Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Brain borders at the central stage of neuroimmunology

Subjects

Abstract

The concept of immune privilege suggests that the central nervous system is isolated from the immune system. However, recent studies have highlighted the borders of the central nervous system as central sites of neuro-immune interactions. Although the nervous and immune systems both function to maintain homeostasis, under rare circumstances, they can develop pathological interactions that lead to neurological or psychiatric diseases. Here we discuss recent findings that dissect the key anatomical, cellular and molecular mechanisms that enable neuro-immune responses at the borders of the brain and spinal cord and the implications of these interactions for diseases of the central nervous system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Neuro-immune crosstalk.
Fig. 2: Anatomical sites for neuro-immune interactions at the brain borders.
Fig. 3: Meninges and neuro-immune interactions.
Fig. 4: Skull bone marrow and neuro-immune interactions.

Similar content being viewed by others

References

  1. Herz, J. et al. GABAergic neuronal IL-4R mediates T cell effect on memory. Neuron 109, 3609–3618.e9 (2021).

    Article  CAS  Google Scholar 

  2. Alves de Lima, K. et al. Meningeal γδ T cells regulate anxiety-like behavior via IL-17a signaling in neurons. Nat. Immunol. 21, 1421–1429 (2020).

    Article  CAS  Google Scholar 

  3. Choi, G. B. et al. The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring. Science 351, 933–939 (2016).

    Article  ADS  CAS  Google Scholar 

  4. Mikami, N. et al. Calcitonin gene-related peptide is an important regulator of cutaneous immunity: effect on dendritic cell and T cell functions. J. Immunol. 186, 6886–6893 (2011).

    Article  CAS  Google Scholar 

  5. Qian, J., Galitovskiy, V., Chernyavsky, A. I., Marchenko, S. & Grando, S. A. Plasticity of the murine spleen T-cell cholinergic receptors and their role in in vitro differentiation of naïve CD4 T cells toward the Th1, Th2 and Th17 lineages. Genes Immun. 12, 222–230 (2011).

    Article  CAS  Google Scholar 

  6. Li, S. et al. Interleukin-13 and its receptor are synaptic proteins involved in plasticity and neuroprotection. Preprint at bioRxiv https://doi.org/10.1101/2021.12.01.470746 (2021).

  7. Lee, H. et al. Synapse elimination and learning rules coregulated by MHC class I H2-Db. Nature 509, 195–200 (2014).

    Article  ADS  CAS  Google Scholar 

  8. Wang, C. et al. Microglia mediate forgetting via complement-dependent synaptic elimination. Science 367, 688–694 (2020).

    Article  ADS  CAS  Google Scholar 

  9. Zhang, B. et al. B cell-derived GABA elicits IL-10+ macrophages to limit anti-tumour immunity. Nature 599, 471–476 (2021).

    Article  ADS  CAS  Google Scholar 

  10. Reed, M. D. et al. IL-17a promotes sociability in mouse models of neurodevelopmental disorders. Nature 577, 249–253 (2020).

    Article  ADS  CAS  Google Scholar 

  11. Salvador, A. F., de Lima, K. A. & Kipnis, J. Neuromodulation by the immune system: a focus on cytokines. Nat. Rev. Immunol. 21, 526–541 (2021).

    Article  CAS  Google Scholar 

  12. Ding, X. et al. Panicle-shaped sympathetic architecture in the spleen parenchyma modulates antibacterial innate immunity. Cell Rep. 27, 3799–3807.e3 (2019).

    Article  CAS  Google Scholar 

  13. Huang, S. et al. Lymph nodes are innervated by a unique population of sensory neurons with immunomodulatory potential. Cell 184, 441–459.e25 (2021).

    Article  CAS  Google Scholar 

  14. Goldman, D. H. et al. Age-associated suppression of exploratory activity during sickness is linked to meningeal lymphatic dysfunction and microglia activation. Nat. Aging 2, 704–713 (2022).

    Article  Google Scholar 

  15. Koren, T. et al. Insular cortex neurons encode and retrieve specific immune responses. Cell 184, 5902–5915.e17 (2021).

    Article  CAS  Google Scholar 

  16. Schulz, M. & Engelhardt, B. The circumventricular organs participate in the immunopathogenesis of experimental autoimmune encephalomyelitis. Cerebrospinal Fluid Res. 2, 8 (2005).

    Article  Google Scholar 

  17. Engelhardt, B. & Coisne, C. Fluids and barriers of the CNS establish immune privilege by confining immune surveillance to a two-walled castle moat surrounding the CNS castle. Fluids Barriers CNS 8, 4 (2011).

    Article  Google Scholar 

  18. Engelhardt, B., Vajkoczy, P. & Weller, R. O. The movers and shapers in immune privilege of the CNS. Nat. Immunol. 18, 123–131 (2017).

    Article  CAS  Google Scholar 

  19. Forrester, J. V., McMenamin, P. G. & Dando, S. J. CNS infection and immune privilege. Nat. Rev. Neurosci. 19, 655–671 (2018).

    Article  CAS  Google Scholar 

  20. Galea, I., Bechmann, I. & Perry, V. H. What is immune privilege (not)? Trends Immunol. 28, 12–18 (2007).

    Article  CAS  Google Scholar 

  21. Louveau, A., Harris, T. H. & Kipnis, J. Revisiting the concept of CNS immune privilege. Trends Immunol. 36, 569–577 (2015).

    Article  CAS  Google Scholar 

  22. Murphy, J. B. & Sturm, E. Conditions determining the transplantability of tissues in the brain. J. Exp. Med. 38, 183–197 (1923).

    Article  CAS  Google Scholar 

  23. Medawar, P. B. Immunity to homologous grafted skin; the fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye. Br. J. Exp. Pathol. 29, 58–69 (1948).

    CAS  Google Scholar 

  24. Cserr, H. F., Harling-Berg, C. J. & Knopf, P. M. Drainage of brain extracellular fluid into blood and deep cervical lymph and its immunological significance. Brain Pathol. 2, 269–276 (1992).

    Article  CAS  Google Scholar 

  25. Sun, D., Qin, Y., Chluba, J., Epplen, J. T. & Wekerle, H. Suppression of experimentally induced autoimmune encephalomyelitis by cytolytic T–T cell interactions. Nature 332, 843–845 (1988).

    Article  ADS  CAS  Google Scholar 

  26. Hickey, W. F., Hsu, B. L. & Kimura, H. T-lymphocyte entry into the central nervous system. J. Neurosci. Res. 28, 254–260 (1991).

    Article  CAS  Google Scholar 

  27. Iliff, J. J. et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci. Transl. Med. 4, 147ra111 (2012).

    Article  Google Scholar 

  28. Louveau, A. et al. CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature. Nat. Neurosci. 21, 1380–1391 (2018).

    Article  CAS  Google Scholar 

  29. Song, E. et al. VEGF-C-driven lymphatic drainage enables immunosurveillance of brain tumours. Nature 577, 689–694 (2020). This study demonstrates how augmentation of meningeal lymphatic drainage can enhance CNS antigen drainage and promote T cell-mediated rejection of primary brain tumours.

    Article  ADS  CAS  Google Scholar 

  30. Carare, R. O. et al. Clearance of interstitial fluid (ISF) and CSF (CLIC) group—part of Vascular Professional Interest Area (PIA). Alzheimers Dement. 12, e12053 (2020).

    Google Scholar 

  31. Hawkes, C. A., Jayakody, N., Johnston, D. A., Bechmann, I. & Carare, R. O. Failure of perivascular drainage of β-amyloid in cerebral amyloid angiopathy. Brain Pathol. 24, 396–403 (2014).

    Article  CAS  Google Scholar 

  32. Hu, X. et al. Meningeal lymphatic vessels regulate brain tumor drainage and immunity. Cell Res. 30, 229–243 (2020).

    Article  CAS  Google Scholar 

  33. Rustenhoven, J. A privileged brain. Science 374, 548–548 (2021).

    Article  ADS  CAS  Google Scholar 

  34. Rustenhoven, J. et al. Functional characterization of the dural sinuses as a neuroimmune interface. Cell 184, 1000–1016.e27 (2021). This study reveals how exposure to CNS antigens and immune trafficking via the dural sinuses enables antigen presentation and immune surveillance of the brain from a distal site.

    Article  CAS  Google Scholar 

  35. Mazzitelli, J. A. et al. Cerebrospinal fluid regulates skull bone marrow niches via direct access through dural channels. Nat. Neurosci. 25, 555–560 (2022). This study reveals how CSF can access CNS-associated bone marrow and enhance haematopoiesis and immune cell migration under inflammatory conditions.

    Article  CAS  Google Scholar 

  36. Pulous, F. E. et al. Cerebrospinal fluid can exit into the skull bone marrow and instruct cranial hematopoiesis in mice with bacterial meningitis. Nat. Neurosci. 25, 567–576 (2022). This study reveals how CSF can access the skull bone marrow and enhance haematopoiesis following CNS infection.

    Article  CAS  Google Scholar 

  37. Ringstad, G. & Eide, P. K. Molecular trans-dural efflux to skull bone marrow in humans with cerebrospinal fluid disorders. Brain J. Neurol. 145, 1464–1472 (2021). This study reveals how the CSF efflux routes to the skull bone marrow observed in rodents are conserved in humans.

    Article  Google Scholar 

  38. Wang, Y. et al. Early developing B cells undergo negative selection by central nervous system-specific antigens in the meninges. Immunity 54, 2784–2794.e6 (2021). This study demonstrates how exposure to CNS-derived antigens in the dural mater shapes the B cell repertoire and contributes to immune tolerance by eliminating cells with CNS-reactive B cell receptors.

    Article  CAS  Google Scholar 

  39. Fitzpatrick, Z. et al. Gut-educated IgA plasma cells defend the meningeal venous sinuses. Nature 587, 472–476 (2020). This study demonstrates the importance of dural sinus-associated plasma cells as a first-line of defence in preventing CNS infection by blood pathogens.

    Article  ADS  CAS  Google Scholar 

  40. Ribeiro, M. et al. Meningeal γδ T cell-derived IL-17 controls synaptic plasticity and short-term memory. Sci. Immunol. 4, eaay5199 (2019).

    Article  CAS  Google Scholar 

  41. Filiano, A. J. et al. Unexpected role of interferon-γ in regulating neuronal connectivity and social behaviour. Nature 535, 425–429 (2016).

    Article  ADS  CAS  Google Scholar 

  42. Cugurra, A. et al. Skull and vertebral bone marrow are myeloid cell reservoirs for the meninges and CNS parenchyma. Science 373, eabf7844 (2021). This study highlights how the CNS-associated bone marrow can supply myeloid cells to the brain and spinal cord meninges under homeostasis and during diverse pathologies.

    Article  CAS  Google Scholar 

  43. Brioschi, S. et al. Heterogeneity of meningeal B cells reveals a lymphopoietic niche at the CNS borders. Science 373, eabf9277 (2021). This study demonstrates how the CNS-associated bone marrow can supply B cells to the meninges and how the meninges function as an active site for B cell maturation.

    Article  CAS  Google Scholar 

  44. Herisson, F. et al. Direct vascular channels connect skull bone marrow and the brain surface enabling myeloid cell migration. Nat. Neurosci. 21, 1209–1217 (2018). This study was the first to identify the presence of skull bone marrow channels that connect this haematopoietic site with the underlying brain meninges, enabling immune cell trafficking.

    Article  CAS  Google Scholar 

  45. Siegenthaler, J. A. & Pleasure, S. J. We have got you ‘covered’: how the meninges control brain development. Curr. Opin. Genet. Dev. 21, 249–255 (2011).

    Article  CAS  Google Scholar 

  46. Siegenthaler, J. A. et al. Retinoic acid from the meninges regulates cortical neuron generation. Cell 139, 597–609 (2009).

    Article  CAS  Google Scholar 

  47. Mrdjen, D. et al. High-dimensional single-cell mapping of central nervous system immune cells reveals distinct myeloid subsets in health, aging, and disease. Immunity 48, 380–395.e6 (2018).

    Article  CAS  Google Scholar 

  48. Van Hove, H. et al. A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment. Nat. Neurosci. 22, 1021–1035 (2019). This study provides a comprehensive atlas of immune cell populations at the various CNS borders including the dura, leptomeninges and choroid plexus.

    Article  Google Scholar 

  49. Ajami, B. et al. Single-cell mass cytometry reveals distinct populations of brain myeloid cells in mouse neuroinflammation and neurodegeneration models. Nat. Neurosci. 21, 541–551 (2018).

    Article  CAS  Google Scholar 

  50. Drieu, A. et al. Parenchymal border macrophages regulate the flow dynamics of the cerebrospinal fluid. Nature 611, 585–593 (2022).

    Article  CAS  Google Scholar 

  51. Gate, D. et al. Clonally expanded CD8 T cells patrol the cerebrospinal fluid in Alzheimer’s disease. Nature 577, 399–404 (2020). This study highlights the importance of adaptive immune cells in the brain borders of human neurodegenerative disease by demonstrating the presence of clonally expanded T cells that recognize Epstein–Barr viral antigens in the CSF of patients with Alzheimer’s disease.

    Article  ADS  CAS  Google Scholar 

  52. Schafflick, D. et al. Integrated single cell analysis of blood and cerebrospinal fluid leukocytes in multiple sclerosis. Nat. Commun. 11, 247 (2020).

    Article  ADS  CAS  Google Scholar 

  53. Gadani, S. P., Smirnov, I., Wiltbank, A. T., Overall, C. C. & Kipnis, J. Characterization of meningeal type 2 innate lymphocytes and their response to CNS injury. J. Exp. Med. 214, 285–296 (2017).

    Article  CAS  Google Scholar 

  54. Merlini, A. et al. Distinct roles of the meningeal layers in CNS autoimmunity. Nat. Neurosci. 25, 887–899 (2022).

    Article  CAS  Google Scholar 

  55. Schläger, C. et al. Effector T-cell trafficking between the leptomeninges and the cerebrospinal fluid. Nature 530, 349–353 (2016).

    Article  ADS  Google Scholar 

  56. Derecki, N. C. et al. Regulation of learning and memory by meningeal immunity: a key role for IL-4. J. Exp. Med. 207, 1067–1080 (2010).

    Article  CAS  Google Scholar 

  57. Chaskiel, L. et al. Interleukin-1 reduces food intake and body weight in rat by acting in the arcuate hypothalamus. Brain. Behav. Immun. 81, 560–573 (2019).

    Article  CAS  Google Scholar 

  58. Daneman, R. & Prat, A. The blood–brain barrier. Cold Spring Harb. Perspect. Biol. 7, a020412 (2015).

    Article  Google Scholar 

  59. Munji, R. N. et al. Profiling the mouse brain endothelial transcriptome in health and disease models reveals a core blood–brain barrier dysfunction module. Nat. Neurosci. 22, 1892–1902 (2019).

    Article  CAS  Google Scholar 

  60. Kawakami, N. et al. Live imaging of effector cell trafficking and autoantigen recognition within the unfolding autoimmune encephalomyelitis lesion. J. Exp. Med. 201, 1805–1814 (2005).

    Article  CAS  Google Scholar 

  61. Ringstad, G. & Eide, P. K. Cerebrospinal fluid tracer efflux to parasagittal dura in humans. Nat. Commun. 11, 354 (2020). This study reveals how the CSF efflux routes to the dural sinuses observed in rodents are conserved in humans.

    Article  ADS  CAS  Google Scholar 

  62. Eide, P. K. & Ringstad, G. Cerebrospinal fluid egress to human parasagittal dura and the impact of sleep deprivation. Brain Res. 1772, 147669 (2021).

    Article  CAS  Google Scholar 

  63. Schafflick, D. et al. Single-cell profiling of CNS border compartment leukocytes reveals that B cells and their progenitors reside in non-diseased meninges. Nat. Neurosci. 24, 1225–1234 (2021).

    Article  CAS  Google Scholar 

  64. Absinta, M. et al. Human and nonhuman primate meninges harbor lymphatic vessels that can be visualized noninvasively by MRI. eLife 6, e29738 (2017).

    Article  Google Scholar 

  65. Louveau, A. et al. Structural and functional features of central nervous system lymphatics. Nature 523, 337–341 (2015). This study demonstrates the presence of a lymphatic network in the dural meninges that drains cerebrospinal fluid.

    Article  ADS  CAS  Google Scholar 

  66. Aspelund, A. et al. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J. Exp. Med. 212, 991–999 (2015). This study demonstrates the presence of a lymphatic network in the dural meninges that drains CSF.

    Article  CAS  Google Scholar 

  67. Castranova, D. et al. Live imaging of intracranial lymphatics in the zebrafish. Circ. Res. 128, 42–58 (2021).

    Article  CAS  Google Scholar 

  68. Antila, S. et al. Development and plasticity of meningeal lymphatic vessels. J. Exp. Med. 214, 3645–3667 (2017).

    Article  CAS  Google Scholar 

  69. Ahn, J. H. et al. Meningeal lymphatic vessels at the skull base drain cerebrospinal fluid. Nature 572, 62–66 (2019).

    Article  ADS  CAS  Google Scholar 

  70. Da Mesquita, S. et al. Meningeal lymphatics affect microglia responses and anti-Aβ immunotherapy. Nature 593, 255–260 (2021).

    Article  Google Scholar 

  71. Da Mesquita, S. et al. Functional aspects of meningeal lymphatics in ageing and Alzheimer’s disease. Nature 560, 185–191 (2018).

    Article  ADS  Google Scholar 

  72. Ang, P. S., Matrongolo, M. J. & Tischfield, M. A. The growth and expansion of meningeal lymphatic networks are affected in craniosynostosis. Development 149, dev200065 (2022).

    Article  CAS  Google Scholar 

  73. Jacob, L. et al. Conserved meningeal lymphatic drainage circuits in mice and humans. J. Exp. Med. 219, e20220035 (2022). This study highlights the key pathways for lymphatic drainage of CSF in rodents and demonstrates how these are conserved in humans.

    Article  CAS  Google Scholar 

  74. Masuda, T. et al. Specification of CNS macrophage subsets occurs postnatally in defined niches. Nature 604, 740–748 (2022).

    Article  ADS  CAS  Google Scholar 

  75. MacAulay, N., Keep, R. F. & Zeuthen, T. Cerebrospinal fluid production by the choroid plexus: a century of barrier research revisited. Fluids Barriers CNS 19, 26 (2022).

    Article  Google Scholar 

  76. Dani, N. et al. A cellular and spatial map of the choroid plexus across brain ventricles and ages. Cell 184, 3056–3074.e21 (2021). This study provides a comprehensive atlas for probing choroid plexus immune cell phenotypes across distinct anatomical regions and during development.

    Article  CAS  Google Scholar 

  77. Shipley, F. B. et al. Tracking calcium dynamics and immune surveillance at the choroid plexus blood–cerebrospinal fluid interface. Neuron 108, 623–639.e10 (2020).

    Article  CAS  Google Scholar 

  78. Shechter, R. et al. Recruitment of beneficial M2 macrophages to injured spinal cord is orchestrated by remote brain choroid plexus. Immunity 38, 555–569 (2013).

    Article  CAS  Google Scholar 

  79. Strominger, I. et al. The choroid plexus functions as a niche for T-cell stimulation within the central nervous system. Front. Immunol. 9, 1066 (2018).

    Article  Google Scholar 

  80. Upton, M. L. & Weller, R. O. The morphology of cerebrospinal fluid drainage pathways in human arachnoid granulations. J. Neurosurg. 63, 867–875 (1985).

    Article  CAS  Google Scholar 

  81. Ma, Q., Ineichen, B. V., Detmar, M. & Proulx, S. T. Outflow of cerebrospinal fluid is predominantly through lymphatic vessels and is reduced in aged mice. Nat. Commun. 8, 1434 (2017).

    Article  ADS  Google Scholar 

  82. Decker, Y. et al. Magnetic resonance imaging of cerebrospinal fluid outflow after low-rate lateral ventricle infusion in mice. JCI Insight 8, e150881 (2022).

    Article  Google Scholar 

  83. Ma, Q. et al. Rapid lymphatic efflux limits cerebrospinal fluid flow to the brain. Acta Neuropathol. 137, 151–165 (2019).

    Article  Google Scholar 

  84. Hsu, M. et al. Neuroinflammation-induced lymphangiogenesis near the cribriform plate contributes to drainage of CNS-derived antigens and immune cells. Nat. Commun. 10, 229 (2019).

    Article  ADS  Google Scholar 

  85. Zou, W. et al. Blocking meningeal lymphatic drainage aggravates Parkinson’s disease-like pathology in mice overexpressing mutated α-synuclein. Transl. Neurodegener. 8, 7 (2019).

    Article  Google Scholar 

  86. Fabriek, B. O. et al. In vivo detection of myelin proteins in cervical lymph nodes of MS patients using ultrasound-guided fine-needle aspiration cytology. J. Neuroimmunol. 161, 190–194 (2005).

    Article  CAS  Google Scholar 

  87. Yao, H. et al. Leukaemia hijacks a neural mechanism to invade the central nervous system. Nature 560, 55–60 (2018).

    Article  ADS  CAS  Google Scholar 

  88. Cai, R. et al. Panoptic imaging of transparent mice reveals whole-body neuronal projections and skull-meninges connections. Nat. Neurosci. 22, 317–327 (2019).

    Article  CAS  Google Scholar 

  89. Derk, J., Jones, H. E., Como, C., Pawlikowski, B. & Siegenthaler, J. A. Living on the edge of the CNS: meninges cell diversity in health and disease. Front. Cell. Neurosci. 15, 245 (2021).

    Google Scholar 

  90. Roth, T. L. et al. Transcranial amelioration of inflammation and cell death after brain injury. Nature 505, 223–228 (2014).

    Article  ADS  CAS  Google Scholar 

  91. Sweeney, M. D., Sagare, A. P. & Zlokovic, B. V. Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat. Rev. Neurol. 14, 133–150 (2018).

    Article  CAS  Google Scholar 

  92. Kolabas, Z. I. et al. Multi-omics and 3D-imaging reveal bone heterogeneity and unique calvaria cells in neuroinflammation. Preprint at bioRxiv https://doi.org/10.1101/2021.12.24.473988 (2021).

  93. Giladi, A. et al. Cxcl10+ monocytes define a pathogenic subset in the central nervous system during autoimmune neuroinflammation. Nat. Immunol. 21, 525–534 (2020).

    Article  CAS  Google Scholar 

  94. Baruch, K. et al. PD-1 immune checkpoint blockade reduces pathology and improves memory in mouse models of Alzheimer’s disease. Nat. Med. 22, 135–137 (2016).

    Article  CAS  Google Scholar 

  95. Krasemann, S. et al. The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity 47, 566–581.e9 (2017).

    Article  CAS  Google Scholar 

  96. Parhizkar, S. et al. Loss of TREM2 function increases amyloid seeding but reduces plaque-associated ApoE. Nat. Neurosci. 22, 191–204 (2019).

    Article  CAS  Google Scholar 

  97. Sayed, F. A. et al. AD-linked R47H-TREM2 mutation induces disease-enhancing microglial states via AKT hyperactivation. Sci. Transl. Med. 13, eabe3947 (2021).

    Article  CAS  Google Scholar 

  98. Keren-Shaul, H. et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169, 1276–1290.e17 (2017).

    Article  CAS  Google Scholar 

  99. Bellenguez, C. et al. New insights into the genetic etiology of Alzheimer’s disease and related dementias. Nat. Genet. 54, 412–436 (2022).

    Article  CAS  Google Scholar 

  100. Kunkle, B. W. et al. Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat. Genet. 51, 414–430 (2019).

    Article  CAS  Google Scholar 

  101. Ulland, T. K. & Colonna, M. TREM2—a key player in microglial biology and Alzheimer disease. Nat. Rev. Neurol. 14, 667–675 (2018).

    Article  CAS  Google Scholar 

  102. Yang, A. C. et al. A human brain vascular atlas reveals diverse mediators of Alzheimer’s risk. Nature 603, 885–892 (2022).

    Article  ADS  CAS  Google Scholar 

  103. Dulken, B. W. et al. Single-cell analysis reveals T cell infiltration in old neurogenic niches. Nature 571, 205–210 (2019).

    Article  CAS  Google Scholar 

  104. Kunis, G. et al. IFN-γ-dependent activation of the brain’s choroid plexus for CNS immune surveillance and repair. Brain J. Neurol. 136, 3427–3440 (2013).

    Article  Google Scholar 

  105. Patel, T. K. et al. Dural lymphatics regulate clearance of extracellular tau from the CNS. Mol. Neurodegener. 14, 11 (2019).

    Article  Google Scholar 

  106. Wightman, D. P. et al. A genome-wide association study with 1,126,563 individuals identifies new risk loci for Alzheimer’s disease. Nat. Genet. 53, 1276–1282 (2021).

    Article  CAS  Google Scholar 

  107. Zhao, Z. et al. Central role for PICALM in amyloid-β blood–brain barrier transcytosis and clearance. Nat. Neurosci. 18, 978–987 (2015).

    Article  CAS  Google Scholar 

  108. Wojtas, A. M. et al. Loss of clusterin shifts amyloid deposition to the cerebrovasculature via disruption of perivascular drainage pathways. Proc. Natl Acad. Sci. USA 114, E6962–E6971 (2017).

    Article  CAS  Google Scholar 

  109. Simon, M. et al. Loss of perivascular aquaporin-4 localization impairs glymphatic exchange and promotes amyloid β plaque formation in mice. Alzheimers Res. Ther. 14, 59 (2022).

    Article  CAS  Google Scholar 

  110. McFarland, H. F. & Martin, R. Multiple sclerosis: a complicated picture of autoimmunity. Nat. Immunol. 8, 913–919 (2007).

    Article  CAS  Google Scholar 

  111. Yednock, T. A. et al. Prevention of experimental autoimmune encephalomyelitis by antibodies against α4β1 integrin. Nature 356, 63–66 (1992).

    Article  ADS  CAS  Google Scholar 

  112. Zamvil, S. S. & Steinman, L. The T lymphocyte in experimental allergic encephalomyelitis. Annu. Rev. Immunol. 8, 579–621 (1990).

    Article  CAS  Google Scholar 

  113. Louveau, A. in Tertiary Lymphoid Structures: Methods and Protocols (ed. Dieu-Nosjean, M.-C.) 31–45 (Springer, 2018).

  114. van Zwam, M. et al. Surgical excision of CNS-draining lymph nodes reduces relapse severity in chronic-relapsing experimental autoimmune encephalomyelitis. J. Pathol. 217, 543–551 (2009).

    Article  Google Scholar 

  115. Weller, M. et al. Glioma. Nat. Rev. Dis. Primer 1, 15017 (2015).

    Article  Google Scholar 

  116. Pombo Antunes, A. R. et al. Single-cell profiling of myeloid cells in glioblastoma across species and disease stage reveals macrophage competition and specialization. Nat. Neurosci. 24, 595–610 (2021).

    Article  CAS  Google Scholar 

  117. Nassiri, F. et al. A clinically applicable integrative molecular classification of meningiomas. Nature 597, 119–125 (2021).

    Article  ADS  CAS  Google Scholar 

  118. Wang, A. Z. et al. Single cell atlas of human dura reveals cellular meningeal landscape and insights into meningioma immune response. Preprint at biorXiv http://biorxiv.org/lookup/doi/10.1101/2021.08.03.454066 (2021).

  119. Choudhury, A. et al. Meningioma DNA methylation groups identify biological drivers and therapeutic vulnerabilities. Nat. Genet. 54, 649–659 (2022).

    Article  CAS  Google Scholar 

  120. Faraco, G. et al. Perivascular macrophages mediate the neurovascular and cognitive dysfunction associated with hypertension. J. Clin. Invest. 126, 4674–4689 (2016).

    Article  Google Scholar 

  121. Santisteban, M. M. et al. Endothelium–macrophage crosstalk mediates blood–brain barrier dysfunction in hypertension. Hypertension 76, 795–807 (2020).

    Article  CAS  Google Scholar 

  122. Pedragosa, J. et al. CNS-border associated macrophages respond to acute ischemic stroke attracting granulocytes and promoting vascular leakage. Acta Neuropathol. Commun. 6, 76 (2018).

    Article  Google Scholar 

  123. Winkler, E. A. et al. A single-cell atlas of the normal and malformed human brain vasculature. Science 375, eabi7377 (2022).

    Article  CAS  Google Scholar 

  124. Sierra, C. Hypertension and the risk of dementia. Front. Cardiovasc. Med. 7, 5 (2020).

    Article  Google Scholar 

  125. Nation, D. A. et al. Blood–brain barrier breakdown is an early biomarker of human cognitive dysfunction. Nat. Med. 25, 270–276 (2019).

    Article  ADS  CAS  Google Scholar 

  126. Park, L. et al. Brain perivascular macrophages initiate the neurovascular dysfunction of Alzheimer Aβ peptides. Circ. Res. 121, 258–269 (2017).

    Article  CAS  Google Scholar 

  127. Russo, M. V., Latour, L. L. & McGavern, D. B. Distinct myeloid cell subsets promote meningeal remodeling and vascular repair after mild traumatic brain injury. Nat. Immunol. 19, 442–452 (2018).

    Article  CAS  Google Scholar 

  128. Shibata, M. et al. Clearance of Alzheimer’s amyloid-β1–40 peptide from brain by LDL receptor–related protein-1 at the blood–brain barrier. J. Clin. Invest. 106, 1489–1499 (2000).

    Article  CAS  Google Scholar 

  129. Storck, S. E. et al. Endothelial LRP1 transports amyloid-β1–42 across the blood–brain barrier. J. Clin. Invest. 126, 123–136 (2016).

    Article  Google Scholar 

  130. Sevigny, J. et al. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature 537, 50–56 (2016).

    Article  ADS  CAS  Google Scholar 

  131. Salloway, S. et al. Amyloid-related imaging abnormalities in 2 phase 3 studies evaluating aducanumab in patients with early Alzheimer disease. JAMA Neurol. 79, 13–21 (2022).

    Article  Google Scholar 

  132. Knopman, D. S., Jones, D. T. & Greicius, M. D. Failure to demonstrate efficacy of aducanumab: an analysis of the EMERGE and ENGAGE trials as reported by Biogen, December 2019. Alzheimers Dement. 17, 696–701 (2021).

    Article  Google Scholar 

  133. Zhang, Y. & Zhang, Z. The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell. Mol. Immunol. 17, 807–821 (2020).

    Article  CAS  Google Scholar 

  134. Plüß, M. et al. Clinical efficacy of routinely administered belimumab on proteinuria and neuropsychiatric lupus. Front. Med. 7, 222 (2020).

    Article  ADS  Google Scholar 

  135. Smets, I. & Titulaer, M. J. Antibody therapies in autoimmune encephalitis. Neurotherapeutics 19, 823–831 (2022).

    Article  CAS  Google Scholar 

  136. Lutterotti, A. & Martin, R. Getting specific: monoclonal antibodies in multiple sclerosis. Lancet Neurol. 7, 538–547 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was conducted with funding from the Royal Society of New Zealand Rutherford Discovery Fellowship (J.R.) and National Institutes of Health grant AT010416 (J.K.), National Institutes of Health grant AG034113 (J.K.), and National Institutes of Health grant AG057496 (J.K.). We thank M. S. Barski and Reciprocal Space for the initial figure preparation.

Author information

Authors and Affiliations

Authors

Contributions

J.R. and J.K. discussed the content of the manuscript including the selection of key studies, wrote and edited the manuscript, and generated figure outlines.

Corresponding authors

Correspondence to Justin Rustenhoven or Jonathan Kipnis.

Ethics declarations

Competing interests

J.K. is a member of a scientific advisory group for PureTech and holds patents and patent applications related to the findings discussed in this Review.

Peer review

Peer review information

Nature thanks Britta Engelhardt and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rustenhoven, J., Kipnis, J. Brain borders at the central stage of neuroimmunology. Nature 612, 417–429 (2022). https://doi.org/10.1038/s41586-022-05474-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-05474-7

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing