Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Avoiding interpretational pitfalls in fluorescence imaging of the brain

Fluorescent sensors of molecular activity have revolutionized our knowledge of the brain. However, their signals report a reaction between the target and the sensor molecules rather than the activity of interest per se. Thus, understanding the location, sensitivity and imaging environment of a sensor should help to avoid misinterpretation of its readout.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characteristic examples of fluorescence imaging settings prone to misinterpretation.

References

  1. Broussard, G. J. et al. In vivo measurement of afferent activity with axon-specific calcium imaging. Nat. Neurosci. 21, 1272–1280 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wan, J. et al. A genetically encoded sensor for measuring serotonin dynamics. Nat. Neurosci. 24, 746–752 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sabatini, B. L. & Tian, L. Imaging neurotransmitter and neuromodulator dynamics in vivo with genetically encoded indicators. Neuron 108, 17–32 (2020).

    Article  CAS  PubMed  Google Scholar 

  4. Jing, M., Zhang, Y., Wang, H. & Li, Y. G-protein-coupled receptor-based sensors for imaging neurochemicals with high sensitivity and specificity. J. Neurochem. 151, 279–288 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rusakov, D. A. Disentangling calcium-driven astrocyte physiology. Nat. Rev. Neurosci. 16, 226–233 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Rafi, H. & Zestos, A. G. Recent advances in FSCV detection of neurochemicals via waveform and carbon microelectrode modification. J. Electrochem. Soc. 168, 057520 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Maravall, M., Mainen, Z. F., Sabatini, B. L. & Svoboda, K. Estimating intracellular calcium concentrations and buffering without wavelength ratioing. Biophys. J. 78, 2655–2667 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Meng, G. et al. High-throughput synapse-resolving two-photon fluorescence microendoscopy for deep-brain volumetric imaging in vivo. eLife 8, e40805 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Savtchenko, L. P. et al. Disentangling astroglial physiology with a realistic cell model in silico. Nat. Commun. 9, 3554 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitri A. Rusakov.

Ethics declarations

Competing interests

The author declares no competing interests.

Peer review

Peer review information

Nature Reviews Neuroscience thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rusakov, D.A. Avoiding interpretational pitfalls in fluorescence imaging of the brain. Nat Rev Neurosci 23, 705–706 (2022). https://doi.org/10.1038/s41583-022-00643-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-022-00643-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing