooled CRISPR screens with single-cell RNA sequencing readout 
(Perturb-seq) have emerged as a key technique in functional genomics, 
but they are limited in scale by cost and combinatorial complexity. In this 
study, we modified the design of Perturb-seq by incorporating algorithms 
applied to random, low-dimensional observations. Compressed 
Perturb-seq measures multiple random perturbations per cell or multiple 
cells per droplet and computationally decompresses these measurements 
by leveraging the sparse structure of regulatory circuits. Applied to 
598 genes in the immune response to bacterial lipopolysaccharide, 
compressed Perturb-seq achieves the same accuracy as conventional 
Perturb-seq with an order of magnitude cost reduction and greater power 
to learn genetic interactions. We identified known and novel regulators 
of immune responses and uncovered evolutionarily constrained genes 
with downstream targets enriched for immune disease heritability, 
including many missed by existing genome-wide association studies. Our 
framework enables new scales of interrogation for a foundational method 
in functional genomics.

Pooled perturbation screens with high-content readouts ranging from 
single-cell RNA sequencing (Perturb-seq)1–4 to imaging-based spa-
tial profiling5–7 are now enabling systematic studies of the regulatory 
circuits that underlie diverse cell phenotypes. Perturb-seq has been 
applied to various model systems, leading to insights about diverse 
cellular processes, including the innate immune response2, in vivo 
effects of autism risk genes in mice8 and organoids9,10 and genome-scale 

effects on aneuploidy, differentiation and RNA splicing11. Integrating 
data from population-level genetic screens has also elucidated human 
disease mechanisms12.

However, owing to the large number of genes in the genome, 
large-scale Perturb-seq screens are still prohibitively expensive and 
are often limited by the number of available cells, especially for pri-
mary cell systems13 and in vivo niches8. In addition, the exponentially 

Received: 5 January 2023

Accepted: 22 August 2023

Published online: xx xx xxxx

 Check for updates

1Program in Systems, Synthetic, and Quantitative Biology, Harvard University, Cambridge, MA, USA. 2Klarman Cell Observatory, Broad Institute 
of Harvard and MIT, Cambridge, MA, USA. 3Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 
Cambridge, MA, USA. 4Harvard T.H. Chan School of Public Health, Boston, MA, USA. 5Genentech, South San Francisco, CA, USA. 6Department of 
Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA. 7Division of Genetics, Brigham and Women’s Hospital, Boston, MA, USA. 8Faculty 
of Computing and Data Sciences, Boston University, Boston, MA, USA. 9Department of Biology, Boston University, Boston, MA, USA. 10Department 
of Biomedical Engineering, Boston University, Boston, MA, USA. 11Program in Bioinformatics, Boston University, Boston, MA, USA. 12Biological Design 
Center, Boston University, Boston, MA, USA. 13Present address: Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA. 
14Present address: Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA. 
15Present address: Genentech, South San Francisco, CA, USA. 16These authors jointly supervised this work: Alexander Gusev, Aviv Regev, Brian Cleary. 

 e-mail: bcleary@bu.edu

http://www.nature.com/naturebiotechnology
https://doi.org/10.1038/s41587-023-01964-9
http://orcid.org/0000-0002-0939-4670
http://orcid.org/0000-0002-3520-2345
http://orcid.org/0000-0002-7980-4620
http://crossmark.crossref.org/dialog/?doi=10.1038/s41587-023-01964-9&domain=pdf
mailto:bcleary@bu.edu


Nature Biotechnology

Article https://doi.org/10.1038/s41587-023-01964-9

by randomly pooling perturbations in individual cells or by randomly 
pooling cells containing one perturbation each (see below).

The number of required composite samples depends on whether 
the phenotype is single valued or high dimensional. When the pheno-
type is single valued (for example, fitness), O(k log n) composite samples 
suffice to accurately recover the effects of n perturbations18,19, where k 
is the number of non-zero elements among the n perturbation effects 
(Fig. 1b). When most perturbations do not affect the phenotype, k grows 
more slowly than n, and the number of required composite samples 
scales logarithmically or, at worst, sub-linearly with the number of 
perturbations. Meanwhile, when the phenotype is an m-dimensional 
gene expression profile, an efficient approach involves inferring effects 
on latent expression factors and then reconstructing the effects on 
individual genes from these factors using the ‘factorize-recover’  
algorithm23. This approach requires O ((q + r) logn) composite samples, 
where r is the rank of the n × m perturbation effect size matrix (that is, 
the maximum number of its linearly independent column vectors), and 
q is the maximum number of non-zero elements in any column of the 
left matrix of the factorized effect size matrix (Fig. 1c). In our case, r is 
the number of distinct groups of ‘co-regulated’ genes whose expression 
changes concordantly in response to any perturbation, and q is the 
maximum number of ‘co-functional’ perturbations with non-zero effects 
on any individual module. Due to the modular nature of gene regula-
tion20,24,25, r and q are expected to remain small when n increases. Indeed, 
we observed a relatively small number of co-functional and co-regulated 
gene groups (small q and r, respectively, relative to n) in previous 
Perturb-seq screens in various systems2,13. Thus, the number of required 
composite samples will scale logarithmically or, at worst, sub-linearly 
with n, leading to much fewer required samples than the conventional 
approach with large n. In simulations, this result held across a wide  
range of plausible values for q and r (Extended Data Fig. 1). We provide 
rough estimates of q and r from our own screens (see below) in the  
Supplementary Note, section 1.

Experimentally generating composite samples
We generated composite samples for compressed Perturb-seq either 
by randomly pooling cells containing one perturbation each in over-
loaded scRNA-seq droplets15 (‘cell-pooling’) or by randomly pooling 
guides in individual cells via infection with a high multiplicity of infec-
tion (MOI)2,16 (‘guide-pooling’) (Fig. 1d). Under certain assumptions, 
the resulting expression counts in each droplet from either method 
represent a random linear combination of log fold change effect sizes 
of guides. When cell-pooling, the expression counts in a given droplet 
are proportional to the average expression counts of the cells in the 
droplet, which can then be modeled in terms of log fold change effect 
sizes of the guides in each cell (Methods). When guide-pooling, the 
expression counts in a given droplet can also be modeled as the sum 
of log fold change effect sizes (Methods), although this requires the 
non-trivial assumption that the effect sizes of guides tend to combine 
additively in log expression space when multiple guides are present 
in the same cell. Although higher-order genetic interaction effects 
can, in theory, bias lower-order effect size estimates in guide-pooled 
data, we note that only a large imbalance in the direction and/or mag-
nitude of higher-order interaction effects across many perturbations 
will lead to such biases, and that, even in this scenario, many of the 
lower-order effects can still be accurately estimated (Supplementary 
Note, section 2).

Either of the two methods described above can be used to learn 
the same underlying perturbation effects, but each has different 
strengths and limitations (Discussion). Guide-pooling has a key benefit 
over cell-pooling, in that the generated data can be used to estimate 
both first-order effects and higher-order genetic interactions (with 
appropriate sample sizes and explicit interaction terms in the model) 
(Methods). In later analyses, we illustrate the feasibility of estimating 
second-order effects from guide-pooled data.

larger number of possible genetic interactions makes it impossible to 
conduct exhaustive combinatorial screens for genetic interactions 
using existing approaches, so current Perturb-seq studies of genetic 
interactions are very modest and focused14. Several approaches have 
been developed to improve the efficiency of single-cell RNA sequenc-
ing (scRNA-seq) and/or Perturb-seq, including overloading droplets 
with multiple pre-indexed cells (SciFi-seq15) or pooling multiple guides 
within cells16. However, pre-indexing requires an additional laborious 
and complex experimental step, and guide-pooling has only been used 
to study cis and not trans effects of perturbations.

We propose an alternative approach to greatly increase the effi-
ciency and power of Perturb-seq for both single and combinatorial 
perturbation screens, inspired by theoretical results from compressed 
sensing17–19 that apply to the sparse and modular nature of regulatory 
circuits in cells. To elaborate, perturbation effects tend to be ‘sparse’, 
in that most perturbations affect only a small number of genes or 
co-regulated gene programs2,20. In this scenario, rather than assay-
ing each perturbation individually, we can measure a much smaller 
number of random combinations of perturbations (forming what we 
call ‘composite samples’) and accurately learn the effects of individual 
perturbations from the composite samples using sparsity-promoting 
algorithms. Moreover, with certain types of composite samples, we 
can efficiently learn both first-order effects (that is, from single-gene 
perturbations) and higher-order genetic interaction effects from the 
same data. We previously showed that experiments that measure 
random compositions of the underlying biological dataset can greatly 
increase the efficiency of measuring expression profiles21 and imaging 
transcriptomics22.

In the present study, we developed two experimental strategies 
to generate composite samples for Perturb-seq screens, and we intro-
duce here an inference method, Factorize-Recover for Perturb-seq 
(FR-Perturb), to learn individual perturbation effects from composite 
samples. We applied our approach to 598 genes in a human macrophage 
cell line treated with bacterial lipopolysaccharide (LPS). By comparing 
compressed Perturb-seq to conventional Perturb-seq conducted in the 
same system, we demonstrate the enhanced efficiency and power of 
our approach for learning single perturbation effects and second-order 
genetic interactions. We derive insights into immune regulatory func-
tions and illustrate their connection to human disease mechanisms by 
integrating data from genome-wide association studies (GWASs) and 
expression quantitative trait loci (eQTL) studies.

Results
A compressed sensing framework for perturbation screens
In conventional Perturb-seq, each cell in a pool receives one or more 
genetic perturbations. Each cell is then profiled for the identity of the 
perturbation(s) and the expression levels of m ≈ 20,000 expressed 
genes. Our goal is to infer the effect sizes of n perturbations on the 
phenotype, which can be the entire gene expression profile (n × m 
matrix) or an aggregate multi-gene phenotype2,3,11, such as an expres-
sion program or cell state score (length − n vector). In both cases, we 
need O(n) samples to learn the effects of n perturbations (Fig. 1a) (where 
sample replicates introduce a constant factor that is subsumed under 
the big O notation), such that the number of samples scales linearly 
with the number of perturbations.

Based on the theory of compressed sensing17, there exist condi-
tions under which far fewer than O(n) samples are sufficient to learn 
the effects of n perturbations. In general, if the perturbation effects 
are sparse (that is, relatively few perturbations affect the phenotype) 
or are sparse in a latent representation (that is, perturbations tend to 
affect relatively few latent factors that can be combined to ‘explain’ the 
phenotype), then we can measure a small number of random composite 
samples (comprising ‘linear combinations’ of individual sample phe-
notypes) and decompress those measurements to infer the effects of 
individual perturbations. Composite samples can be generated either 
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FR-Perturb infers effects from compressed Perturb-seq
To infer perturbation effects from the composite samples, we devised a 
method called FR-Perturb based on the ‘factorize-recover’ algorithm23 
(Methods). FR-Perturb first factorizes the expression count matrix with 
sparse factorization (that is, sparse principal component analysis (PCA)), 
followed by sparse recovery (that is, least absolute shrinkage and selection 
operator (LASSO)) on the resulting left factor matrix comprising pertur-
bation effects on the latent factors. Finally, it computes perturbation 

effects on individual genes as the product of the left factor matrix from 
the recovery step with the right factor matrix (comprising gene weights in 
each latent factor) from the first factorization step (Fig. 1e and Methods). 
Because FR-Perturb uses penalized regression, it is not guaranteed to be 
unbiased. We obtained P values and false discovery rates (FDRs) for all 
effects by permutation testing (Methods). In later analyses, we evaluated 
FR-Perturb by comparing it to existing inference methods for Perturb-seq, 
namely elastic net regression2 and negative binomial regression16.
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Fig. 1 | Framework for compressed Perturb-seq. a, Schematic for conventional 
perturbation screen with single-valued phenotype. Each sample (yellow) 
receives a single perturbation (blue). The required number of samples scales 
linearly with the number of perturbations, as captured by the O(n) term.  
b, Schematic for compressed perturbation screen with single-valued phenotype. 
Each ‘composite’ sample (yellow) represents a random combination of 
perturbations (blue). The required number of samples scales sub-linearly 
with the number of perturbations given the following: (1) the effects of the 
perturbations are sparse (that is, k increases more slowly than n), and (2) sparse 
inference (typically LASSO) is used to infer the effects from the composite 
sample phenotypes. c, Schematic for compressed perturbation screen with 
high-dimensional phenotype, which is the main use case for Perturb-seq. 

The required number of samples scales sub-linearly with the number of 
perturbations given the following: (1) the effects of the perturbations are sparse 
and act on a relatively small number of groups of correlated genes (that is, q and 
r increase more slowly than n), and (2) sparse inference (namely the ‘factorize-
recover’ algorithm23) is used to infer the effects from the composite sample 
phenotypes. d, Two experimental strategies for generating composite samples 
for Perturb-seq. Both ‘cell-pooling’ and ‘guide-pooling’ change one step of the 
conventional Perturb-seq protocol. The result is a sample whose phenotype 
corresponds to a random linear combination of the phenotypes of samples from 
the conventional Perturb-seq screen. e, Schematic of computational method 
used to infer perturbation effects from composite sample phenotypes, based on 
the ‘factorize-recover’ algorithm23. NGS, next-generation sequencing.
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Compressed Perturb-seq screens of the LPS response
We implemented and evaluated compressed Perturb-seq in the 
response of THP1 cells (a human monocytic leukemia cell line) to stimu-
lation with LPS when either pooling cells or pooling guides (Fig. 2a,b). 
In each case, we also performed conventional Perturb-seq, targeting 
the same genes in the same system for comparison. We selected 598 
genes to be perturbed from seven mostly non-overlapping immune 
response studies (Supplementary Table 1), including genes with roles in 
the canonical LPS response pathway (34 genes); GWAS for inflammatory 
bowel disease (IBD) (79 genes) and infection (106 genes); Mendelian 

immune diseases from the Online Mendelian Inheritance in Man (OMIM) 
database with keywords for ‘bacterial infection’ (85 genes) and ‘NF-κB’ 
(102 genes); a previous genome-wide screen for effects on tumor necro-
sis factor (TNF) expression in mouse bone-marrow-derived dendritic 
cells (BMDCs)26 (93 genes); and genes with large genetic effects in trans 
on gene expression from an eQTL study in patient-derived macrophages 
stimulated with LPS27 (79 genes) (Methods and Supplementary Fig. 1). 
We designed four single guide RNAs (sgRNAs) for each gene and 500 
each of non-targeting or safe-targeting control sgRNAs, resulting in a 
total pool of 3,392 sgRNAs (Methods). We introduced the sgRNAs into 
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Fig. 2 | Experimental overview. a, Outline of experiments used to test and validate cell-pooling (left) and guide-pooling (right). b, Downstream analyses performed 
using perturbation effects from all experiments.
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THP1 cells via a modified CROP-seq vector4 (Methods). After trans-
duction and selection, we treated cells with PMA for 24 h and grew 
them for another 48 h as they differentiated into a macrophage-like 
state28, and then we treated them with LPS for 3 h before harvesting for 
scRNA-seq (Methods). As a baseline, we also collected scRNA-seq data 

for genetically perturbed cells before stimulation (that is, no LPS treat-
ment) (see Supplementary Note, section 3, and Extended Data Fig. 2 for 
analysis). For our cell-pooled screen, we used CRISPR–Cas9 to knock  
out genes2, whereas, for our guide-pooled screen, we used CRISPR inter-
ference (CRISPRi) with dCas9–KRAB to knock down gene expression1 
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Fig. 3 | Evaluating cell-pooled Perturb-seq versus conventional Perturb-
seq. a, Number of channels and droplets from the conventional validation 
screen (top) and the cell-pooled screen (bottom). b, Distribution of droplets 
based on the number of cells they contain for the cell-pooled and conventional 
screens. c, Distribution of the number of cells containing a guide targeting each 
perturbed gene in the cell-pooled screen and conventional screen (19 channels 
= full screen, 1 channel = matching number of channels from cell-pooled 
screen). d, Heat maps of the top effect sizes (inferred with FR-Perturb) from the 
conventional screen (left), with the same effect sizes shown for the cell-pooled 
screen (middle) and one equivalent channel of the conventional screen (right). 
x axis: top 50 perturbed genes, based on their average magnitude of effect on 
all 17,552 downstream genes. y axis: top 2,000 downstream genes, based on the 
average magnitude of effects of all 598 perturbed genes acting on them. Rows 
and columns are clustered based on hierarchical clustering in the leftmost plot. 
For the left plot, all effects with FDR q > 0.2 are whited out (q value threshold 
relaxed to 0.5 for the middle and right plots). e, Left, scatter plot of all significant 

effects (q < 0.05; n = 19,909) from the cell-pooled screen (x axis) versus the same 
effects in the conventional screen (y axis). Effects represent log fold changes 
in expression relative to control cells. r, Pearson’s correlation coefficient; SC, 
sign concordance. Right, held-out validation accuracy of top 19,909 effects 
(y axis; Pearson’s correlation with validation dataset) from the downsampled 
conventional screen (x axis) and the cell-pooled screen (dotted line). The 
same inference method is used to estimate effects in both the downsampled 
conventional data and validation data. The effects from the cell-pooled screen 
are estimated using FR-Perturb only (see Extended Data Fig. 3d for results using 
other methods). f, Left, precision-recall curves computed from downsampled 
conventional screen and cell-pooled screen (dotted line). True positives = 
all significant effects (n = 79,100) from the held-out validation dataset. The 
classification threshold being varied (x axis) is the significance (that is, P value)  
of the effects. All effects displayed are learned using FR-Perturb. Right, AUPRCs  
(y axis) computed from the downsampled conventional experiment when 
varying the number of channels (x axis). FC, fold change.
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(Fig. 2a) to avoid cellular toxicity due to multiple double-stranded 
breaks in individual cells29.

By design, the two compressed screens were substantially smaller 
than their corresponding conventional screens. In the cell-pooled 
screen, we analyzed a single channel of droplets (10x Genomics; Meth-
ods) overloaded with 250,000 cells, whereas, for the corresponding 
conventional Perturb-seq screen, we analyzed 19 channels at normal 
loading. We sequenced the library from the overloaded channel to a 
depth of four-fold more reads than a conventional channel to account 
for the larger number of non-empty droplets and greater expected RNA 
content per droplet. After quality control, there were 32,700 droplets 
containing at least one sgRNA from the overloaded channel (versus 
4,576 droplets per channel for a total of 86,954 droplets from the con-
ventional screen) (Fig. 3a), with a mean of 1.86 sgRNAs per non-empty 

droplet (conventional: 1.11) (Fig. 3b) and a mean of 90 droplets contain-
ing a guide for each perturbed gene (conventional: 144) (Fig. 3c). We 
observed 14,987 total genes with measured expression (conventional: 
17,552). Thus, the cell-pooled screen had more than seven times the 
number of non-empty droplets per channel compared to the conven-
tional screen; considering library preparation and sequencing costs, 
it was approximately eight times cheaper.

In the guide-pooled experiment, we infected cells expressing 
dCas9–KRAB at high MOI (Methods) and profiled a single cell in each 
droplet across seven channels, whereas, for the corresponding con-
ventional Perturb-seq, we infected cells with the same guide library at 
low MOI and analyzed 19 channels. From the guide-pooled experiment, 
we obtained 24,192 cells after filtering (conventional: 66,283), where 
35% of the cells (8,448) contained three or more guides (Fig. 4a), with 
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Fig. 4 | Evaluating guide-pooled Perturb-seq versus conventional Perturb-
seq. a, Number of channels and droplets from the conventional validation screen 
(top) and the guide-pooled screen (bottom). We focused our analysis on the 
subset of 8,448 droplets from the guide-pooled screen with at least three guides 
per droplet. b, Distribution of cells based on the number of guides that they 
contain for the full guide-pooled and conventional screens. In practice, we only 

directly measured the number of guides per droplet rather than guides per cell, 
but these quantities are equivalent given one cell per droplet. c–f, See captions 
for Fig. 3c–f. These analyses were conducted in an identical fashion, with the only 
difference being that the screens are downsampled based on cell count rather 
than channel count. FC, fold change.
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2.50 guides on average per cell (conventional: 1.13) (Fig. 4b) and 101 
cells containing a guide for each perturbed gene on average (conven-
tional: 115) (Fig. 4c). We measured expression for 16,268 total genes 
(conventional: 18,617). The guide-pooled screen was approximately 
three times cheaper than the conventional screen.

Cell-pooling achieves large efficiency gains
The perturbation effect sizes estimated by Perturb-FR from the cell- 
pooled Perturb-seq screen (Methods) agreed well with its conventional 
counterpart. When estimating effects, we included read count, cell 
cycle and proportion of mitochondrial reads as covariates2, and we 
combined sgRNAs targeting the same gene while retaining the sub-
set of sgRNAs for a gene with maximal concordance of effects across 
random subsets of the data (Methods). The significant effects from 
the compressed experiment (n = 19,909) were strongly correlated 
with the corresponding effects from the conventional experiment  
(Pearson’s r = 0.92, sign concordance = 0.96; Fig. 3e). Notably, we 
observed many more significant effects overall in the conventional 
screen than the cell-pooled screen (216,220 versus 19,909; FDR 
q < 0.05), but this is expected given that we intentionally generated 
a larger and more highly powered conventional screen (144 droplets 
per perturbation, compared to 90 for the cell-pooled screen) to enable 
data splitting and cross validation analyses (see below).

The cell-pooled experiment yielded substantially more signal per 
experimental unit (channel) than the conventional one (Fig. 3d–f). 
First, the global clustering of effects learned from a single cell-pooled 
channel was much less noisy than from a single conventional channel 
(adjusted Rand index of 0.53 versus 0.31 when comparing clusters with 
those learned from the full conventional screen; Fig. 3d). Moreover, 
approximately four conventional channels were needed to obtain 
the same number of significant effects as one cell-pooled channel 
(Extended Data Fig. 3a). Next, to quantitatively assess the specificity 
of each approach, we held out half of the conventional data as a vali-
dation set, and then we downsampled the remaining half to different 
numbers of channels and compared the top 19,909 most significant 
effects learned from the downsampled data (matching the number of 
significant effects in the cell-pooled screen) to those in the held-out 
validation set. We found that 5–6 conventional channels were needed to 
achieve equivalent validation accuracy (correlation) as one cell-pooled 
channel (Fig. 3e). The relative efficiency gains of the compressed screen 
were consistent when varying the number of effects being compared 
(Extended Data Fig. 3c), when comparing effects on modules rather 
than on individual genes (Extended Data Fig. 4a) or when evaluating 
performance based on biological informativeness as reflected by the 
number of effects with significant heritability enrichment for common 
diseases (Extended Data Fig. 4b,c). We also assessed the sensitivity of 
each approach by testing whether the significant effects determined 
from the validation set were recovered by the downsampled conven-
tional or cell-pooled screens. We constructed precision-recall curves, 
calling ‘true positives’ the 79,100 significant effects from the validation 
dataset and varying the classification threshold by the significance of 
the effects in the downsampled conventional or cell-pooled datasets. 
One cell-pooled channel had similar area under the precision-recall 
curve (AUPRC) to four conventional channels (Fig. 3f), with consist-
ent efficiency gains when varying the number of true-positive effects 
(Extended Data Fig. 3c).

Moreover, FR-Perturb substantially outperformed the established 
inference methods that we tested: elastic net regression2 and nega-
tive binomial regression16. Repeating the same analyses as above with 
each method (Methods), the concordance between the downsampled 
conventional data and validation data, and between cell-pooled and 
conventional data, was much higher with FR-Perturb than previous 
methods (Fig. 3e,f and Extended Data Fig. 3d). FR-Perturb also identi-
fied more biologically informative effects than previous methods, 
based on the heritability enrichment of common diseases (Extended 

Data Fig. 5). By downsampling the cell-pooled screen, we found that ~1/5 
of a cell-pooled channel analyzed with FR-Perturb achieved the same 
validation accuracy as 10 conventional channels analyzed with existing 
methods (Extended Data Fig. 3b). We assessed the cost savings of cell 
pooling over the conventional approach while factoring in sequencing 
costs in the Supplementary Note, section 5.

Guide-pooling achieves large efficiency gains
Guide-pooled Perturb-seq was also concordant with its conventional 
counterpart, based on a similar evaluation scheme as above. For the 
guide-pooled screen, we focused on the 8,448 cells with three or more 
guides. This number of guides per cell can be achieved with sequential 
transduction, as done for two of the seven channels (Methods and Sup-
plementary Fig. 2). We learned perturbation effects from both screens 
using FR-Perturb, with slight modifications to account for differences 
in the guide-pooled versus cell-pooled screens (Methods). The 5,836 
significant effects from the guide-pooled cells were strongly corre-
lated with the same effects from the conventional screen (Pearson’s 
r = 0.80, sign concordance = 0.92) (Fig. 4e). Thus, even if some nonlinear 
effects exist between guides, the overall assumption of additivity holds 
broadly enough to infer many accurate effects. Analysis of the effects 
that appear to be visual outliers in the guide-pooled screen (Fig. 4e)  
showed that they arise from correlated noise rather than genetic inter-
action effects (Supplementary Note, section 4, and Supplementary 
Fig. 3). As with the cell-pooled screen, the total number of significant 
effects was much lower in the 8,448 guide-pooled cells versus the full 
conventional screen (5,836 versus 95,526; q < 0.05), but this is expected 
because our conventional screen was, by design, larger and more highly 
powered overall to enable downsampling analyses.

The guide-pooled screen was substantially more efficient than the 
conventional screen per experimental unit (cell), and FR-Perturb pro-
vided more accurate effect sizes than established methods. Around 2.5× 
more conventionally studied cells were needed to obtain the same num-
ber of significant effects as guide-pooled cells (Extended Data Fig. 3e).  
Globally, the effect size patterns learned from the same number of cells 
(8,448 cells) were much less noisy in the guide-pooled screen than in 
the conventional screen (adjusted Rand index of 0.45 versus 0.35 when 
comparing clusters with those learned from the full conventional 
screen; Fig. 4d). Approximately twice as many conventional cells were 
required to learn effect sizes at the same correlation (Fig. 4e) or to attain 
the same AUPRC (Fig. 4f) as guide-pooled cells when comparing to a 
held-out validation set. This relative efficiency gain was consistent 
when varying the number of compared effects (Extended Data Fig. 3g)  
or when comparing effects on modules rather than on individual 
genes (Extended Data Fig. 4a). Moreover, the effect sizes inferred by 
FR-Perturb had substantially better validation accuracy than those 
from the two established inference methods in both the guide-pooled 
and conventional data (Fig. 4e,f and Extended Data Fig. 3h). Around 
3,200 guide-pooled cells analyzed with FR-Perturb achieved the same 
validation accuracy as 36,000 conventional cells analyzed with existing 
approaches (Fig. 2f), leading to an approximately 10-fold cell count 
and cost reduction over existing experimental and computational 
approaches (Supplementary Note, section 5).

Guide-pooling is the more impactful compression approach
We conducted a detailed comparison of the strengths and limitations 
of cell-pooling and guide-pooling relative to each other (Supplemen-
tary Note, sections 6 and 7, and Supplementary Fig. 4). Notably, the 
performance of cell-pooling does not scale with the number of cells 
per droplet, and the overall efficiency gains of cell-pooling stem from 
obtaining more non-empty droplets per channel (Extended Data  
Fig. 6). On the other hand, the performance of guide-pooling does 
scale with the number of guides per cell, with the best performance 
attained by cells with four or more guides (Extended Data Fig. 6). This 
suggests that guide-pooling has the potential to achieve even higher 
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efficiency with a greater degree of overloading than we attained in 
our experiment.

The effectiveness of compressed Perturb-seq has important impli-
cations for existing Perturb-seq screens, each of which already has 
some overloaded droplets (cell-pooling) and multi-guide-expressing 
cells (guide-pooling) by chance or by design1,2,13. Although these 
cells/droplets are often discarded, our results suggest that these 
cells/droplets can contain even more signal than the single-guide/
single-cell-containing ones and, thus, should be retained. To illustrate 
this, we used FR-Perturb to analyze a Perturb-seq knock-out (KO) 
screen of 1,130 genes in mouse BMDCs30. In this screen, 519,535 drop-
lets containing a single cell were obtained, of which 33% contained 
more than one guide by chance. By stratifying cells by the number 
of guides and comparing the learned effect sizes from FR-Perturb 
with a held-out validation subset of the data with single guide per-
turbations, we show that the accuracy of the effect sizes scales with 
the number of guides per cell and is highest in cells containing three 
guides (Extended Data Fig. 7a). Thus, by retaining all cells with more 
than one guide, the sample size of the experiment could effectively be 
doubled compared to the conventional approach that discards these 
cells (Extended Data Fig. 7b).

Regulatory circuitry of the LPS response
We next leveraged the overall concordance of all perturbation data 
(conventional and compressed, KO and knock-down (KD)) to inves-
tigate the underlying regulatory circuitry of the LPS response. To 
maximize power, we merged droplets from the compressed and con-
ventional screens together and then re-estimated all effects. There 
were 251,792 significant effects in the combined conventional and 
cell-pooled KO screen (131,161 effects in the combined conventional 
and guide-pooled KD), an increase of 16% (KD: 37%) over the conven-
tional screen alone. We focused all subsequent analyses on effects 
from these combined screens.

Overall, the KO and KD screens were concordant, with most of the 
significant effects (FDR q < 0.05) attributed to relatively few (~5%) of the 
perturbations, each with widespread effects on many genes (Fig. 5a). 
As expected, there were substantially more significant effects in the 
KO screen compared to the KD screen (251,792 versus 131,161 effects), 
consistent with larger effects of KO on the target gene’s activity31. 
Effects significant in both screens (n = 26,362) were highly correlated 
between the screens (r = 0.92, sign consistency = 0.99; Supplementary 
Fig. 5a–d). The perturbations did not lead to new global cell states, 
such that profiles from perturbed (one or more targeting guides) and 
unperturbed (control guide) cells spanned the same low-dimensional 
space (Fig. 5c). Thus, although many perturbations had significant and 
widespread effects, they did not yield radically altered phenotypic 
states, consistent with previous studies of this cellular response2.

We organized the perturbations and genes by clustering their 
effect size profiles (Methods), observing four broad co-regulated 
programs of downstream genes with correlated responses across the 
perturbations and three broad co-functional modules of perturbations 
with correlated effects on downstream genes (Fig. 5d).

The four major co-regulated programs were present in both the 
KO and KD screens (Fig. 5d), spanning key aspects of the response to 
LPS: inflammation (P1: cytokine, chemotaxis and LPS response genes; 
Supplementary Fig. 5e,f); macrophage differentiation (P2: immune cell 
activation, differentiation and cell adhesion genes); antiviral response 
(P3: type I interferon response genes); and extracellular matrix (ECM) 
and developmental genes (P4) (Supplementary Table 2). Inflammation 
(P1) and the antiviral response (P3) are known to be regulated by LPS 
signaling through AP1/NF-κB and IRF3, respectively32, and were mostly 
anti-correlated in their responses to perturbation in our screen, consist-
ent with reports that downregulation of the inflammatory response can 
lead to upregulation of type I interferon response33,34. Inflammatory 
signaling is known to lead to macrophage differentiation35, but almost 

all perturbations with significant effects on inflammation (P1) (in any 
direction) downregulated macrophage differentiation (P2). This sug-
gests that additional factors beyond inflammatory signaling mediate 
macrophage differentiation in response to LPS36.

Of the three major co-functional modules, KO/KD of the first 
module (M1) resulted in strong downregulation of inflammation and 
macrophage differentiation (P1–P2) and upregulation of the antiviral 
response and ECM/developmental genes (P3–P4) (Fig. 5d). M1 was 
mainly composed of core TLR/LPS response genes and genes directly 
upstream or downstream of the pathway32, including MYD88, IRAK1, 
IRAK4, RELA, TRAF6, TIRAP, IKBKB, IKBKG, TAB1, TANK, TLR1, TLR2, 
MAPK14, MAP3K7, FOS, JUNB and CHUK. Given the known function of 
these genes, we expect that their KO/KD will lead to downregulation of 
inflammation and macrophage differentiation (P1–P2), as we indeed 
observed. Other genes in M1 previously shown to downregulate TNF 
and the inflammatory response when knocked out26 included two 
LUBAC complex proteins (RBCK1 and RNF31), genes in the OST com-
plex (DAD1 and TMEM258) and ER transport (HSP90B1, SEC61A1 and 
ALG2) and other genes with diverse functions (MIDN, AHR, PPP2R1A 
and ASH2L). M1 also included two additional ER transport genes  
not previously implicated in immune pathways (RAB5C and PGM3), 
highlighting the important role of N-glycosylation and trafficking in 
macrophage activation37.

KO/KD of the second co-functional module (M2) primarily resulted 
in strong downregulation of the antiviral program (P3), with weak/
mixed effects on other programs. M2 comprised four genes known to 
be core components of the type I interferon response38— STAT1, STAT2, 
TYK2 and IFNAR1—for which downregulation of the antiviral program 
in response to their perturbation is expected.

KO/KD of the third and final co-functional module (M3) resulted 
in upregulation of inflammation (P1), downregulation of macrophage 
differentiation and the antiviral response (P2–P3) and mixed effects on 
ECM/development (P4). M3 included many genes with known inhibi-
tory effects on inflammation, including ZFP36, an RNA-binding protein 
that destabilizes TNF mRNA39; enzymes CYLD and TNFAIP3, involved 
in deubiquitination of NF-κB pathway proteins40,41; pseudokinase 
TRIB1 and ubiquitin ligase RFWD2, which are involved in degrada-
tion of JUN42,43; and RELA-homolog DNTTIP1 (ref. 26). Other genes in 
M3 included transcription factors (MEF2C, FLI and EGR1), chromatin 
modifiers (EHMT2 and ATXN7L3) and kinases (CSNK1A1 and STK11).

Interestingly, two of the M3 genes with particularly strong effects 
on all programs did not have prior immune annotations: XPR1, a retro-
virus receptor involved in phosphate export, and KIDINS220, a trans-
membrane scaffold protein previously reported in neurons44. In the 
KO screen, this pair of genes had the fourth highest correlation of 
downstream effects (r = 0.97) among all (5982 ) = 178,503 perturbation 
pairs (Fig. 5e), following IRAK1/IRAK4, IRAK1/TRAF6 and IRAK4/TRAF6, 
which are all known to form a physical LPS signaling complex32. XPR1 
and KIDINS220 have recently been shown to form a complex that is 
required for normal regulation phosphate efflux in certain cancer 
cells45. Furthermore, in affinity purification mass spectrometry (AP-MS) 
data46, XPR1 and KIDINS220 physically associate with each other and 
TNF receptor TNFRSF1A. KO of TNFRSF1A in our screen resulted in 
effects opposite to XPR1/KIDINS220 KO (Fig. 5e), suggesting a possible 
inhibitory effect of this complex on TNFRSF1A.

We experimentally validated several of the novel results described 
in this subsection, namely the effects of RAB5C, PGM3, XPR1 and 
KIDINS220 KO on the inflammatory response in LPS-stimulated THP1 
cells, as measured by the secretion of IL6 (Methods). We found that 
RAB5C and PGM3 KO both led to a modest decrease (~0.85-fold) in IL6 
secretion (consistent with our finding that KO of these genes led to 
downregulation of the P1 program), whereas XPR1 and KIDINS220 KO 
both led to a substantial increase (~2.6-fold) in IL6 secretion (consistent 
with our previous finding that KO of these genes led to upregulation 
of P1; Extended Data Fig. 8).
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e, Left, correlation of KO effect sizes (y axis) between all pairs of perturbed genes 
(x axis). Top and bottom gene pairs are labeled. Top right, graph of all perturbed 
genes that physically interact with XPR1 and/or KIDINS220, based on AP-MS 
data from BioPlex 3.0 (ref. 46). Edges represent physical interaction. Bottom 
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genetic interaction effects. Left, effect sizes relative to control (y axis) of cells 
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standard errors obtained from bootstrapping. Right plots, violin plots of the 
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from permutation testing. FC, fold change.
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Guide-pooling reveals second-order genetic interactions
Genetic interactions (non-additive effects) between two or more genes 
can, in principle, be inferred from cells containing two or more guides, 
which are generated by chance when transducing cells at low or high 
MOI (Fig. 4b). Here, guide-pooling can provide increased efficiency 
compared to the conventional approach, as in the first-order case (Sup-
plementary Note, section 9).

We first attempted to estimate second-order interaction effects 
and their P values from the guide-pooled screen and corresponding 
conventional KD screen by adding interaction terms to the perturba-
tion design matrix (Methods). However, although we could generate 
point estimates of second-order effects2, none of these effects was 
significant in either screen due to insufficient power (Supplementary 
Fig. 6a), even with a lax significance threshold (q < 0.5).

To increase power, we aggregated perturbations into modules 
defined by Gene Ontology (GO) annotations (Supplementary  
Table 3a) and learned the overall impact of second-order interactions 
within and between each module on each gene program (Methods). 
Here, we define an interaction effect as the deviation from the sum of 
first-order effects for cells that contain any two perturbations from 
either the same module (intra-module interactions) or two different 
modules (inter-module interactions) (Methods). To ensure adequately 
sized groupings, we aggregated perturbations into 490 (possibly 
overlapping) modules each with at least 20 genes, such that any pair 
of perturbations in each module was represented in an average of 87 
cells in the guide-pooled screen (conventional: 30 cells) (Supplemen-
tary Fig. 6b). We also constructed 30 non-overlapping modules by 
clustering the original 490 modules (Methods), resulting in (30

2
) = 435 

module pairs, among which we could compute inter-module interac-
tions. To increase power, we grouped downstream genes by their pro-
gram (P1–P4) membership (Fig. 5d), computing mean effects on these 
four programs rather than on individual genes. The results from this 
analysis represent the extent of intra-module and inter-module interac-
tions on each key program.

We detected three co-functional modules with significant 
(q < 0.05) intra-module interaction effects on at least one program 
from the guide-pooled screen (Fig. 5f and Supplementary Table 3b), 
whereas we detected no significant interactions from the substan-
tially larger conventional screen (even at q < 0.5) (Supplementary 
Fig. 6c and Supplementary Table 3c). Two of the significant interac-
tion effects—with genes for regulation of chromosome organization 
(P = 2.4 × 10−5) and antigen processing (P = 1.2 × 10−4)—had insignifi-
cant first-order effects on the antiviral program (P3) while having 
significant positive second-order effects. The third, TNFα signaling, 
had a significant negative first-order effect on the inflammatory/LPS 
program (P1) (P = 2.0 × 10−4) and significant positive second-order 
effect (P = 8.7 × 10−5). This effect is consistent with the reported non-
linear relationship between gene dosage and TNF signaling activity 
when comparing heterozygous versus homozygous KO mice for either 
TNF47 or the TNF receptor TNFRSF1A (ref. 48). Interestingly, we did 
not observe any significant inter-module interactions from either 
screen (Supplementary Fig. 6d and Supplementary Table 3d,e), which 
may suggest that perturbations in different modules are less likely to 
interact with each other49,50.

Integrating Perturb-seq with GWASs
Because dysregulation of innate immune responses plays a key role in 
many human diseases51, we next asked whether the perturbation effects 
learned from our in vitro screens can help identify disease-relevant genes 
and processes. In vitro screens may be especially helpful for this aim given 
that many of the perturbed genes from our screens are under strong 
selective constraint in human populations (Supplementary Fig. 7a),  
making them challenging to directly connect to disease through 
GWASs52 owing to fewer common variants in or around the gene53,54. 
To investigate this, we obtained summary statistics from GWAS of 64 

distinct human diseases and traits (Supplementary Table 4a), including 
autoimmune diseases and blood traits as well as non-immune traits/
diseases (for example, height, body mass index, schizophrenia and 
type 2 diabetes). Using sc-linker55, we computed the overall heritability 
enrichment of these 64 traits/diseases in single-nucleotide polymor-
phisms (SNPs) in/around genes comprising perturbation modules 
M1–M3 (Methods). We observed significant heritability enrichment 
(P < 0.001) for M3 (genes that suppress the LPS response) for two blood 
traits (lymphocyte and neutrophil percentage), but we did not observe 
significant enrichment for M1 (positive regulators of the LPS response) 
or M2 (genes involved in the antiviral response) for any traits (Sup-
plementary Fig. 7b).

Instead, we hypothesized that, if a perturbed gene is important 
for disease, then disease heritability may be enriched near the down-
stream genes that it affects12,56. To test this hypothesis, we constructed 
two ‘perturbation signatures’ for each perturbed gene that include all 
genes that are significantly upregulated (‘negative’ targets) or down-
regulated (‘positive’ targets) by its KO/KD. We retained signatures with 
at least 100 genes, resulting in a total of 1,634 perturbation signatures 
from both the KO and KD screens. We also constructed signatures cor-
responding to the gene programs P1–P4 (Fig. 5d). As above, we used 
sc-linker to test for disease heritability enrichment for each signature/
phenotype pair (Methods).

Twenty-three signatures associated with 16 perturbed genes had 
significant heritability enrichment scores for at least two phenotypes 
(P < 0.001). In addition, seven phenotypes that reflect immune or 
blood traits (IBD, eczema, rheumatoid arthritis, asthma, primary 
biliary cirrhosis and eosinophil percentage) had significant scores 
for at least two perturbation signatures (Fig. 6a, Supplementary 
Fig. 7c,d and Supplementary Table 4b,c). As an important negative 
control, no non-immune/blood traits had any significant enrichment. 
Most of the significant signatures (15/23) were from the KO screen, 
suggesting that the expression effects from KO are more suited for 
this analysis (either because they are more disease relevant or more 
powered due to capturing more effects). Among the downstream 
programs P1–P4, we observed significant enrichment from only P2 
on three immune traits: IBD, eczema and primary biliary cirrhosis 
(Supplementary Fig. 7b).

Most of the significant signatures (17/23) were from genes in core 
LPS and TLR signaling pathways that fall into perturbation module 
M1 (even though M1 did not exhibit any direct heritability enrichment 
itself; Supplementary Fig. 7b): TRAF6 (positive), TLR7 (positive), TLR2 
(positive), TLR1 (positive), TIRAP (positive), TAB1 (positive), MYD88 
(positive), MAP3K7 (positive), IRAK4 (positive), IRAK1 (positive) 
and IKBKG (positive). Other significant signatures include HSP90B1 
(positive), an ER transport gene important for innate immunity57 that 
is co-functional with the core LPS genes (Fig. 5d); FADD (negative), a 
pro-apoptotic gene downstream of LPS signaling that serves for nega-
tive feedback32; MYC (negative), an oncogene with known immuno-
suppressive effects58,59; and poorly characterized pseudogene HLA-L. 
The two remaining significant signatures are for genes whose func-
tions are not previously associated with the immune system, including 
APLP1 (an amyloid beta precursor-like gene primarily involved in brain 
function that, interestingly, contains a missense variant associated 
with severe influenza60) and GPAA1 (involved in anchoring proteins 
to the cell membrane). Thus, by leveraging gene–gene links learned 
from our screens, we were able to identify disease-relevant genes 
that we were underpowered to detect through direct heritability 
analyses (Discussion).

To complement our results that focus on common diseases and 
variants, we also computed the enrichment of Mendelian immune 
disease genes among the same signatures derived from our screens 
from above. We found significant enrichment in a similar number 
of signatures, particularly those with strong effects on the antiviral 
response (Supplementary Note, section 10, and Supplementary Fig. 8).
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Perturbation effects do not concord with trans-eQTLs
Trans-genetic gene regulation (that is, regulation of gene expression 
distal to the given SNP) has been proposed as a primary mediator of 
genetic effects on human disease61. Trans-genetic gene regulation can 
be studied through either population-level genetic data (via eQTL  
studies62,63) or experimental perturbation of gene expression12, such as 
the screens conducted in our study. Although both types of data can, 
in principle, be used to learn the same trans effects, their consistency 
with each other has not been empirically evaluated.

We, therefore, compared gene–gene regulatory links between our 
Perturb-seq screen and a trans-eQTL analysis in primary patient-derived 

monocytes treated with LPS27 (n = 432), closely matching our cell line. 
For validation, we repeated this analysis using a much larger trans- 
eQTL dataset (eQTLGen; n = 31,684) although in a model system less 
similar to ours (whole blood samples). We define a gene–gene regula-
tory link in eQTL studies based on cis-by-trans co-localization, where 
a cis-eQTL for gene i is also a trans-eQTL for gene j via a (presumed) 
trans-regulatory effect of gene i on gene j (Fig. 6b). Here, we assume 
that a perturbation of a cis-eQTL on the expression of gene i is analo-
gous to the experimental KD in our system. We used coloc64 to compute 
the posterior probability of cis-by-trans co-localization while account-
ing for linkage disequilibrium (LD) between SNPs (Methods).  
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Fig. 6 | Integration of population genetic screens with Perturb-seq.  
a, Heritability enrichment scores of signatures comprising genes significantly 
modulated by perturbations (rows) across human traits (columns), computed 
using sc-linker55. ‘pos’ indicates the set of genes whose expression changes 
in the same direction as the perturbed gene (that is, downregulated by the 
perturbation), with the opposite applying to ‘neg’. Displayed are all perturbation 
signatures and traits with at least two significant (P < 0.001) effects. Non-
significant scores are grayed out. Bar plot: probability of loss-of-function 
intolerance54 (pLI) of the corresponding perturbed gene. b, Schematic of eQTL 
integration analysis, aiming to test whether trans-regulatory relationships 
learned from Perturb-seq are also present in eQTL studies. For all gene pairs 
in which gene i exerts an effect on gene j (that is, has a significant KD effect in 
our Perturb-seq screen), we would expect that gene i and gene j are enriched 
for cis-by-trans eQTLs. c, Using data from an eQTL study closely matching our 
cell type and treatment27, shown is the probability of observing significant 

cis-by-trans eQTLs among the top 15 perturbed genes from our KD screen and 
their affected downstream genes (red) compared to random downstream genes 
(gray). d, Enrichment of significant cis-by-trans eQTLs among various sources of 
gene–gene pairs: significant KO/KD effects (representing significant gene–gene 
effects from our KO and KD screens, respectively), curated transcription factor 
(TF) and target gene pairs65 and the top 1,000/10,000 most co-expressed gene 
pairs (based on correlation of expression across samples) from the eQTL dataset. 
Enrichment was computed relative to random trans genes for each cis gene and 
then averaged over all cis genes. e, Selective constraint on trans genes from  
d plus all significant cis-by-trans eQTLs from the Fairfax et al.27 dataset. Each point 
represents a cis gene, whereas the x axis represents the proportion of the trans 
genes for each cis gene that are under selective constraint (determined as having 
a pLI >0.5). Box plots represent the median and first/third quartile of points, 
whereas the bounds of the whiskers represent 1.5× interquartile range.
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To determine whether the regulatory links learned for a given per-
turbed gene i from Perturb-seq are reflected in the eQTL analysis, we 
compared the proportion of downstream genes j of gene i in Perturb- 
seq that co-localize with gene i in the eQTL study, P (colocgene i→gene j), 
with the proportion of random expressed genes that co-localize with i, 
P (colocgene i→random gene) (Methods).

Surprisingly, P (colocgene i→gene j)  was slightly lower than 
P (colocgene i→random gene) for individual perturbed genes i (Fig. 6c and 
Supplementary Table 5) as well as when aggregating across all per-
turbed genes (Fig. 6d). Moreover, we observed no relationship between 
either the significance or magnitude of the effect of gene i on gene j 
and P (colocgene i→gene j) (Supplementary Fig. 9a). We observed similar 
negative results when obtaining gene–gene links from our KO data  
or from a curated list of transcription factor–target gene pairs65  
(Fig. 6d). Using an alternative way of quantifying gene–gene links in 
eQTL studies that does not make assumptions about the number of 
causal variants (that is, bivariate Haseman–Elston regression to estimate 
genetic correlation of expression66; Methods) yielded similar results 
(Supplementary Fig. 9b,c). We observed similar negative results when 
taking cis-by-trans eQTLs from eQTLGen (Supplementary Fig. 10).

Conversely, we did observe significant enrichment of cis-by-trans 
eQTLs in gene pairs co-expressed in the same eQTL study (Fig. 6d), as has 
been observed in other trans-eQTL studies62. Notably, co-expression 
in eQTL datasets is dominated by environmental effects rather than 
genetic effects67. Thus, given that the two effects are independent 
across samples, we would not ordinarily expect the most strongly 
co-expressed genes to be enriched for cis-by-trans eQTLs, suggesting 
that they may be confounded, in part, by unmodeled technical artifacts 
or inter-cellular heterogeneity (Supplementary Note, section 11). We 
also observed that the level of negative selection on the trans gene mir-
rored the patterns of cis-by-trans eQTL enrichment (or lack thereof) 
that we observed in the previous analyses (Fig. 6e), suggesting that our 
power to detect cis-by-trans eQTLs was affected by selection-induced 
depletion of SNPs affecting the trans genes54,68 (Supplementary Note, 
section 12).

Discussion
In the present study, we evaluated a new approach for conducting 
Perturb-seq based on generating composite samples, which involves 
either overloading microfluidics chips to generate droplets containing 
multiple cells (cell-pooling) or infecting cells at high MOI so that each 
cell contains multiple guides (guide-pooling). We also propose a new 
method, FR-Perturb, to estimate perturbation effect sizes from compos-
ite samples, which increases power by estimating sparsity-constrained 
effects on latent gene expression factors rather than on individual 
genes. We tested our approach by perturbing 598 immune-related 
genes in a human macrophage cell line. We found that our experimen-
tal approaches of cell-pooling and guide-pooling, combined with the 
use of FR-Perturb to infer effect sizes, led to substantial cost reductions 
over conventional Perturb-seq while maintaining the same accuracy. 
Guide-pooling also substantially increases power to detect genetic inter-
action effects and reduces the number of cells needed for screening.

Here we report that cell-pooling led to a 4–20-fold cost reduc-
tion, and guide-pooling led to a 10-fold cost reduction, over existing 
approaches (Supplementary Note, section 5). Both these approaches 
reduce costs due to RNA library preparation without altering the 
sequencing step of scRNA-seq. Thus, they can, in principle, be paired 
with approaches that increase the efficiency of sequencing via new 
technologies69 or targeted sequencing70, resulting in further improve-
ments to the efficiency of Perturb-seq. Concurrent results also dem-
onstrate the power of compressed screening with bio-chemical 
perturbations in high-fidelity cellular model systems (Mead et al.71, 
companion manuscript).

Inference with FR-Perturb leads to substantially improved 
out-of-sample validation accuracy over conventional gene-by-gene 

methods (for example, elastic net and negative binomial regres-
sion) in both conventionally generated data and compressed 
data. FR-Perturb is, thus, useful for inferring effects in any type of 
Perturb-seq screen, even conventional screens that do not adopt 
our proposed experimental changes. The improved performance of 
FR-Perturb in both conventional and compressed settings likely stems 
from perturbation effect sizes being inferred on latent gene expres-
sion factors that aggregate many co-expressed genes, thereby denois-
ing the expression counts of individual genes that are especially noisy/
sparse in single-cell data. However, the performance of FR-Perturb is 
likely to suffer when inferring effects for perturbations that cannot 
be well approximated by these factors (due to idiosyncratic effects 
of the perturbations21).

Cell-pooling and guide-pooling are complementary approaches 
with different strengths and limitations. Unlike cell-pooling, 
guide-pooling has the drawbacks that it requires that nonlinear inter-
action effects do not systematically bias phenotypes (although not all 
interaction effects will impart bias; Supplementary Note, section 2),  
and it potentially suffers from cellular toxicity caused by multiple 
viruses infecting each cell and/or multiple double-stranded breaks. In 
addition, unlike guide-pooling, cell-pooling has the drawbacks that it 
requires increased sequencing depth per channel to account for more 
non-empty droplets, and it loses per-droplet signal due to dilution of 
effect sizes (Supplementary Note, section 8). Due to the latter fact, 
cell-pooling requires many more cells than guide-pooling to achieve 
the same performance, which can be prohibitive in certain settings 
where cell count is limited8,13. Because guide-pooling performs best 
with high guide number per cell (four or more), whereas cell-pooling 
does not perform well with high cell count per droplet, we posit that 
guide-pooling (but not cell-pooling) can be readily scaled up to very 
compressed designs (in which case the use of KD over KO and Cas12/13 
over Cas9 may be desirable to avoid cellular toxicity), likely leading to 
even larger efficiency gains than we observed in our screens. To aid 
in the design of future experiments, we also conducted simulations 
showing the performance of compressed Perturb-seq when varying 
factors such as sequencing depth and guide efficiency, finding that is it 
is robust in many different scenarios (Supplementary Note, section 13,  
Extended Data Fig. 9 and Supplementary Fig. 11).

An additional key advantage of guide-pooling over cell-pooling 
is that guide-pooling naturally allows for the study of higher-order 
interaction effects. In our study, we were underpowered (even with 
guide-pooling) to detect second-order interaction effects between 
individual gene pairs. However, we detected significant intra-module 
interaction effects from the guide-pooled but not conventional screen, 
serving as a proof of concept that such signal can be detected in the 
guide-pooled screen and may be further probed in more powered future 
experiments. The efficiency gains brought about from guide-pooling 
can, in theory, counteract the exponential growth of gene combi-
nations (given that various assumptions are satisfied), potentially 
making it the only tractable way to systematically study higher-order 
interaction effects (Supplementary Note, section 9). To aid in the 
design of future experiments, we conducted simulations showing 
the number of cells needed to learn second-order interaction effects 
at various levels of guide-pooling, finding that guide-pooling can 
markedly reduce the number of cells needed to learn a given number 
of second-order interaction effects (Supplementary Note, section 14,  
and Extended Data Fig. 10).

By integrating data from GWASs, our screens highlighted per-
turbed genes with downstream genes enriched for disease heritability. 
Many of these perturbed genes are under strong selective constraint 
and would require up to millions of samples to detect in GWAS72. Thus, 
our analysis represents a potential way to circumvent the issue of 
negative selection removing GWAS signal from some large-effect 
disease-relevant genes, a key challenge for biological interpretation 
of common-variant GWAS.
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Gene–gene effects learned from our Perturb-seq screens were not 
enriched for cis-by-trans eQTLs in a closely matched cell type and treat-
ment. Many possible explanations exist for this observation, including 
(1) insufficient power to detect trans-eQTLs in the eQTL dataset; (2) 
biological differences between our cell line and primary monocytes 
used in the eQTL study; (3) large differences in the magnitude of pertur-
bation between experimental KO/KD and eQTLs; and (4) confounders 
in the eQTL dataset (Supplementary Note, section 11). Explanation (1) 
can, in theory, be addressed with larger trans-eQTL studies62, although 
we observed similar negative results when replicating our results in a 
large trans-eQTL dataset (eQTLGen). Such studies often suffer from 
issues with confounding/intercellular heterogeneity, as evidenced by 
very low reported out-of-sample replication accuracy and substantial 
overlap (>50%) of detected trans-eQTLs with variants known to influ-
ence cell type proportion62. In addition, single-cell eQTL studies73 can 
potentially address explanation (4), although such studies suffer from 
low power relative to sample size (~1,000 significant trans-eQTL effects 
detected from ~1.2 million cells73 versus ~200,000 trans perturbation 
effects detected from ~100,000 cells in our screen). We propose that 
our compressed screen is a powerful tool to learn trans effects on gene 
expression, although additional work is needed to fully reconcile the 
differences between population-level genetic screens and experimen-
tal perturbation screens.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41587-023-01964-9.
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Methods
Experimental procedures
Cell culture and stimulation. THP1 cells (American Type Culture 
Collection (ATCC), TIB202) were cultured in RPMI medium (ATCC, 
30-2001) supplemented with 10% FBS (ATCC, 30-2020) and 0.05 mM 
2-mercaptoethanol (Sigma-Aldrich, M7522). Cells were maintained 
between 0.8 and 2 million cells per milliliter.

Cell lines for KO and KD screens were engineered with lentivi-
ral vectors containing Cas9 (pxpr311) and dCas9–KRAB (pxpr121), 
respectively. Viruses were prepared using a previously published 
protocol (https://portals.broadinstitute.org/gpp/public/dir/
download?dirpath=protocols/production&filename=TRC%20
shRNA%20sgRNA%20ORF%20Low%20Throughput%20Viral%20
Production%20201506.pdf) and concentrated by centrifugation in 
a column with a cut size of 100 kDa (MilliporeSigma, UFC903096). 
Cells were transduced by spinfection as previously described (https://
portals.broadinstitute.org/gpp/public/resources/protocols).

THP1 cell lines were infected with sgRNA libraries (described 
below) at an MOI specific for each guide-pooled experiment. Twelve 
hours after spinfection, cells and media were diluted 1:10, and cells 
were allowed to recover for 48 h. Cells were selected with puromycin 
(2 μg ml−1) for 4 d. The selected cells were differentiated into mac-
rophages by stimulation in 20 ng ml−1 phorbol 12-myristate 13-acetate 
(Sigma-Aldrich, P8139-1mg) for 24 h. Cells were then allowed to rest in 
normal culture medium for 48 h before stimulation in medium contain-
ing 100 ng ml−1 LPS (MilliporeSigma, L4391-1mg) for 3 h.

Guide library production and validation. sgRNAs for the per-
turbed panel of genes (described below) were designed using the 
CRISPR-Pick tool from the Broad Institute. Four distinct sgRNAs were 
designed for each perturbed gene. In addition, 500 non-targeting 
sgRNAs and 500 safe-targeting sgRNAs (that is, guides targeting 
intergenic regions of the genome) were included. Oligonucleotide 
libraries were synthesized by Twist Biosciences and then ampli-
fied and inserted into a CROP-seq vector4 with sgOpti scaffold 
(Addgene, 106280) via Gibson assembly. Cloned libraries for 
KO, KD and control sgRNAs (non-targeting and safe-targeting)  
were sequence validated as previously described (https://portals.
broadinstitute.org/gpp/public/dir/download?dirpath=protocols/
production&filename=cloning_of_oligos_for_sgRNA_shRNA_
nov2019.pdf ). Viral libraries were produced as described above 
(without concentration), and an MOI was determined by transfecting 
cells with scaled dilutions of the virus covering a 100-fold dynamic 
range and quantifying survival rate after selection.

Conventional Perturb-Seq, cell-pooling and guide-pooling 
(scRNA-seq and dialout library production). For conventional 
screens, the infected (MOI 0.25) and stimulated THP1 cell suspension 
was prepared for droplet generation according to the manufacturer’s 
suggested protocol (10x Genomics, CG00053 Rev C). Channels aim-
ing to recover 5,000–10,000 cells were loaded on the 10x Chromium 
Controller, and the protocol was followed according to the manual for 
Chromium Next GEM Single Cell 3′ Reagent Kits version 3.1 (CG000315 
Rev C).

For cell-pooling (MOI 0.25), the standard 10x Genomics single-cell 
3′ RNA-seq protocol (Chromium Next GEM Single Cell 3′ GEM, Library 
& Gel Bead Kit version 3.1, PN-1000121) was run according to the manu-
facturer’s recommendations, except that the concentration of cells 
was increased to co-encapsulate multiple cells per droplet (250,000 
cells loaded per channel).

For guide-pooling, cells were infected at an MOI of 10 before selec-
tion and stimulation or were left to rest for 2 d after initial infection 
before infecting a second time at an MOI of 10 before selection and 
stimulation (Supplementary Fig. 2). High MOI cells were loaded into 
droplets as in the conventional screens.

After the generation of double-stranded cDNA, part of the whole 
transcriptome amplification (WTA) product was set aside for targeted 
amplification to recover the perturbation barcode. Then, 10 ng of 
WTA from each channel was input into eight cycles of PCR (primer 1 
CTACACGACGCTCTTCCGATCT; primer 2 GTGACTGGAGTTCAGACGT-
GTGCTCTTCCGATCTTGTGGAAAGGACGAAACACC). The sample 
underwent a 1× AMPure XP Reagent SPRI clean (Beckman Coulter, 
A63881) and was amplified for another nine cycles with 8 bp indexed 
PCR primers and purified with a 0.7× SPRI clean (primer 1 AATGATACG-
GCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTC, primer 2 
CAAGCAGAAGACGGCATACGAGATGTCGAGCAGTGACTGGAGTTCA-
GACGTGTGCTCTTCCGATCT).

Guide effect validation screens. For guide effect validation, two 
guides (out of four) were chosen for six targets—MYD88, STAT1, RAB5C, 
PGM3, XPR1 and KIDINS220—as well as two of the non-targeting con-
trols. RAB5C, PGM3, XPR1 and KIDINS220 represent novel regulators 
of the inflammatory response, and MYD88 and STAT1 were included 
as positive controls. The two guides for each target were selected by 
computing the pairwise correlation of effect sizes of the four individual 
guides on all genes and then taking the pair with the highest correla-
tion. Single guides were cloned into the CROP-seq vector as previously 
detailed. Two million cells were infected for each guide. Cells were 
then selected with 4 µg ml−1 puromycin for 2 d and then expanded 
in culture for 10 d. Cells infected with the first guide targeting XPR1 
all died, so that condition was removed from the validation experi-
ment. THP1 cells were differentiated into macrophages using PMA as 
in the main screen. Three wells of a 24-well plate were seeded for each 
guide, with 250,000 cells per well. After 24 h in PMA, the medium was 
changed for fresh medium, and cells recovered for 2 d. Cells were then 
stimulated with 250 µl of medium containing LPS (100 ng ml−1) for 8 h, 
and then medium was collected, spun at 1,000g for 2 min to remove 
cell debris and stored at −80 °C. Two extra wells of cells infected with 
non-targeting guides received fresh medium as a non-stimulated con-
trol. ELISAs were conducted following the manufacturerʼs protocol 
(https://www.abcam.com/ps/products/178/ab178013/documents/
Human-IL-6-ELISA-kit-protocol-book-v4a-ab178013%20(website).pdf).

Computational procedures
Selecting genes to be perturbed. A set of perturbed genes was com-
piled from several sources (Supplementary Table 1). These included 
a manually curated list of 35 canonical LPS response genes; the top 
100 genes from a previous genome-wide CRISPR screen for regula-
tion of TNF expression after LPS stimulation26; 100 genes identified 
as being a cis-eQTL target of SNPs that were (in total) associated with 
trans-eQTL effects for at least four downstream genes in primary 
monocytes treated with LPS27; 95 genes near high-confidence variants 
in IBD GWAS loci74; 108 genes associated with Mendelian disorders 
identified by search for ‘bacterial infection’ in the OMIM database75 
and 115 Mendelian genes similarly identified by ‘NF-κB’ search; and 
173 genes reported in studies identified by a GWAS Catalog76 search 
for ‘infection’ with diseases/traits related to liver disease and HIV-1 
infection excluded.

The (perhaps surprisingly small) intersections between gene lists 
from these sources are depicted in Supplementary Fig. 1. The final list 
of 598 perturbed genes was obtained by intersecting genes expressed 
in THP1 cells with the combined list of 758 genes from all sources.

Generating expression and perturbation design matrix. Starting 
with raw Illumina BCL files from the sequencing output, the ‘cell-
ranger mkfastq’ command with default parameters (from the 10x 
Cell Ranger tool version 6.0.1; https://support.10xgenomics.com/
single-cell-gene-expression/software/downloads/latest) was used to 
generate FASTQ files. The ‘cellranger count’ command with default 
parameters was used to align the expression reads to the GRCh38 build 
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of the human transcriptome and generate a gene expression count 
matrix (see below for details on normalization of expression counts).

To generate the droplet by perturbation design matrix, paired-end 
reads (in FASTQ format) containing a droplet barcode and unique 
molecular identifier (UMI) on read 1 and sgRNA sequence on read 2 
were aligned using Bowtie2 as follows. Read 2 reads were aligned to 
a reference constructed from the labeled sgRNA sequences using 
the –local option with default parameters, which performs local read 
alignment. Then, using a custom script, droplet barcodes were matched 
to the mapped guides for each paired-end read. A guide was called as 
‘present’ in a droplet if there were at least five UMIs for each droplet 
barcode–guide barcode pair.

Inference using FR-Perturb. From the sequencing output of each of 
our Perturb-seq experiments, two matrices were directly generated 
(see above):

•	 N × G raw gene expression count matrix Y, where N is the number 
of droplets and G is the number of sequenced genes.

•	 N × P perturbation design matrix X, where N is the number of 
droplets and P is the total number of perturbed genes. Here, 
xij represents a binary indicator variable for whether droplet 
i contains a guide targeting gene j (we discuss below how we 
collapse multiple guides for the same gene). X also includes 
two additional columns corresponding to the presence of 
a non-targeting control guide and a safe-targeting guide, 
respectively. Cells containing a non-targeting guide are 
treated as ‘control’ cells (see below), whereas cells containing 
a safe-targeting guide are used to test for general effects of 
genome-targeting guides.

From these data, a P × G effect size matrix B is estimated, where 
βij represents the log fold change of the expression of gene j relative 
to control expression when gene i is perturbed. Two slightly different 
versions of FR-Perturb were formulated to learn B from X and Y gener-
ated from cell-pooling and guide-pooling, respectively, as follows.

Version 1: composition in expression space (for cell-pooling). This 
scenario arises from cell-pooling. The relationship among B, X and Y 
in a given droplet i is modeled as:

E [yyyiii] =
1
gi

P
∑
j
xijccc exp (βββjjj), (1)

where yi is a vector of length G corresponding to the expression counts 
of all genes in droplet i; gi is the number of guides contained in droplet 
i (used as a proxy for the number of cells in the droplet); xij is a binary 
scalar indicating whether cell i contains a guide for gene j; c is a vector 
of length G indicating the expected control expression counts of all 
genes; and exp (βββjjj) is a vector of length G indicating the fold change of 
expression relative to control expression for cells containing a guide 
for gene j (with βj representing the log fold change). Note that the ‘exp’ 
symbol here is used to distinguish fold changes from log fold changes, 
because the latter units are more commonly used to report effect sizes 
on gene expression. Conceptually, this model reflects the fact that 
expected expression measured in a droplet containing gi cells is the 
average of the expected expression counts of the individual cells in the 
droplet (where the latter quantity can be expressed as ccc exp(βββjjj) for cells 
containing guide j).

In practice, it is advantageous to model the measured expression 
in each droplet as the geometric rather than arithmetic mean of expres-
sion of the constituent cells. Simulations with real cells show that the 
arithmetic versus geometric means of expression across multiple cells 
are very similar (Supplementary Fig. 12a), but modeling expression 
counts in a droplet as the latter enables us to perform inference in 
the space of log fold changes rather than fold changes. The former is 

symmetric around zero (whereas the latter is not) and, thus, leads to 
balanced inference of upregulation versus downregulation.

Thus, equation (1) is rewritten as follows:

E [yyyiii] = (
P
∏
j
ccc exp (βββjjj)

xij)

1
gi

E [log (yyyiii)] = log (ccc) + 1
gi

P
∑
j
xijβββjjj (2)

Equation (2) can be expressed simply in matrix form as E [YYY′] = XXX′B, 
where each row of Y′, yyy′′′iii, equals log (yyyiii) − log (ccc), and X′ is X with rows 
normalized to sum 1. To infer B, Y is transformed into Y′ by taking the 
log(TP10K + 1) of all gene expression counts and subtracting log(ccc) from 
each row of Y (where log(ccc) represents the average log(TP10K + 1) of all 
genes in cells containing only non-targeting control guides). A pseu-
docount of 1 is included because the sparse nature of gene expression 
counts prevents directly taking their logarithm.

Next, the factorize-recover algorithm is applied to Y′ and X′ to infer 
B. In the first ‘factorize’ step of factorize-recover, sparse factorization 
is applied to Y′ alone using sparse PCA, which produces N × R left factor 
matrix ŨUU  and R × G right factor matrix W. R is a hyperparameter that 
controls the rank of Y′. In the second ‘recover’ step, sparse recovery is 
used to learn P × R matrix U from the following regression model: 
ŨUU = X’UX’UX’U, using LASSO applied to each column of ŨUU  (so that one column 
of U is learned at a time). By multiplying U by W obtained from the 
factorize step, a P × G matrix B̂BB is obtained, which is an estimate of B.

In practice, the magnitude of elements of B̂BB was strongly correlated 
with the overall expression level of the downstream gene in control cells. 
This correlation changed (but was not removed) when varying the 
arbitrary pseudocount of 1 and/or scale factor of 10,000, suggesting 
that it was an artifact arising from log-transforming lowly expressed 
gene expression counts77. Indeed, simulations show that the magnitude 
of effects estimated with FR-Perturb had a negative bias that scaled with 
the expression level of the downstream gene, with the largest biases 
observed for the most lowly expressed genes (Supplementary Fig. 12c).

This bias was removed with the following heuristic correction. 
First, LOESS was used to fit a curve to the plot of effect size magnitude 
versus expression level in control cells for all entries of B̂BB. Next, all effect 
sizes were scaled based on the ratio of their fitted effect size magnitude 
from LOESS and the fitted effect size magnitude of genes with the high-
est expression counts (log(average TP10K) > 2). This procedure 
removes the global relationship between effect size magnitude and 
expression level of the downstream gene while preserving heterogene-
ity in the average magnitude of effect sizes on individual downstream 
genes. In simulations, this procedure produced much less biased effect 
size estimates than when not scaling (Supplementary Fig. 12b,c).

Version 2: composition in log fold change effect size space (for 
guide-pooling). For guide-pooling data, the relationship among B, X 
and Y in a given droplet i is modeled as:

E [log (yyyiii)] = log (ccc) +
P
∑
j
xijβββjjj (3)

The only difference between equation (2) and equation (3) is the 
absence of the normalizing factor 1

gi
 in front of the second term of  

the right side of equation (3). Inference to learn B is performed as in 
version 1, with the only difference being that the rows of X are not 
normalized to have a sum of 1.

Covariates. Covariates corresponding to the proportion of mitochon-
drial reads, the total read count per cell and cell cycle state (as deter-
mined by the CellCycleScoring function from the Seurat R package78) 
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were accounted for when estimating effect sizes using FR-Perturb, by 
regressing the covariates out of the expression matrix according to the 
linear model YYY ′===CDCDCD. Here, Y′ represents the N × G normalized expres-
sion matrix (where N is the number of cells and G is the number of 
sequenced genes); C represents the N × (C + 1) covariate matrix includ-
ing an intercept term (where C represents number of covariates with 
all covariates centered to mean 0); and D represents the fitted (C + 1) × G 
matrix of covariate effects on gene expression. All downstream infer-
ence was performed on the residual matrix YYYresid===YYY

′−−−CDCDCD.

Hyperparameters for FR-Perturb. The spams R package79 was used 
to perform the steps of factorize-recover, including sparse PCA and 
LASSO. Three hyperparameters are set in FR-Perturb: the rank R of Y′, 
a tuning parameter λ1 for sparse PCA during the factorize step (which 
is the solution of minWWW

1
n
∑n
i=1 minũuui ||yyyi −WWWũuui||

2
2 so that ||ũuui||1 ≤ λ1), and a 

tuning parameter λ2 for LASSO during the recover step (which is the 
solution of minuuu ||ũuu −XuXuXu||

2
2 so that ||uuu||1 ≤ λ2). These were set based on 

maximizing cross-validation r2 as R = 10, λ1 = 0.1 and λ2 = 10. Analysis 
results were not especially sensitive to different values of R, λ1 and λ2 
(Supplementary Fig. 12d–f).

Permutation testing for significance. Permutation testing was used 
to obtain two-tailed P values for elements of B̂BB. To generate an empirical 
null distribution for each element of B̂BB, samples were permuted (that 
is, rows of X), and B̂BB was re-inferred using FR-Perturb for each permuta-
tion. Permuting rows of X has no impact on the factorize step, because 
this step does not involve X (and the alternative approach of permuting 
rows of Y does not affect the individual factors). Thus, only the recover 
step was performed, and U was estimated for each permutation, fol-
lowed by multiplying the null U by W obtained from the factorize step 
to obtain the null B̂BB estimate. In addition, to reduce computational 
cost, only 500 permutations total were performed. For entries of B̂BB that 
had P = 0 based on these 500 permutations, a skew-t distribution was 
fit to the empirical null distribution for each entry using the selm func-
tion from the sn R package, and P values were then re-computed for 
these entries from the fitted distribution. False discovery q values were 
computed using the Benjamini–Hochberg procedure applied to the  
P values for all entries of B̂BB.

Inference using negative binomial regression. Using the glmGamPoi 
R package80, B was inferred by separately running differential expres-
sion analysis for each perturbation (that is, column of X), where the two 
groups being compared were droplets containing only non-targeting 
control guides and droplets containing a guide for the perturbed gene 
of interest. For droplets containing multiple guides, other guides pre-
sent in the droplet were ignored when forming these groups. Analytic 
P values and false discovery q values were obtained for all effect sizes 
from the method output.

Inference using elastic net. Using the spams R package79, the same 
elastic net inference procedure proposed in Dixit et al.2 was used to 
infer B from the following models: YYY ′ = XXX ′B for version 1 and YYY ′ = XBXBXB for 
version 2 from above with λ1 = 0.00025 and λ2 = 0.00025 (where elastic 
net finds the solution to minyyy ′

1
2
||yyy ′ −XXXβββ||22 + λ1||||||βββ||||||1+++

λ2
2
||||||βββ||||||22  for each 

column of Y′), matching the values used in Dixit et al. Other values for 
the parameters yielded similar results (Supplementary Fig. 12g).  
P values for all effect sizes were obtained by permuting the rows of X a 
total of 10 times and re-estimating B to generate a null distribution 
across all values of B, matching the procedure used in Dixit et al.

Selecting optimal guide combination for each gene. Four distinct 
sgRNAs were generated for each perturbed gene. When inferring effect 
sizes, guides were aggregated by perturbed gene to increase sample 
size and simplify downstream analyses. When generating the pertur-
bation design matrix X, a cell containing any guide for the gene was 

labeled as receiving a perturbation for the gene. However, sgRNAs 
have varying efficiency at KO or KD their target gene, and including 
guides that do not work will add noise to the effect size inference. To 
retain only sgRNAs that had measurable effects on their target gene, we 
retained guides with concordant effect size estimates across random 
sample-wise splits of the data (that is, the subset of guides to the same 
gene showing maximal concordance).

Specifically, let i represent the index of a given perturbed gene, so 
that xi corresponds to the column of X that indicates which cells 
received perturbation i, and βi corresponds to the column of B that 
indicates the effect sizes on all genes’ expression from perturbing gene i. 
For each i, 15 different versions of xi were generated, corresponding to 
all possible subsets of the four guides. For each version, any cell receiv-
ing a guide within the given subset of guides is labeled as containing a 
perturbation for the gene, whereas the remaining guides are ignored. 
Only xi in X was modified, and the remaining columns were kept the 
same. Next, the dataset of interest was randomly split in half by samples 
(cells). FR-Perturb was used to infer effect sizes for all perturbed genes 
within each half. Then, the R2 of β̂ββi  was computed between the two 
halves (restricting to only effects with an FDR q < 0.2), and the specific 
guide subset that produced that highest R2 was retained. The same 
procedure was repeated for each i to learn the optimal guide combina-
tion for each perturbed gene.

Simulations. Perturb-seq datasets were simulated at various levels of 
overloading using real expression counts and perturbation effect sizes 
estimated from our data.

Simulating cell-pooled data. To simulate expression data for n drop-
lets containing m cells each, the expression of n × m cells (each con-
taining one guide) was first simulated by randomly sampling control 
cells from our experiment and scaling their expression counts by the 
fold change effect sizes of a given perturbed gene (estimated from 
our conventional KO Perturb-seq screen). A 10% probability of receiv-
ing a control guide (that is, no change in expression) was simulated 
to match the proportion of control guides in the real data. Next, the 
expression counts of m cells were randomly averaged at a time to  
create cell-pooled data.

Simulating guide-pooled data. To simulate expression data for n cells 
containing m guides each, m perturbed genes were randomly selected 
for each cell, and the expression of a randomly selected control cell 
was then scaled by the product of the fold change effect sizes of the 
m perturbed genes. As before, a 10% probability of receiving a control 
guide was simulated.

Clustering and dimensionality reduction. For Fig. 5c, dimensionality 
reduction was performed using PCA on the log(TP10K + 1) expression 
counts of all cells, where the expression values of each gene are scaled 
and centered to mean 0 and variance 1.

The rows and columns of Fig. 5d were clustered using Leiden clus-
tering81. First, the Euclidian distance between all pairs of genes was 
calculated by their perturbation effect sizes, and the FindNeighbors 
function from the Seurat R package78 was used to compute a shared 
nearest neighbor graph from these distances (k = 20), followed by 
the FindClusters function to perform Leiden clustering on the graph 
with resolution parameter = 0.5, selected by visual inspection of the 
resulting clusters. GO enrichment analysis of the genes in the resulting 
clusters was performed with the ClusterProfiler package82 with gene 
sets obtained from the C2 (curated gene sets) and C5 (ontology gene 
sets) collections of the Molecular Signatures Database83.

Learning second-order effects for individual perturbation pairs. 
Second-order interaction effects on gene expression in cell i with mul-
tiple guides were modeled as:
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E [log (yyyiii)] = log (ccc) +
P
∑
j
xij βββjjj +

P
∑
j

P
∑
k
xijxik βββjkjkjk

Here, log (yyyiii) is a vector of length G corresponding to the log expres-
sion counts of all genes in droplet i; xij and xik are binary scalars indicat-
ing whether cell i contains a guide for gene j and/or gene k; c is a vector 
of length G indicating the expected control expression counts of all 
genes; βj is a vector of length G indicating the first-order effect size of 
guide j on the expression of G genes; and βjk is a vector of length G 
indicating the second-order effect size of guides j and k on the expres-
sion of G genes. In matrix form, the above can be represented as:

E [YYY′] = XBXBXB +XXX(2)BBB(2)

where each row of Y′ equals log (yyyiii) − log (ccc); XXX(222) is an N × ( P
2
) indicator 

matrix for whether each cell contains any of ( P
2
) perturbation pairs; 

and BBB(222) is an ( P
2
) × G  matrix of second-order interaction effects. B is 

known from estimating first-order effects previously, which enables 
the following equation to be written:

E [YYY′′] = XXX(2)BBB(2)

where YYY ′′ = YYY ′ −XBXBXB . Finally, BBB(222) is estimated using FR-Perturb in the 
exact same manner as B. To reduce the large size of ( P2 ), only perturba-
tion pairs that were present in a minimum of five cells were included.

When estimating the significance of entries of BBB(222), the uncertainty 
in both B and BBB(222) must be accounted for, because the latter depends 
on the former. Thus, when generating a null distribution for the entries 
of BBB(222), the rows of both X and XXX(222) were permuted, and B was re-estimated 
for each permutation.

Learning second-order effects for perturbation modules. 
Intra-modular interactions. A second-order intra-modular interaction 
effect was estimated for each co-functional perturbation module M 
(that is, group of perturbed genes) on each co-regulated gene program 
P (that is, group of downstream genes) as follows. For each pair of M 
and P, cells were partitioned into three sets:

	(1)	 Control set. Cells containing only non-targeting control guides 
or guides for genes without significant effects on P. The latter 
group of guides is included to increase sample size, and all 
these guides are collectively referred to as ‘control guides’.

	(2)	 First-order set. Cells with exactly one guide in M, with remain-
ing guides in the cells falling into the ‘control guide’ set.

	(3)	 Second-order set. Cells with exactly two guides in M, with 
remaining guides in the cells falling into the ‘control guide’ set.

A mean expression value for P was computed for each set (μ0, μ1 
and μ1,1, respectively) as the average standardized log(TP10K + 1) 
expression of all genes in P among the cells in the set, with covariates 
corresponding to read count per cell, percent mitochondrial reads, 
cell cycle state and number of guides per cell regressed out of the 
log(TP10K + 1) expression matrix and expression standardized to mean 
0 and variance 1. The effect size of the first-order set was computed as 
β1 = μ1 − μ0 and the interaction effect size of the second-order set as 
β1,1 = μ1,1 − 2β1 − μ0. P values for all interaction effects were computed 
by permuting the set membership labels of all the cells and recomput-
ing μ0, β1 and β1,1 for the permuted sets. Standard errors for all interac-
tion effects were computed via bootstrapping, by resampling cells 
from each of the sets without changing their labels.

Inter-modular interactions. Inter-modular interaction effects were 
computed using a similar approach as above. The 490 total modules 
were first reduced into 30 disjoint modules using Leiden clustering of 
a shared nearest neighbor graph defined based on the number of genes 

shared between gene sets. For two co-functional modules, M1 and M2, 
the first-order effects β1 and β2 were computed in the same manner as 
above. The second-order set was defined as cells with at least one guide 
from each of M1 and M2, with the remaining guides in the cell falling into 
the ‘control guide’ category, as defined above. The mean expression 
of the second-order group is μ1,2. The interaction effect is defined as 
β1,2 = μ1,2 − β1 − β2 − μ0, and P values and standard errors were estimated 
using permutation testing and bootstrapping, respectively.

Heritability analyses. Sc-linker55 was used as previously described 
to compute a disease heritability enrichment score for each gene set 
constructed from the KO and KD perturbation effect sizes or per-
turbation modules and gene programs. Using sc-linker, SNPs were 
first linked to genes using a combination of histone marks from the 
Epigenomics Roadmap84 and the activity-by-contact strategy85, and 
then an enrichment score was computed for the SNPs based on the 
heritability enrichment of the SNPs obtained from stratified LD score 
regression (S-LDSC86,87).

More specifically, for each gene set G, a set of weights 
AG = {aG,1,aG,2,… ,aG, j}  between 0 and 1 was constructed for each  
SNP based on the confidence of them influencing any gene in G, follow-
ing the procedure described in Jagadeesh et al.55 using activity-by- 
contact scores88 and the Epigenomics Roadmap histone marks84 for 
whole blood samples. For gene sets defined from membership in per-
turbation modules (M1–M3) or gene programs (P1–P4) (Supplementary 
Table 2), modules/programs were merged between the KO and KD 
screens. For gene sets defined based on perturbation effects, each gene 
was weighted by the effect size of the perturbation on the gene, normal-
ized to lie between 0 and 1. A set of weights Aall = {aall,1,aall,2,… ,aall, j}  
was also constructed, representing the confidence of the SNP influenc-
ing any gene across the genome. Next, heritability enrichment esti-
mates EG =

%h2(AG)
%SNP(AG)

 and Eall =
%h2(Aall)
%SNP(Aall)

 were computed for each AG and 

Aall, respectively, using S-LDSC86,87. Here, %h2 (AG) =
∑M

j aG, jβ
2
j

∑M
j β

2
j

 (where β2j  

represents the squared effect size of SNP j on the phenotype and 

M represents the total number of SNPs) and %SNP (AG) =
∑M

j aG,j
M

. 

Conceptually, %h2 (G) represents the fraction of the total genetic effect 
on the phenotype attributed to SNPs in AG, whereas %SNP(G) represents 
the effective fraction of SNPs that are contained in AG. Thus, the ratio 
%h2(G)
%SNP(G)

 is essentially the average effect size magnitude on the phenotype 

for SNPs in AG. Finally, the enrichment score for AG was computed as 
EG − Eall. Subtracting Eall controls for the baseline level of heritability 
enrichment for SNPs that influence any gene (because most SNPs do 
not influence any genes). P values were obtained for the null hypothesis 
EG − Eall = 0 using a block jackknife procedure86.

eQTL analyses. Raw genetic data for 432 European individuals and 
gene expression data for primary monocytes from these individuals 
profiled 2 h after treatment with LPS were obtained from Fairfax et al.27. 
For each cis–trans gene pair, plink89 was used to compute marginal asso-
ciation statistics of all SNPs within 1 megabase (Mb) of the promoter of 
the cis gene with the expression of both the cis gene and the trans gene. 
All our analyses were restricted to cis genes with at least one significant 
cis-eQTL (q < 0.05) in the Fairfax et al. dataset. Next, coloc64 was applied 
to the association statistics to estimate the posterior probability (with 
the default prior) that the cis and trans gene have a shared eQTL within 
1 Mb of the cis gene, setting a posterior probability threshold of 0.75 
to determine significant co-localization (varying this threshold does 
not change downstream results; Supplementary Fig. 9d). The posterior 
probability that each cis gene co-localizes with random trans genes was 
also computed. For all analyses, the top 20 principal components (PCs) 
of the gene expression matrix were included as covariates, matching 
the covariates included by Fairfax et al. in their trans-eQTL analysis and 
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selected based on the fact that they maximize the number of signifi-
cant trans-eQTLs in Fairfax et al. By restricting the cis gene to having 
a significant eQTL and comparing our effects to random genes while 
keeping the cis gene the same, we control for differences in power for 
detecting cis-by-trans eQTLs that arise from differential levels of selec-
tive constraint on the cis gene. In particular, the cis genes selected to be 
perturbed in our screens include many genes under selective constraint 
(Supplementary Fig. 7a), for which we have decreased power to detect 
cis-by-trans eQTLs compared to random cis genes.

Bivariate Haseman–Elston regression as implemented in the GCTA 
software tool66 was also used to compute the genetic correlation 
between the expression of the cis gene and the trans gene when restrict-
ing to the region 1 Mb around the promoter of the cis gene. Again, the 
top 20 PCs of the gene expression matrix were included as covariates. 
The method outputs a genetic correlation estimate ̂r  and standard 
error estimate SE( ̂r) for each cis–trans gene pair. To obtain a combined 
genetic correlation estimate for all downstream genes of a given per-
turbed gene, all ̂r  estimates were first squared and then combined using 
inverse variance weighing. The variance of ̂r2 was estimated from SE( ̂r) 
using the Delta method: Var ( ̂r2) ≈ 4 ̂r2Var( ̂r).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Raw and processed data for all Perturb-seq screens (including all per-
turbation effect sizes estimated with FR-Perturb) were deposited in 
the National Center for Biotechnology Information’s Gene Expression 
Omnibus under accession number GSE221321 (ref. 90). SNP-to-gene links 
(for running sc-linker) can be found at https://github.com/kkdey/GSSG. 
GWAS summary statistics can be found at https://data.broadinstitute. 
org/alkesgroup/sumstats_formatted/. eQTLGen data can be found 
at https://www.eqtlgen.org/phase1.html. Genotypes and expres-
sion data from the Fairfax et al.27 study can be found at the European 
Genome-phenome Archive (https://ega-archive.org/) under study 
ID EGAS00000000109, although approval is needed to obtain raw 
data. Gene sets from the Molecular Signatures Database used to run 
enrichment analysis can be found at https://www.gsea-msigdb.org/
gsea/msigdb/collections.jsp.

Code availability
Software implementing FR-Perturb can be found at https://github.
com/douglasyao/FR-Perturb (ref. 91).
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Extended Data Fig. 1 | Performance of compressed Perturb-seq in simulations 
with different effect size structure. Effect sizes were simulated for 100 
perturbations on 10,000 genes by separately simulating factor matrices, 
comprising a (1) 100 perturbation x module ‘activity’ matrix and (2) module 
x 10,000 gene ‘dictionary’ matrix, then multiplying the matrices together to 
obtain the final effect size matrix. Entries for both factor matrices were drawn 
from N(0, 1). The latent dimensionality (corresponding to r in the main text) 
of the final matrix was set by varying the number of modules (that is columns 
of the activity matrix or rows of the dictionary matrix). The perturbation 
sparsity (corresponding to q in the main text) was set by randomly setting a 
given proportion of entries in the module activity matrix to zero. Samples were 
generated by taking random rows (or sums of random combinations of rows) of 

the perturbation-by-gene effect size matrix, with the number of rows represented 
per sample set to 1 for conventional samples or 5 for composite samples. Noise 
from N(0, 9) was added to all samples to generate phenotypes with 10% signal 
and 90% noise for the 1 perturbation/sample scenario (plausible for single-cell 
expression data). Unless otherwise specified, inference was performed using the 
Factorize-Recover algorithm. (a) Correlation of inferred vs. true effects (Y-axis) 
when varying the latent dimensionality r of the perturbation effect size matrix 
(X-axis). q was fixed at 0.1 (left) or 1 (right). (b) Correlation of inferred vs. true 
effects (Y-axis) when varying the perturbation sparsity q (that is the proportion 
of nonzero entries in the module activity matrix; X-axis). r was fixed at 10 (left)  
or 50 (right).

http://www.nature.com/naturebiotechnology
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Extended Data Fig. 2 | Analysis of pre-stimulated cells. Volcano plots 
showing the log2 fold changes (x-axis) and F statistics (y-axis) of all genes from 
differential expression analysis of pre-stimulated vs. LPS-stimulated cells. (a) 
Top 20 most significantly differentially expressed genes are labeled. (b) Same 

data as a, but instead the top 100 genes (based on the number of perturbations 
that significantly modulate them) are highlighted in red. Density plot shows the 
distribution of log2 fold changes of these 100 genes.

http://www.nature.com/naturebiotechnology
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Extended Data Fig. 3 | Additional analyses comparing compressed versus 
conventional screens. (a) Number of significant effects (q < 0.05) detected by 
FR-Perturb and negative binomial regression (y-axis) as a function of number 
of channels (x-axis) from the conventional knock-out screen. We do not include 
the number of significant effects from elastic net due to its extremely large 
magnitude ( > 1,000,000), which is inconsistent with the performance of elastic 
net in held-out validation analyses. (b) Sample size in terms of percentage of 
a single cell-pooled channel by droplet count (x-axis) versus out-of-sample 
validation accuracy (y-axis). Validation accuracy of 10 channels analyzed with 
elastic net or negative binomial regression is indicated with dotted lines. (c) 

Performance of cell-pooled versus conventional screen (y-axis) while varying 
the number of effects being compared (x-axis). Performance is quantified as the 
number of conventional channels needed to obtain the same correlation (left) 
or AUPRC (right) as one cell-pooled channel. Dotted line represents the cutoffs 
used in Fig. 3e, f. (d) Scatterplots of top 19,909 estimated effects from the cell-
pooled screen (x-axis) versus the same effects in the conventional screen (y-axis) 
when estimating effects using elastic net regression (left) or negative binomial 
regression (right). R = Pearson’s correlation, SC = sign concordance. (e-h) Same 
as a-d, but showing results from the guide-pooled screen (restricting to cells with 
3 or more guides) and corresponding conventional screen.

http://www.nature.com/naturebiotechnology
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Extended Data Fig. 4 | Additional analyses comparing compressed versus 
conventional screens. (a) Same as Fig. 3e (left) and 4e (right), but correlation 
(Y-axis) is computed based on perturbation effects on gene modules rather than 
effects on individual genes. FR-Perturb produces module dictionaries that are 
correlated but not identical when applied to different datasets, which precludes 
the direct comparison of perturbation effects on modules in different datasets. 
Thus, to enable this comparison, the module dictionary was fixed to be the one 
obtained from the held-out validation dataset for all results above. We note that 
overall lower correlation is observed in this figure than Figs. 3e and 4e because we 
compared all perturbation’s effects on all modules rather than only significant 
effects on genes. (b) Same as Fig. 3e, but performance is assessed based on the 

number of gene sets constructed from the perturbation effects with significant 
GWAS heritability enrichment estimated using sc-linker (p < 0.001 for at least 
two traits out of 63 total; same threshold used as Fig. 6a; see Methods and section 
‘Integrating Perturb-seq with genome-wide association studies’ in the main text). 
P-values are two-sided and obtained from sc-linker. (c) Individual heritability 
enrichment estimates for all significant gene sets and traits from the full knock-
out screen (combined cell-pooled and conventional screens, leftmost plot). 
The same effects are shown for gene sets constructed from perturbation effects 
estimated from 1 conventional channel, 1 cell-pooled channel, and 4 conventional 
channels. Effects with p > 0.001 are greyed out.

http://www.nature.com/naturebiotechnology
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Extended Data Fig. 5 | Additional analyses comparing inference methods. 
(a) Heritability enrichment estimates and p-values (estimated using sc-linker; 
Methods) for gene sets and traits that are significant in at least one of the three 
inference methods. Gene sets were constructed in the same manner as in Fig. 6a  
(see section ‘Integrating Perturb-seq with genome-wide association studies’ in 
the main text). Significance is determined as having two or more effects with 

p < 0.001 (same threshold used as in Fig. 6a). Greyed out points correspond to 
p-value > 0.001. Gene sets are constructed from the conventional knock-out 
screen. (b) Odds ratios for enrichment of evolutionarily constrained genes (pLI > 
0.9) in all gene sets (comprising the top 500 upregulated or downregulated genes 
from each perturbation) estimated from the three inference methods. Each point 
represents a gene set.

http://www.nature.com/naturebiotechnology


Nature Biotechnology

Article https://doi.org/10.1038/s41587-023-01964-9

Extended Data Fig. 6 | Relationship between degree of overloading and 
performance. (a) Down-sampling droplets from cell-pooled and conventional 
screens. (Left) Correlation of top 10,000 estimated effects with held-out 
validation data (y-axis) when varying droplet count (x-axis). (Right) Correlation 
of top 10,000 estimated effects with true effects in simulations of cell-pooled 

data with varying numbers of cells/droplet. (b) Down-sampling cells from 
guide-pooled screen stratified by # guides/cell. (Left) Correlation of top 10,000 
estimated effects with held-out validation data (y-axis) when varying cell count 
(x-axis). (Right) Correlation of top 10,000 estimated effects with true effects in 
simulations of guide-pooled data.
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Extended Data Fig. 7 | Additional signal in cells containing multiple guides 
in a conventional 1,130 gene Perturb-seq screen in mouse BMDCs. These 
cells would normally be discarded before analysis. (a) Correlation of top 10,000 
estimated effects with held-out validation (y-axis) when varying cell count 

(x-axis). (b) Increase in effective sample size in cells (y-axis) when including cells 
containing 2 or 3 guides (x-axis). Effective sample size for cells with 2 or 3 guides 
is computed as the number of single-guide containing cells needed to achieve the 
same held-out validation accuracy (from a).

http://www.nature.com/naturebiotechnology
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Extended Data Fig. 8 | Experimental validation of six regulators of the 
inflammatory response. RAB5C, PGM3, XPR1, and KIDINS220 represent novel 
regulators of the inflammatory response, while MYD88 and STAT1 were included 
as positive controls. (a) IL6 concentration (as measured by ELISA) in LPS-
stimulated THP1 cells infected with single guides. Two guides were included for 
each target (excluding XPR1, which only has one guide due to all cells receiving 

the other guide dying). Individual bars represent guides, while individual points 
represent experimental replicates. (b) Left: Log fold changes of IL6 protein in 
cells receiving perturbations (averaged across the two guides for each target) 
relative to non-targeting controls. Right: Mean log fold change of expression of 
genes in P1 (inflammatory program, see Fig. 5d).
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Extended Data Fig. 9 | Additional simulations. (a) Performance of cell/guide 
pooling when varying sequencing depth (X-axis). Y-axis: correlation of the 
top 10,000 most significant effects with the true effects. (b) Performance of 
guide pooling when simulating cells with a fixed number of guides per cell (left; 
matching the simulation in Extended Data Fig. 6) or when simulating cells with 
number of guides following a zero-truncated Poisson distribution with mean 
guides/cell matching the left plot. (c) Performance of guide pooling vs. the 
efficiency of all guides (x-axis). Guide efficiency is simulated as the proportion 

of guides that had the intended effect on their target. For example, for a guide 
efficiency of 0.8, 20% of guides were randomly selected to have no downstream 
effects. (d) Performance of guide pooling when efficiency within cells decays 
as a function of the number of guides per cell. Left: 5 different simulated decay 
scenarios, where the efficiency per cell = e−λ(x−1) and x is the number of guides in 
the cell. Right: Performance of guide pooling across different # of guides/cell for 
these 5 scenarios.
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Extended Data Fig. 10 | Theoretical number of cells needed to learn 
pairwise interactions at different levels of guide pooling. Number of 
total perturbations (x-axis) vs. number of cells needed to learn second-order 

interaction effects between all pairs of perturbation (y-axis), based on the 
formula N = 400 * C(p, 2) / C(k, 2), where N is the number of cells, p is the number 
of perturbations, and k the number of guides per cell.

http://www.nature.com/naturebiotechnology
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