Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Adjuvant therapy options in renal cell carcinoma — targeting the metastatic cascade

Abstract

Localized renal cell carcinoma (RCC) is primarily managed with nephrectomy, which is performed with curative intent. However, disease recurs in ~20% of patients. Treatment with adjuvant therapies is used after surgery with the intention of curing additional patients by disrupting the establishment, maturation or survival of micrometastases, processes collectively referred to as the metastatic cascade. Immune checkpoint inhibitors and vascular endothelial growth factor receptor (VEGFR)-targeting tyrosine kinase inhibitors (TKIs) have shown efficacy in the treatment of metastatic RCC, increasing the interest in the utility of these agents in the adjuvant setting. Pembrolizumab, an inhibitor of the immune checkpoint PD1, is now approved by the FDA and is under review by European regulatory agencies for the adjuvant treatment of patients with localized resected clear cell RCC based on the results of the KEYNOTE-564 trial. However, the optimal use of immunotherapy and VEGFR-targeting TKIs for adjuvant treatment of RCC is not completely understood. These agents disrupt the metastatic cascade at multiple steps, providing biological rationale for further investigating the applications of these therapeutics in the adjuvant setting. Clinical trials to evaluate adjuvant therapeutics in RCC are ongoing, and clinical considerations must guide the practical use of immunotherapy and TKI agents for the adjuvant treatment of localized resected RCC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sequential steps of the renal cell carcinoma metastatic cascade.
Fig. 2: Adjuvant systemic therapies in renal cell carcinoma disrupt multiple steps of the metastatic cascade.

Similar content being viewed by others

References

  1. Amin, M. B. et al. The Eighth Edition AJCC Cancer Staging Manual: continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging. CA Cancer J. Clin. 67, 93–99 (2017).

    Article  PubMed  Google Scholar 

  2. National Comprehensive Cancer Network. Kidney cancer (v4.2022). NCCN https://www.nccn.org/professionals/physician_gls/pdf/kidney.pdf (2022).

  3. Escudier, B. et al. Renal cell carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 30, 706–720 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Kattan, M. W., Reuter, V., Motzer, R. J., Katz, J. & Russo, P. A postoperative prognostic nomogram for renal cell carcinoma. J. Urol. 166, 63–67 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Cindolo, L. et al. Comparison of predictive accuracy of four prognostic models for nonmetastatic renal cell carcinoma after nephrectomy: a multicenter European study. Cancer 104, 1362–1371 (2005).

    Article  PubMed  Google Scholar 

  6. Gong, J., Maia, M. C., Dizman, N., Govindarajan, A. & Pal, S. K. Metastasis in renal cell carcinoma: biology and implications for therapy. Asian J. Urol. 3, 286–292 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sharma, P. & Allison, J. P. Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell 161, 205–214 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Seidel, J. A., Otsuka, A. & Kabashima, K. Anti-PD-1 and anti-CTLA-4 therapies in cancer: mechanisms of action, efficacy, and limitations. Front. Oncol. https://doi.org/10.3389/fonc.2018.00086 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Fitzgerald, K. N. & Lee, C.-H. Personalizing first-line management of metastatic renal cell carcinoma: leveraging current and novel therapeutic options. J. Natl Compr. Cancer Netw. https://doi.org/10.6004/jnccn.2022.7003 (2022).

    Article  Google Scholar 

  10. Rini, B. I. VEGF-targeted therapy in metastatic renal cell carcinoma. Oncologist 10, 191–197 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Rini, B. I. & Small, E. J. Biology and clinical development of vascular endothelial growth factor-targeted therapy in renal cell carcinoma. J. Clin. Oncol. 23, 1028–1043 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Karaman, S., Leppänen, V.-M. & Alitalo, K. Vascular endothelial growth factor signaling in development and disease. Development https://doi.org/10.1242/dev.151019 (2018).

    Article  PubMed  Google Scholar 

  13. Motzer, R. et al. Lenvatinib plus pembrolizumab or everolimus for advanced renal cell carcinoma. N. Engl. J. Med. 384, 1289–1300 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Motzer, R. J. et al. Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N. Engl. J. Med. 378, 1277–1290 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rini, B. I. et al. Pembrolizumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N. Engl. J. Med. 380, 1116–1127 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Choueiri, T. K. et al. Nivolumab plus cabozantinib versus sunitinib for advanced renal-cell carcinoma. N. Engl. J. Med. 384, 829–841 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Motzer, R. J. et al. Avelumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N. Engl. J. Med. 380, 1103–1115 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Choueiri, T. K. et al. Adjuvant pembrolizumab after nephrectomy in renal-cell carcinoma. N. Engl. J. Med. 385, 683–694 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Massari, F. et al. Adjuvant tyrosine kinase inhibitors in treatment of renal cell carcinoma: a meta-analysis of available clinical trials. Clin. Genitourin. Cancer 17, e339–e344 (2019).

    Article  PubMed  Google Scholar 

  20. Fidler, I. J. The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat. Rev. Cancer 3, 453–458 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Gupta, G. P. & Massagué, J. Cancer metastasis: building a framework. Cell 127, 679–695 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Ganesh, K. & Massagué, J. Targeting metastatic cancer. Nat. Med. 27, 34–44 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Borriello, L. et al. The role of the tumor microenvironment in tumor cell intravasation and dissemination. Eur. J. Cell Biol. 99, 151098 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chiang, S. P. H., Cabrera, R. M. & Segall, J. E. Tumor cell intravasation. Am. J. Physiol. Cell Physiol. 311, C1–C14 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Perea Paizal, J., Au, S. H. & Bakal, C. Squeezing through the microcirculation: survival adaptations of circulating tumour cells to seed metastasis. Br. J. Cancer 124, 58–65 (2021).

    Article  PubMed  Google Scholar 

  26. Liu, Q., Liao, Q. & Zhao, Y. Myeloid-derived suppressor cells (MDSC) facilitate distant metastasis of malignancies by shielding circulating tumor cells (CTC) from immune surveillance. Med. Hypotheses 87, 34–39 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Wang, W.-C. et al. Survival mechanisms and influence factors of circulating tumor cells. BioMed. Res. Int. 2018, 6304701 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sceneay, J., Smyth, M. J. & Möller, A. The pre-metastatic niche: finding common ground. Cancer Metastasis Rev. 32, 449–464 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Guise, T. Examining the metastatic niche: targeting the microenvironment. Semin. Oncol. 37, S2–S14 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Almholt, K. & Johnsen, M. Stromal cell involvement in cancer. Recent Results Cancer Res. 162, 31–42 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Kuczynski, E. A., Vermeulen, P. B., Pezzella, F., Kerbel, R. S. & Reynolds, A. R. Vessel co-option in cancer. Nat. Rev. Clin. Oncol. 16, 469–493 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Park, S.-Y. & Nam, J.-S. The force awakens: metastatic dormant cancer cells. Exp. Mol. Med. 52, 569–581 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Phan, T. G. & Croucher, P. I. The dormant cancer cell life cycle. Nat. Rev. Cancer 20, 398–411 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Vinay, D. S. et al. Immune evasion in cancer: mechanistic basis and therapeutic strategies. Semin. Cancer Biol. 35, S185–S198 (2015).

    Article  PubMed  Google Scholar 

  35. Perego, M. et al. Reactivation of dormant tumor cells by modified lipids derived from stress-activated neutrophils. Sci. Transl. Med. 12, eabb5817 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Baeriswyl, V. & Christofori, G. The angiogenic switch in carcinogenesis. Semin. Cancer Biol. 19, 329–337 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Klein, C. A. Parallel progression of primary tumours and metastases. Nat. Rev. Cancer 9, 302–312 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Marcus, S. G. et al. Regression of metastatic renal cell carcinoma after cytoreductive nephrectomy. J. Urol. 150, 463–466 (1993).

    Article  CAS  PubMed  Google Scholar 

  39. Snow, R. M. & Schellhammer, P. F. Spontaneous regression of metastatic renal cell carcinoma. Urology 20, 177–181 (1982).

    Article  CAS  PubMed  Google Scholar 

  40. Bhindi, B. et al. Systematic review of the role of cytoreductive nephrectomy in the targeted therapy era and beyond: an individualized approach to metastatic renal cell carcinoma. Eur. Urol. 75, 111–128 (2019).

    Article  PubMed  Google Scholar 

  41. Okazaki, A. et al. Spontaneous regression of multiple pulmonary metastases accompanied by normalization of serum immune markers following cytoreductive nephrectomy in a patient with clear-cell renal cell carcinoma. IJU Case Rep. 4, 95–99 (2021).

    Article  PubMed  Google Scholar 

  42. Saleh, F. et al. Direct evidence on the immune-mediated spontaneous regression of human cancer: an incentive for pharmaceutical companies to develop a novel anti-cancer vaccine. Curr. Pharm. Des. 11, 3531–3543 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Kucerova, P. & Cervinkova, M. Spontaneous regression of tumour and the role of microbial infection – possibilities for cancer treatment. Anticancer Drugs 27, 269–277 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Franses, J. W. et al. Spontaneous immune-mediated regression of hepatocellular carcinoma with high tumor mutational burden. JCO Precis. Oncol. https://doi.org/10.1200/PO.21.00092 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Jessy, T. Immunity over inability: the spontaneous regression of cancer. J. Nat. Sci. Biol. Med. 2, 43–49 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Motzer, R. J. et al. Survival outcomes and independent response assessment with nivolumab plus ipilimumab versus sunitinib in patients with advanced renal cell carcinoma: 42-month follow-up of a randomized phase 3 clinical trial. J. Immunother. Cancer 8, e000891 (2020).

    Article  PubMed  Google Scholar 

  47. Marasco, M. et al. Molecular mechanism of SHP2 activation by PD-1 stimulation. Sci. Adv. 6, eaay4458 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hui, E. et al. T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition. Science 355, 1428–1433 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Freeman, G. J. et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med. 192, 1027–1034 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. McDermott, D. F. & Atkins, M. B. PD-1 as a potential target in cancer therapy. Cancer Med. 2, 662–673 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12, 252–264 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Janjigian, Y. Y., Wolchok, J. D. & Ariyan, C. E. Eradicating micrometastases with immune checkpoint blockade: strike while the iron is hot. Cancer Cell 39, 738–742 (2021).

    Article  CAS  PubMed  Google Scholar 

  53. Rzhevskiy, A. et al. Emerging role of circulating tumor cells in immunotherapy. Theranostics 11, 8057–8075 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhou, Y., Han, M. & Gao, J. Prognosis and targeting of pre-metastatic niche. J. Control. Rel. 325, 223–234 (2020).

    Article  CAS  Google Scholar 

  55. Risson, E., Nobre, A. R., Maguer-Satta, V. & Aguirre-Ghiso, J. A. The current paradigm and challenges ahead for the dormancy of disseminated tumor cells. Nat. Cancer 1, 672–680 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Labani-Motlagh, A., Ashja-Mahdavi, M. & Loskog, A. The tumor microenvironment: a milieu hindering and obstructing antitumor immune responses. Front. Immunol. https://doi.org/10.3389/fimmu.2020.00940 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Dammeijer, F. et al. The PD-1/PD-L1-checkpoint restrains T cell immunity in tumor-draining lymph nodes. Cancer Cell 38, 685–700 (2020).

    Article  CAS  PubMed  Google Scholar 

  58. Dye, E. The antimetastatic function of concomitant antitumor immunity. II. Evidence that the generation of Ly-1+ 2+ effector T cells temporarily causes the destruction of already disseminated tumor cells. J. Immunol. 136, 1510–1515 (1986).

    Article  CAS  PubMed  Google Scholar 

  59. Eyles, J. et al. Tumor cells disseminate early, but immunosurveillance limits metastatic outgrowth, in a mouse model of melanoma. J. Clin. Invest. 120, 2030–2039 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Vetsika, E. K. et al. A circulating subpopulation of monocytic myeloid-derived suppressor cells as an independent prognostic/predictive factor in untreated non-small lung cancer patients. J. Immunol. Res. https://doi.org/10.1155/2014/659294 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Gambichler, T. et al. A brief communication on circulating PD-1-positive T-regulatory lymphocytes in melanoma patients undergoing adjuvant immunotherapy with nivolumab. J. Immunother. 42, 265–268 (2019).

    Article  CAS  PubMed  Google Scholar 

  62. Woods, D. M. et al. Decreased suppression and increased phosphorylated STAT3 in regulatory T cells are associated with benefit from adjuvant PD-1 blockade in resected metastatic melanoma. Clin. Cancer Res. 24, 6236–6247 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Coffelt, S. B. et al. IL-17-producing γδ T cells and neutrophils conspire to promote breast cancer metastasis. Nature 522, 345–348 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wculek, S. & Malanchi, I. Neutrophils support lung colonization of metastasis-initiating breast cancer cells. Nature 528, 413–417 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tian, W. et al. Leukotrienes in tumor-associated inflammation. Front. Pharmacol. https://doi.org/10.3389/fphar.2020.01289 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Wang, T. T. et al. Tumour-activated neutrophils in gastric cancer foster immune suppression and disease progression through GM-CSF-PD-L1 pathway. Gut 66, 1900–1911 (2017).

    Article  CAS  PubMed  Google Scholar 

  67. Eruslanov, E. B. et al. Tumor-associated neutrophils stimulate T cell responses in early-stage human lung cancer. J. Clin. Invest. 124, 5466–5480 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Lin, E. Y., Nguyen, A. V., Russell, R. G. & Pollard, J. W. Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J. Exp. Med. 193, 727–740 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lin, E. Y. et al. Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res. 66, 11238–11246 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Hiratsuka, S. et al. MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. Cancer Cell 2, 289–300 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Gordon, S. et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature 545, 495–499 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pollard, J. W. Tumour-educated macrophages promote tumour progression and metastasis. Nat. Rev. Cancer 4, 71–78 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Tallón de Lara, P. et al. CD39+PD-1+CD8+ T cells mediate metastatic dormancy in breast cancer. Nat. Commun. 12, 769 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Sharpe, A. H. & Pauken, K. E. The diverse functions of the PD1 inhibitory pathway. Nat. Rev. Immunol. 18, 153–167 (2018).

    Article  CAS  PubMed  Google Scholar 

  75. Haas, N. B. et al. Adjuvant sunitinib or sorafenib for high-risk, non-metastatic renal-cell carcinoma (ECOG-ACRIN E2805): a double-blind, placebo-controlled, randomised, phase 3 trial. Lancet 387, 2008–2016 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Gross-Goupil, M. et al. Axitinib versus placebo as an adjuvant treatment of renal cell carcinoma: results from the phase III, randomized ATLAS trial. Ann. Oncol. 29, 2371–2378 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Motzer, R. J. et al. Adjuvant sunitinib for high-risk renal cell carcinoma after nephrectomy: subgroup analyses and updated overall survival results. Eur. Urol. 73, 62–68 (2018).

    Article  CAS  PubMed  Google Scholar 

  78. Motzer, R. J. et al. Randomized phase III trial of adjuvant pazopanib versus placebo after nephrectomy in patients with localized or locally advanced renal cell carcinoma. J. Clin. Oncol. 35, 3916–3923 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ravaud, A. et al. Adjuvant sunitinib in high-risk renal-cell carcinoma after nephrectomy. N. Engl. J. Med. 375, 2246–2254 (2016).

    Article  CAS  PubMed  Google Scholar 

  80. Ferrara, N., Gerber, H.-P. & LeCouter, J. The biology of VEGF and its receptors. Nat. Med. 9, 669–676 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Yang, J., Yan, J. & Liu, B. Targeting VEGF/VEGFR to modulate antitumor immunity. Front. Immunol. https://doi.org/10.3389/fimmu.2018.00978 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Bhattacharya, R. et al. Intracrine VEGF signalling mediates colorectal cancer cell migration and invasion. Br. J. Cancer 117, 848–855 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Islam, M. R., Jones, S. J., Macluskey, M. & Ellis, I. R. Is there a pAkt between VEGF and oral cancer cell migration? Cell. Signal. 26, 1294–1302 (2014).

    Article  CAS  PubMed  Google Scholar 

  84. Timoshenko, A., Rastogi, S. & Lala, P. Migration-promoting role of VEGF-C and VEGF-C binding receptors in human breast cancer cells. Br. J. cancer 97, 1090–1098 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kim, K. J. et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 362, 841–844 (1993).

    Article  CAS  PubMed  Google Scholar 

  86. Huang, D. et al. Sunitinib acts primarily on tumor endothelium rather than tumor cells to inhibit the growth of renal cell carcinoma. Cancer Res. 70, 1053–1062 (2010).

    Article  CAS  PubMed  Google Scholar 

  87. Bhattacharya, R. et al. Intracrine VEGF signaling mediates the activity of prosurvival pathways in human colorectal cancer cells. Cancer Res. 76, 3014–3024 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zheng, B. et al. VEGFR2 promotes metastasis and PD-L2 expression of human osteosarcoma cells by activating the STAT3 and RhoA-ROCK-LIMK2 pathways. Front. Oncol. 10, 1865 (2020).

    Article  Google Scholar 

  89. Wang, W., Eddy, R. & Condeelis, J. The cofilin pathway in breast cancer invasion and metastasis. Nat. Rev. Cancer 7, 429–440 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yamaguchi, H. & Condeelis, J. Regulation of the actin cytoskeleton in cancer cell migration and invasion. Biochim. Biophys. Acta 1773, 642–652 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Haspel, H. C., Scicli, G. M., McMahon, G. & Scicli, A. G. Inhibition of vascular endothelial growth factor-associated tyrosine kinase activity with SU5416 blocks sprouting in the microvascular endothelial cell spheroid model of angiogenesis. Microvasc. Res. 63, 304–315 (2002).

    Article  CAS  PubMed  Google Scholar 

  92. López-Soto, A., Gonzalez, S., Smyth, M. J. & Galluzzi, L. Control of metastasis by NK cells. Cancer Cell 32, 135–154 (2017).

    Article  PubMed  Google Scholar 

  93. Tallón de Lara, P., Castañón, H., Sterpi, M. & van den Broek, M. Antimetastatic defense by CD8+ T cells. Trends Cancer https://doi.org/10.1016/j.trecan.2021.10.006 (2021).

    Article  PubMed  Google Scholar 

  94. Gavalas, N. G. et al. VEGF directly suppresses activation of T cells from ascites secondary to ovarian cancer via VEGF receptor type 2. Br. J. Cancer 107, 1869–1875 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kaur, S. et al. CD47 signaling regulates the immunosuppressive activity of VEGF in T cells. J. Immunol. 193, 3914–3924 (2014).

    Article  CAS  PubMed  Google Scholar 

  96. Hage, C. et al. Sorafenib induces pyroptosis in macrophages and triggers natural killer cell-mediated cytotoxicity against hepatocellular carcinoma. Hepatology 70, 1280–1297 (2019).

    Article  CAS  PubMed  Google Scholar 

  97. Ruan, G.-X. & Kazlauskas, A. VEGF-A engages at least three tyrosine kinases to activate PI3K/Akt. Cell Cycle 11, 2047–2048 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Liu, L. et al. Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res. 66, 11851–11858 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Ribatti, D. Judah Folkman, a pioneer in the study of angiogenesis. Angiogenesis 11, 3–10 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Folkman, J. Anti-angiogenesis: new concept for therapy of solid tumors. Ann. Surg. 175, 409–416 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Bergers, G. & Benjamin, L. E. Tumorigenesis and the angiogenic switch. Nat. Rev. Cancer 3, 401–410 (2003).

    Article  CAS  PubMed  Google Scholar 

  102. Pezzella, F. et al. Non-small-cell lung carcinoma tumor growth without morphological evidence of neo-angiogenesis. Am. J. Pathol. 151, 1417–1423 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Holash, J., Wiegand, S. J. & Yancopoulos, G. D. New model of tumor angiogenesis: dynamic balance between vessel regression and growth mediated by angiopoietins and VEGF. Oncogene 18, 5356–5362 (1999).

    Article  CAS  PubMed  Google Scholar 

  104. Döme, B., Paku, S., Somlai, B. & Tímár, J. Vascularization of cutaneous melanoma involves vessel co-option and has clinical significance. J. Pathol. 197, 355–362 (2002).

    Article  PubMed  Google Scholar 

  105. Holash, J. et al. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284, 1994–1998 (1999).

    Article  CAS  PubMed  Google Scholar 

  106. Küsters, B. et al. Vascular endothelial growth factor-A(165) induces progression of melanoma brain metastases without induction of sprouting angiogenesis. Cancer Res. 62, 341–345 (2002).

    PubMed  Google Scholar 

  107. Döme, B., Hendrix, M. J. C., Paku, S., Tóvári, J. & Tímár, J. Alternative vascularization mechanisms in cancer: pathology and therapeutic implications. Am. J. Pathol. 170, 1–15 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Lee, Y.-J. et al. Differential effects of VEGFR-1 and VEGFR-2 inhibition on tumor metastases based on host organ environment. Cancer Res. 70, 8357–8367 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Wada, J. et al. The contribution of vascular endothelial growth factor to the induction of regulatory T-cells in malignant effusions. Anticancer. Res. 29, 881–888 (2009).

    CAS  PubMed  Google Scholar 

  110. Dikov, M. M. et al. Differential roles of vascular endothelial growth factor receptors 1 and 2 in dendritic cell differentiation. J. Immunol. 174, 215–222 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. Du Four, S. et al. Axitinib increases the infiltration of immune cells and reduces the suppressive capacity of monocytic MDSCs in an intracranial mouse melanoma model. Oncoimmunology 4, e998107 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Ryan, C. W. et al. EVEREST: everolimus for renal cancer ensuing surgical therapy — a phase III study (SWOG S0931, NCT01120249) [abstract]. J. Clin. Oncol. 40, LBA4500 (2022).

    Article  Google Scholar 

  113. Hoefflin, R. et al. HIF-1α and HIF-2α differently regulate tumour development and inflammation of clear cell renal cell carcinoma in mice. Nat. Commun. 11, 4111 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Linehan, W. M. & Ricketts, C. J. The cancer genome atlas of renal cell carcinoma: findings and clinical implications. Nat. Rev. Urol. 16, 539–552 (2019).

    Article  CAS  PubMed  Google Scholar 

  115. Voss, M. H., Molina, A. M. & Motzer, R. J. mTOR inhibitors in advanced renal cell carcinoma. Hematol./Oncol. Clin. 25, 835–852 (2011).

    Article  Google Scholar 

  116. Courcier, J. et al. Carbonic anhydrase IX in renal cell carcinoma, implications for disease management. Int. J. Mol. Sci. 21, 7146 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Chamie, K. et al. Adjuvant weekly girentuximab following nephrectomy for high-risk renal cell carcinoma: the ARISER randomized clinical trial. JAMA Oncol. 3, 913–920 (2017).

    Article  PubMed  Google Scholar 

  118. Motzer, R. J. et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N. Engl. J. Med. 373, 1803–1813 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. McDermott, D. F. et al. Open-label, single-arm, phase II study of pembrolizumab monotherapy as first-line therapy in patients with advanced non-clear cell renal cell carcinoma. J. Clin. Oncol. 39, 1029–1039 (2018).

    Article  Google Scholar 

  120. US Food and Drug Administration. FDA approves pembrolizumab for adjuvant treatment of renal cell carcinoma. FDA https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-pembrolizumab-adjuvant-treatment-renal-cell-carcinoma (2021).

  121. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03055013 (2022).

  122. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03024996 (2022).

  123. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03138512 (2022).

  124. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03288532 (2020).

  125. Harshman, L. C. et al. PROSPER: A phase III randomized study comparing perioperative nivolumab (nivo) versus observation in patients with localized renal cell carcinoma (RCC) undergoing nephrectomy (ECOG-ACRIN 8143) [abstract]. J. Clin. Oncol. 37 (Suppl. 7), TPS684 (2019).

    Article  Google Scholar 

  126. Allaf, M. et al. Phase III randomized study comparing perioperative nivolumab (nivo) versus observation in patients (Pts) with renal cell carcinoma (RCC) undergoing nephrectomy (PROSPER, ECOG-ACRIN EA8143), a National Clinical Trials Network trial [abstract LBA67]. Ann. Oncol. 33 (Suppl. 7), 1432–1433 (2022).

    Article  Google Scholar 

  127. Bex, A. et al. IMmotion010: Efficacy and safety from the phase III study of atezolizumab (atezo) vs placebo (pbo) as adjuvant therapy in patients with renal cell carcinoma (RCC) at increased risk of recurrence after resection [abstract LBA66]. Ann. Oncol. 33 (Suppl. 7), 1431–1432 (2022).

    Article  Google Scholar 

  128. Motzer, R. J. et al. Adjuvant nivolumab plus ipilimumab (NIVO+IPI) vs placebo (PBO) for localized renal cell carcinoma (RCC) at high risk of relapse after nephrectomy: Results from the randomized, phase III CheckMate 914 trial [abstract LBA4]. Ann. Oncol. 33 (Suppl. 7), 1430 (2022).

    Article  Google Scholar 

  129. Allen, B. M. et al. Systemic dysfunction and plasticity of the immune macroenvironment in cancer models. Nat. Med. 26, 1125–1134 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Danna, E. A. et al. Surgical removal of primary tumor reverses tumor-induced immunosuppression despite the presence of metastatic disease. Cancer Res. 64, 2205–2211 (2004).

    Article  CAS  PubMed  Google Scholar 

  131. Lam, J. S. et al. Postoperative surveillance protocol for patients with localized and locally advanced renal cell carcinoma based on a validated prognostic nomogram and risk group stratification system. J. Urol. 174, 466–472 (2005).

    Article  PubMed  Google Scholar 

  132. Haas, N. B. et al. Adjuvant treatment for high-risk clear cell renal cancer: updated results of a high-risk subset of the ASSURE randomized trial. JAMA Oncol. 3, 1249–1252 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Haas, N. et al. Dose analysis of ASSURE (E2805): adjuvant sorafenib or sunitinib for unfavorable renal carcinoma, an ECOG-ACRIN-led, NCTN phase 3 trial [abstract]. J. Clin. Oncol. 33 (Suppl. 15), 4508 (2015).

    Article  Google Scholar 

  134. Edge, S. B. & Compton, C. C. The American Joint Committee on Cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM. Ann. Surg. Oncol. 17, 1471–1474 (2010).

    Article  PubMed  Google Scholar 

  135. Leibovich, B. C. et al. Prediction of progression after radical nephrectomy for patients with clear cell renal cell carcinoma: a stratification tool for prospective clinical trials. Cancer 97, 1663–1671 (2003).

    Article  PubMed  Google Scholar 

  136. Eisen, T. et al. Adjuvant sorafenib for renal cell carcinoma at intermediate or high risk of relapse: results from the SORCE randomized phase III intergroup trial. J. Clin. Oncol. 38, 4064–4075 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. US Food and Drug Administration. FDA approves sunitinib malate for adjuvant treatment of renal cell carcinoma FDA https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-sunitinib-malate-adjuvant-treatment-renal-cell-carcinoma (2018).

  138. US Food and Drug Administration. Project optimus. FDA https://www.fda.gov/about-fda/oncology-center-excellence/project-optimus (2022).

  139. Choueiri, T. K. et al. Cabozantinib versus everolimus in advanced renal-cell carcinoma. N. Engl. J. Med. 373, 1814–1823 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Rini, B. I. et al. Axitinib in metastatic renal cell carcinoma: results of a pharmacokinetic and pharmacodynamic analysis. J. Clin. Pharmacol. 53, 491–504 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Roviello, G. et al. Lenvatinib for the treatment of renal cell carcinoma. Expert. Opin. Invest. Drugs 27, 507–512 (2018).

    Article  CAS  Google Scholar 

  142. Postow, M. A., Sidlow, R. & Hellmann, M. D. Immune-related adverse events associated with immune checkpoint blockade. N. Engl. J. Med. 378, 158–168 (2018).

    Article  CAS  PubMed  Google Scholar 

  143. Correa, A. F. et al. Predicting renal cancer recurrence: defining limitations of existing prognostic models with prospective trial-based validation. J. Clin. Oncol. 37, 2062–2071 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Agrawal, S. et al. Eligibility and radiologic assessment for adjuvant clinical trials in kidney cancer. JAMA Oncol. 6, 133–141 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Oza, B. et al. External validation of the 2003 Leibovich prognostic score in patients randomly assigned to SORCE, an international phase III trial of adjuvant sorafenib in renal cell cancer. J. Clin. Oncol. 40, 1772–1782 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Brookman-Amissah, S. et al. Impact of clinical variables on predicting disease-free survival of patients with surgically resected renal cell carcinoma. BJU Int. 103, 1375–1380 (2009).

    Article  PubMed  Google Scholar 

  147. Hakimi, A. A. et al. Transcriptomic profiling of the tumor microenvironment reveals distinct subgroups of clear cell renal cell cancer: data from a randomized phase III trial. Cancer Discov. 9, 510–525 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Beuselinck, B. et al. Molecular subtypes of clear cell renal cell carcinoma are associated with sunitinib response in the metastatic setting. Clin. Cancer Res. 21, 1329–1339 (2015).

    Article  CAS  PubMed  Google Scholar 

  149. Brooks, S. A. et al. ClearCode34: a prognostic risk predictor for localized clear cell renal cell carcinoma. Eur. Urol. 66, 77–84 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Askeland, E. J. et al. Cell cycle progression score predicts metastatic progression of clear cell renal cell carcinoma after resection. Cancer Biomark. 15, 861–867 (2015).

    Article  CAS  PubMed  Google Scholar 

  151. Ghatalia, P. et al. Prognostic impact of immune gene expression signature and tumor infiltrating immune cells in localized clear cell renal cell carcinoma. J. Immunother. Cancer 7, 139 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Turajlic, S. et al. Tracking cancer evolution reveals constrained routes to metastases: TRACERx renal. Cell 173, 581–594 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT05239533 (2022).

  154. Shuch, B. P. et al. TLX250-CDx, multi-center phase III trial for PET/CT imaging of clear cell kidney cancer in International Kidney Cancer Symposium (IKCS) 2021 (IKCS, 2021).

  155. George, D. J. et al. Immune biomarkers predictive for disease-free survival with adjuvant sunitinib in high-risk locoregional renal cell carcinoma: from randomized phase III S-TRAC study. Clin. Cancer Res. 24, 1554–1561 (2018).

    Article  CAS  PubMed  Google Scholar 

  156. Choueiri, T. K. et al. KEYNOTE-564: A phase 3, randomized, double blind, trial of pembrolizumab in the adjuvant treatment of renal cell carcinoma [abstract]. J. Clin. Oncol. 36 (Suppl. 15), TPS4599 (2018).

    Article  Google Scholar 

  157. European Medicines Agency. Appendix 1 to the guideline on the evaluation of anticancer medicinal products in man. European Medicines Agency https://www.ema.europa.eu/en/documents/scientific-guideline/appendix-1-guideline-evaluation-anticancer-medicinal-products-man-methodological-consideration-using_en.pdf (2012).

  158. US Food and Drug Administration. Renal cell carcinoma: developing drugs and biologics for adjuvant treatment: guidance for industry. FDA https://www.fda.gov/media/159510/download (2022).

  159. Harshman, L. C. et al. Evaluation of disease-free survival as an intermediate metric of overall survival in patients with localized renal cell carcinoma: a trial-level meta-analysis. Cancer 124, 925–933 (2018).

    Article  PubMed  Google Scholar 

  160. Woodford, R. G. et al. The validity of progression‐free survival 2 as a surrogate trial end point for overall survival. Cancer 128, 1449–1457 (2022).

    Article  PubMed  Google Scholar 

  161. Au, L. et al. Determinants of anti-PD-1 response and resistance in clear cell renal cell carcinoma. Cancer Cell 39, 1497–1518.e11 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Jonasch, E. et al. Belzutifan for renal cell carcinoma in von Hippel–Lindau disease. N. Engl. J. Med. 385, 2036–2046 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. US Food and Drug Administrstion. FDA approves belzutifan for cancers associated with von Hippel-Lindau disease FDA https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-belzutifan-cancers-associated-von-hippel-lindau-disease (2022).

  164. European Medicines Agency. EU/3/20/2324: Orphan designation for the treatment of von Hippel-Lindau disease. European Medicines Agency https://www.ema.europa.eu/en/medicines/human/orphan-designations/eu3202324 (2020).

  165. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04522323 (2022).

  166. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04696731 (2022).

  167. Lee, C.-H. et al. Phase II trial of cabozantinib plus nivolumab in patients with non-clear-cell renal cell carcinoma and genomic correlates. J. Clin. Oncol. 40, 2333–2341 (2022).

    Article  CAS  PubMed  Google Scholar 

  168. Gupta, R. et al. Clinical activity of ipilimumab plus nivolumab in patients with metastatic non-clear cell renal cell carcinoma. Clin. Genitourin. Cancer 18, 429–435 (2020).

    Article  PubMed  Google Scholar 

  169. Koshkin, V. S. et al. Clinical activity of nivolumab in patients with non-clear cell renal cell carcinoma. J. Immunother. Cancer 6, 9 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Karam, J. A. et al. Phase 2 trial of neoadjuvant axitinib in patients with locally advanced nonmetastatic clear cell renal cell carcinoma. Eur. Urol. 66, 874–880 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Bex, A. et al. Efficacy, safety, and biomarker analysis of neoadjuvant avelumab/axitinib in patients (pts) with localized renal cell carcinoma (RCC) who are at high risk of relapse after nephrectomy (NeoAvAx) [abstract]. J. Clin. Oncol. 40 (Suppl. 6), 289 (2022).

    Article  Google Scholar 

  172. US National Library of Medicine. Support materials. ClinicalTrials.gov https://clinicaltrials.gov/ct2/manage-recs/resources#DataElement (2022).

  173. Cindolo, L. et al. A preoperative clinical prognostic model for non-metastatic renal cell carcinoma. BJU Int. 92, 901–905 (2003).

    Article  CAS  PubMed  Google Scholar 

  174. Karakiewicz, P. I. et al. Multi-institutional validation of a new renal cancer-specific survival nomogram. J. Clin. Oncol. 25, 1316–1322 (2007).

    Article  PubMed  Google Scholar 

  175. Sorbellini, M. et al. A postoperative prognostic nomogram predicting recurrence for patients with conventional clear cell renal cell carcinoma. J. Urol. 173, 48–51 (2005).

    Article  PubMed  Google Scholar 

  176. Brookman-May, S. et al. Features associated with recurrence beyond 5 years after nephrectomy and nephron-sparing surgery for renal cell carcinoma: development and internal validation of a risk model (PRELANE score) to predict late recurrence based on a large multicenter database (CORONA/SATURN project). Eur. Urol. 64, 472–477 (2013).

    Article  PubMed  Google Scholar 

  177. Frank, I. et al. An outcome prediction model for patients with clear cell renal cell carcinoma treated with radical nephrectomy based on tumor stage, size, grade and necrosis: the SSIGN score. J. Urol. 168, 2395–2400 (2002).

    Article  PubMed  Google Scholar 

  178. Zisman, A. et al. Risk group assessment and clinical outcome algorithm to predict the natural history of patients with surgically resected renal cell carcinoma. J. Clin. Oncol. 20, 4559–4566 (2002).

    Article  PubMed  Google Scholar 

  179. Yaycioglu, O. et al. Prognostic assessment of nonmetastatic renal cell carcinoma: a clinically based model. Urology 58, 141–145 (2001).

    Article  CAS  PubMed  Google Scholar 

  180. Sobin, L. H. & Fleming, I. D. TNM classification of malignant tumors, fifth edition (1997). Union Internationale Contre le Cancer and the American Joint Committee on Cancer. Cancer 80, 1803–1804 (1997).

    Article  CAS  PubMed  Google Scholar 

  181. Wittekind, C., Compton, C. C., Greene, F. L. & Sobin, L. H. TNM residual tumor classification revisited. Cancer 94, 2511–2516 (2002).

    Article  PubMed  Google Scholar 

  182. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02597322 (2017).

  183. Zhang, X. & Xu, W. Neutrophils diminish T-cell immunity to foster gastric cancer progression: the role of GM-CSF/PD-L1/PD-1 signalling pathway. Gut 66, 1878–1880 (2017).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the National Institute of Health Clinical and Translational Science Awards Program, grant number UL1TR00457. They are also grateful for the Memorial Sloan Kettering Cancer Center Support Grant/Core Grant P30 CA008748.

Author information

Authors and Affiliations

Authors

Contributions

K.N.F. and R.J.M. researched data for the article. All authors contributed substantially to discussion of the content. All authors wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Chung-Han Lee.

Ethics declarations

Competing interests

R.J.M. reports grants from Bristol Myers Squibb, grants and personal fees from Pfizer, Novartis, Eisai, Exelixis, Merck and Genentech/Roche, and personal fees from Lilly, Incyte, EMD Serono Research and Development Institute, AVEO Pharmaceuticals and Takeda. C.-H.L reports honoraria from Intellisphere, Research to Practice and AiCME, consulting or advisory role with Amgen, Bristol Myers Squibb, Eisai, Exelixis, Merck and Pfizer/EMD Serono, institutional research funding from Bristol Myers Squibb, Calithera Biosciences, Eisai, Exelixis, Lilly, Merck and Pfizer, and travel/accommodation expenses from Calithera Biosciences and Eisai. K.N.F. declares no competing interests.

Peer review

Peer review information

Nature Reviews Urology thanks S. Brookman-May and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fitzgerald, K.N., Motzer, R.J. & Lee, CH. Adjuvant therapy options in renal cell carcinoma — targeting the metastatic cascade. Nat Rev Urol 20, 179–193 (2023). https://doi.org/10.1038/s41585-022-00666-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-022-00666-2

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer