Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The clinical importance of suspected non-Alzheimer disease pathophysiology

Abstract

The development of biomarkers for Alzheimer disease (AD) has led to the origin of suspected non-AD pathophysiology (SNAP) — a heterogeneous biomarker-based concept that describes individuals with normal amyloid and abnormal tau and/or neurodegeneration biomarker status. In this Review, we describe the origins of the SNAP construct, along with its prevalence, diagnostic and prognostic implications, and underlying neuropathology. As we discuss, SNAP can be operationalized using different biomarker modalities, which could affect prevalence estimates and reported characteristics of SNAP in ways that are not yet fully understood. Moreover, the underlying aetiologies that lead to a SNAP biomarker profile, and whether SNAP is the same in people with and without cognitive impairment, remains unclear. Improved insight into the clinical characteristics and pathophysiology of SNAP is of major importance for research and clinical practice, as well as for trial design to optimize care and treatment of individuals with SNAP.

Key points

  • Suspected non-Alzheimer disease (AD) pathophysiology (SNAP) is a heterogeneous biomarker-based concept describing individuals with a normal amyloid biomarker and abnormal tau and/or neurodegeneration biomarkers.

  • SNAP is common in people with normal cognition (NC) or mild cognitive impairment (MCI) and is associated with a reduced frequency of the apolipoprotein E ε4 allele (a key genetic risk factor for AD) compared with individuals with abnormal amyloid biomarkers.

  • Evidence shows that NC-SNAP is associated with a low risk of cognitive decline over 7 years, whereas MCI-SNAP is associated with an increased risk of developing clinical AD dementia.

  • Cerebrospinal fluid (CSF) proteomics studies suggest a disturbance in amyloid metabolism and involvement of the blood–CSF barrier in people with MCI-SNAP.

  • Neuropathological studies indicate that SNAP can represent early AD pathology, presumed AD-spectrum pathologies such as primary age-related tauopathy or non-AD pathologies that occur with increased frequency in AD, such as limbic-predominant age-related TAR DNA-binding protein 43 encephalopathy neuropathological change, argyrophilic grain disease or Lewy body disease.

  • More sensitive biomarkers of amyloid pathology and novel biomarkers for non-AD pathologies are needed to identify the underlying cause of SNAP in vivo and provide appropriate treatments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Age-related prevalence of SNAP neuropathological correlates.
Fig. 2: SNAP neuropathological correlates.

Similar content being viewed by others

References

  1. Glenner, G. G. & Wong, C. W. Alzheimer’s disease and Down’s syndrome: sharing of a unique cerebrovascular amyloid fibril protein. Biochem. Biophys. Res. Commun. 122, 1131–1135 (1984).

    Article  CAS  PubMed  Google Scholar 

  2. Hardy, J. & Selkoe, D. J. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297, 353–356 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Jack, C. R. Jr et al. Introduction to the recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 7, 257–262 (2011).

    Article  PubMed  Google Scholar 

  4. Jack, C. R. Jr et al. An operational approach to National Institute on Aging-Alzheimer’s Association criteria for preclinical Alzheimer disease. Ann. Neurol. 71, 765–775 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Assocation workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 7, 280–292 (2011).

    Article  PubMed  Google Scholar 

  6. Jack, C. R. Jr et al. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol. 9, 119–128 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Power, M. C. et al. Combined neuropathological pathways account for age-related risk of dementia. Ann. Neurol. 84, 10–22 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kawas, C. H. et al. Multiple pathologies are common and related to dementia in the oldest-old: the 90+ study. Neurology 85, 535–542 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Knopman, D. S. et al. Short-term clinical outcomes for stages of NIA-AA preclinical Alzheimer disease. Neurology 78, 1576–1582 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Blennow, K. Cerebrospinal fluid protein biomarkers for Alzheimer’s disease. NeuroRx 1, 213–225 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hansson, O. et al. CSF biomarkers of Alzheimer’s disease concord with amyloid-β PET and predict clinical progression: a study of fully automated immunoassays in BioFINDER and ADNI cohorts. Alzheimers Dement. 14, 1470–1481 (2018).

    Article  PubMed  Google Scholar 

  12. Klunk, W. E. et al. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann. Neurol. 55, 306–319 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Schwarz, C. G. et al. Considerations for performing level-2 Centiloid transformations for amyloid PET SUVR values. Sci. Rep. 8, 7421 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chien, D. T. et al. Early clinical PET imaging results with the novel PHF-tau radioligand [F-18]-T807. J. Alzheimers Dis. 34, 457–468 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Jack, C. R. Jr et al. A/T/N: an unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology 87, 539–547 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jack, C. R. et al. Age-specific and sex-specific prevalence of cerebral β-amyloidosis, tauopathy, and neurodegeneration in cognitively unimpaired individuals aged 50-95 years: a cross-sectional study. Lancet Neurol. 16, 435–444 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jack, C. R. Jr et al. Suspected non-Alzheimer disease pathophysiology – concept and controversy. Nat. Rev. Neurol. 12, 117–124 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dodich, A. et al. The A/T/N model applied through imaging biomarkers in a memory clinic. Eur. J. Nucl. Med. Mol. Imaging 47, 247–255 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Ebenau, J. L. et al. ATN classification and clinical progression in subjective cognitive decline: the SCIENCe project. Neurology 95, e46–e58 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ingala, S. et al. Application of the ATN classification scheme in a population without dementia: findings from the EPAD cohort. Alzheimers Dement. 17, 1189–1204 (2021).

    Article  CAS  PubMed  Google Scholar 

  21. Ekman, U., Ferreira, D. & Westman, E. The A/T/N biomarker scheme and patterns of brain atrophy assessed in mild cognitive impairment. Sci. Rep. 8, 8431 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Delmotte, K., Schaeverbeke, J., Poesen, K. & Vandenberghe, R. Prognostic value of amyloid/tau/neurodegeneration (ATN) classification based on diagnostic cerebrospinal fluid samples for Alzheimer’s disease. Alzheimers Res. Ther. 13, 84 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Janelidze, S. et al. Cerebrospinal fluid p-tau217 performs better than p-tau181 as a biomarker of Alzheimer’s disease. Nat. Commun. 11, 1683 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Barthelemy, N. R. et al. Cerebrospinal fluid phospho-tau T217 outperforms T181 as a biomarker for the differential diagnosis of Alzheimer’s disease and PET amyloid-positive patient identification. Alzheimers Res. Ther. 12, 26 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Soldan, A. et al. ATN profiles among cognitively normal individuals and longitudinal cognitive outcomes. Neurology 92, E1567–E1579 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gordon, B. A. et al. Longitudinal β-amyloid deposition and hippocampal volume in preclinical Alzheimer disease and suspected non-Alzheimer disease pathophysiology. JAMA Neurol. 73, 1192–1200 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Vos, S. J. et al. Prevalence and prognosis of Alzheimer’s disease at the mild cognitive impairment stage. Brain 138, 1327–1338 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Chung, J. K. et al. The effects of cortical hypometabolism and hippocampal atrophy on clinical trajectories in mild cognitive impairment with suspected non-Alzheimer’s pathology: a brief report. J. Alzheimers Dis. 60, 341–347 (2017).

    Article  PubMed  Google Scholar 

  29. Wisse, L. E. M. et al. Suspected non-AD pathology in mild cognitive impairment. Neurobiol. Aging 36, 3152–3162 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Altomare, D. et al. Applying the ATN scheme in a memory clinic population: the ABIDE project. Neurology 93, e1635–e1646 (2019).

    Article  PubMed  Google Scholar 

  31. Vos, S. J. B. et al. NIA-AA staging of preclinical Alzheimer disease: discordance and concordance of CSF and imaging biomarkers. Neurobiol. Aging 44, 1–8 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Baldeiras, I. et al. Addition of the Aβ42/40 ratio to the cerebrospinal fluid biomarker profile increases the predictive value for underlying Alzheimer’s disease dementia in mild cognitive impairment. Alzheimers Res. Ther. 10, 33 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Soldan, A. et al. Hypothetical preclinical Alzheimer disease groups and longitudinal cognitive change. JAMA Neurol. 73, 698–705 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Toledo, J. B. et al. Neuronal injury biomarkers and prognosis in ADNI subjects with normal cognition. Acta Neuropathol. Commun. 2, 26 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Burnham, S. C. et al. Clinical and cognitive trajectories in cognitively healthy elderly individuals with suspected non-Alzheimer’s disease pathophysiology (SNAP) or Alzheimer’s disease pathology: a longitudinal study. Lancet Neurol. 15, 1044–1053 (2016).

    Article  PubMed  Google Scholar 

  36. Bos, I. et al. Vascular risk factors are associated with longitudinal changes in cerebrospinal fluid tau markers and cognition in preclinical Alzheimer’s disease. Alzheimers Dement. 15, 1149–1159 (2019).

    Article  PubMed  Google Scholar 

  37. Calvin, C. M. et al. Prediction of Alzheimer’s disease biomarker status defined by the ‘ATN framework’ among cognitively healthy individuals: results from the EPAD longitudinal cohort study. Alzheimers Res. Ther. 12, 143 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Knopman, D. S. et al. Brain injury biomarkers are not dependent on β-amyloid in normal elderly. Ann. Neurol. 73, 472–480 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Delvenne, A. et al. Cerebrospinal fluid proteomic profiling of individuals with mild cognitive impairment and suspected non-Alzheimer’s disease pathophysiology. Alzheimers Dement. 19, 807–820 (2023).

    Article  CAS  Google Scholar 

  40. Alcolea, D. et al. Amyloid precursor protein metabolism and inflammation markers in preclinical Alzheimer disease. Neurology 85, 626–633 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Hohman, T. J. et al. APOE allele frequencies in suspected non-amyloid pathophysiology (SNAP) and the prodromal stages of Alzheimer’s disease. PLoS ONE 12, e0188501 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Schreiber, S. et al. Alzheimer disease signature neurodegeneration and APOE genotype in mild cognitive impairment with suspected non-Alzheimer disease pathophysiology. JAMA Neurol. 74, 650–659 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Thal, D. R. et al. Estimation of amyloid distribution by [18F]flutemetamol PET predicts the neuropathological phase of amyloid β-protein deposition. Acta Neuropathol. 136, 557–567 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. La Joie, R. et al. Multisite study of the relationships between antemortem [11C]PIB-PET Centiloid values and postmortem measures of Alzheimer’s disease neuropathology. Alzheimers Dement. 15, 205–216 (2019).

    Article  PubMed  Google Scholar 

  45. Nakamura, A. et al. High performance plasma amyloid-β biomarkers for Alzheimer’s disease. Nature 554, 249–254 (2018).

    Article  CAS  PubMed  Google Scholar 

  46. Willemse, E. A. J. et al. Comparing CSF amyloid-β biomarker ratios for two automated immunoassays, Elecsys and Lumipulse, with amyloid PET status. Alzheimers Dement. 13, e12182 (2021).

    Google Scholar 

  47. Lowe, V. J. et al. Neuroimaging correlates with neuropathologic schemes in neurodegenerative disease. Alzheimers Dement. 15, 927–939 (2019).

    Article  PubMed  Google Scholar 

  48. Vos, S. J. et al. Preclinical Alzheimer’s disease and its outcome: a longitudinal cohort study. Lancet Neurol. 12, 957–965 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Wisse, L. E. M. et al. Pathological drivers of neurodegeneration in suspected non-Alzheimer’s disease pathophysiology. Alzheimers Res. Ther. 13, 100 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Thal, D. R., Rub, U., Orantes, M. & Braak, H. Phases of Aβ-deposition in the human brain and its relevance for the development of AD. Neurology 58, 1791–1800 (2002).

    Article  PubMed  Google Scholar 

  51. Crary, J. F. et al. Primary age-related tauopathy (PART): a common pathology associated with human aging. Acta Neuropathol. 128, 755–766 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Duyckaerts, C. et al. PART is part of Alzheimer disease. Acta Neuropathol. 129, 749–756 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Thal, D. R. & Tome, S. O. The central role of tau in Alzheimer’s disease: from neurofibrillary tangle maturation to the induction of cell death. Brain Res. Bull. 190, 204–217 (2022).

    Article  CAS  PubMed  Google Scholar 

  54. Walkiewicz, G. et al. Primary retinal tauopathy: a tauopathy with a distinct molecular pattern. Alzheimers Dement. 20, 330–340 (2024).

    Article  PubMed  Google Scholar 

  55. Shi, Y. et al. Cryo-EM structures of tau filaments from Alzheimer’s disease with PET ligand APN-1607. Acta Neuropathol. 141, 697–708 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kaufman, S. K., Del Tredici, K., Thomas, T. L., Braak, H. & Diamond, M. I. Tau seeding activity begins in the transentorhinal/entorhinal regions and anticipates phospho-tau pathology in Alzheimer’s disease and PART. Acta Neuropathol. 136, 57–67 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Aragao Gomes, L. et al. Maturation of neuronal AD-tau pathology involves site-specific phosphorylation of cytoplasmic and synaptic tau preceding conformational change and fibril formation. Acta Neuropathol. 141, 173–192 (2021).

    Article  CAS  PubMed  Google Scholar 

  58. Braak, H., Thal, D. R., Ghebremedhin, E. & Del Tredici, K. Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. J. Neuropathol. Exp. Neurol. 70, 960–969 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Santa-Maria, I. et al. The MAPT H1 haplotype is associated with tangle-predominant dementia. Acta Neuropathol. 124, 693–704 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Farrell, K. et al. Genome-wide association study and functional validation implicates JADE1 in tauopathy. Acta Neuropathol. 143, 33–53 (2022).

    Article  CAS  PubMed  Google Scholar 

  61. Teylan, M. et al. Clinical diagnoses among individuals with primary age-related tauopathy versus Alzheimer’s neuropathology. Lab. Invest. 99, 1049–1055 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Glenner, G. G. & Wong, C. W. Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun. 120, 885–890 (1984).

    Article  CAS  PubMed  Google Scholar 

  63. Thal, D. R., Ghebremedhin, E., Orantes, M. & Wiestler, O. D. Vascular pathology in Alzheimer disease: correlation of cerebral amyloid angiopathy and arteriosclerosis/lipohyalinosis with cognitive decline. J. Neuropathol. Exp. Neurol. 62, 1287–1301 (2003).

    Article  PubMed  Google Scholar 

  64. Thal, D. R. et al. Pathology of clinical and preclinical Alzheimer’s disease. Eur. Arch. Psychiatry Clin. Neurosci. 263, S137–S145 (2013).

    Article  PubMed  Google Scholar 

  65. Charidimou, A. et al. The Boston criteria version 2.0 for cerebral amyloid angiopathy: a multicentre, retrospective, MRI-neuropathology diagnostic accuracy study. Lancet Neurol. 21, 714–725 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Boyle, P. A. et al. Cerebral amyloid angiopathy and cognitive outcomes in community-based older persons. Neurology 85, 1930–1936 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hyman, B. T. et al. National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimers Dement. 8, 1–13 (2012).

    Article  PubMed  Google Scholar 

  68. Ellis, R. J. et al. Cerebral amyloid angiopathy in the brains of patients with Alzheimer’s disease: the CERAD experience, Part XV. Neurology 46, 1592–1596 (1996).

    Article  CAS  PubMed  Google Scholar 

  69. Selnes, O. A. & Vinters, H. V. Vascular cognitive impairment. Nat. Clin. Pract. Neurol. 2, 538–547 (2006).

    Article  PubMed  Google Scholar 

  70. Thal, D. R. et al. Capillary cerebral amyloid angiopathy is associated with vessel occlusion and cerebral blood flow disturbances. Neurobiol. Aging 30, 1936–1948 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Hecht, M., Kramer, L. M., von Arnim, C. A. F., Otto, M. & Thal, D. R. Capillary cerebral amyloid angiopathy in Alzheimer’s disease: association with allocortical/hippocampal microinfarcts and cognitive decline. Acta Neuropathol. 135, 681–694 (2018).

    Article  CAS  PubMed  Google Scholar 

  72. Gorelick, P. B. et al. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 42, 2672–2713 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Skrobot, O. A. et al. Vascular cognitive impairment neuropathology guidelines (VCING): the contribution of cerebrovascular pathology to cognitive impairment. Brain 139, 2957–2969 (2016).

    Article  PubMed  Google Scholar 

  74. Vinters, H. V. et al. Neuropathologic substrates of ischemic vascular dementia. J. Neuropathol. Exp. Neurol. 59, 931–945 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Launer, L. J., Hughes, T. M. & White, L. R. Microinfarcts, brain atrophy, and cognitive function: the Honolulu Asia Aging Study Autopsy Study. Ann. Neurol. 70, 774–780 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Thal, D. R. et al. Stages of granulovacuolar degeneration: their relation to Alzheimer’s disease and chronic stress response. Acta Neuropathol. 122, 577–589 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. Simchowicz, T. in Histologie und histopathologische Arbeiten über die Großhirnrinde mit besonderer Berücksichtigung der pathologischen Anatomie der Geistekrankheiten Vol. 4 (eds Nissl, F. & Alzheimer, A.) 267–444 (Fischer, 1911).

  78. Ball, M. J. & Lo, P. Granulovacuolar degeneration in the ageing brain and in dementia. J. Neuropathol. Exp. Neurol. 36, 474–487 (1977).

    Article  CAS  PubMed  Google Scholar 

  79. Funk, K. E., Mrak, R. E. & Kuret, J. Granulovacuolar degeneration (GVD) bodies of Alzheimer’s disease (AD) resemble late-stage autophagic organelles. Neuropathol. Appl. Neurobiol. 37, 295–306 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kohler, C. Granulovacuolar degeneration: a neurodegenerative change that accompanies tau pathology. Acta Neuropathol. 132, 339–359 (2016).

    Article  PubMed  Google Scholar 

  81. Koper, M. J. et al. Necrosome complex detected in granulovacuolar degeneration is associated with neuronal loss in Alzheimer’s disease. Acta Neuropathol. 139, 463–484 (2020).

    Article  CAS  PubMed  Google Scholar 

  82. Wiersma, V. I. et al. Granulovacuolar degeneration bodies are neuron-selective lysosomal structures induced by intracellular tau pathology. Acta Neuropathol. 138, 943–970 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Balusu, S. et al. MEG3 activates necroptosis in human neuron xenografts modeling Alzheimer’s disease. Science 381, 1176–1182 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tang, D., Kang, R., Berghe, T. V., Vandenabeele, P. & Kroemer, G. The molecular machinery of regulated cell death. Cell Res. 29, 347–364 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Koper, M. J. et al. LATE-NC aggravates GVD-mediated necroptosis in Alzheimer’s disease. Acta Neuropathol. Commun. 10, 128 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Josephs, K. A. et al. Updated TDP-43 in Alzheimer’s disease staging scheme. Acta Neuropathol. 131, 571–585 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Joachim, C. L., Morris, J. H. & Selkoe, D. J. Clinically diagnosed Alzheimer’s disease: autopsy results in 150 cases. Ann. Neurol. 24, 50–56 (1988).

    Article  CAS  PubMed  Google Scholar 

  88. Nelson, P. T. et al. Limbic-predominant age-related TDP-43 encephalopathy (LATE): consensus working group report. Brain 142, 1503–1527 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Nelson, P. T. et al. LATE-NC staging in routine neuropathologic diagnosis: an update. Acta Neuropathol. 145, 159–173 (2023).

    Article  PubMed  Google Scholar 

  90. Amador-Ortiz, C. et al. TDP-43 immunoreactivity in hippocampal sclerosis and Alzheimer’s disease. Ann. Neurol. 61, 435–445 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Tome, S. O. et al. TDP-43 pathology is associated with increased tau burdens and seeding. Mol. Neurodegener. 18, 71 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Braun, D. J. et al. Early chronic suppression of microglial p38ɑ in a model of Alzheimer’s disease does not significantly alter amyloid-associated neuropathology. PLoS ONE 18, e0286495 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. McAleese, K. E. et al. TDP-43 pathology in Alzheimer’s disease, dementia with Lewy bodies and ageing. Brain Pathol. 27, 472–479 (2017).

    Article  CAS  PubMed  Google Scholar 

  94. Mackenzie, I. R. et al. Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration: an update. Acta Neuropathol. 119, 1–4 (2010).

    Article  PubMed  Google Scholar 

  95. Braak, H. & Braak, E. Argyrophilic grain disease: frequency of occurrence in different age categories and neuropathological diagnostic criteria. J. Neural Transm. 105, 801–819 (1998).

    Article  CAS  PubMed  Google Scholar 

  96. Thal, D. R. et al. The impact of argyrophilic grain disease on the development of dementia and its relationship to concurrent Alzheimer’s disease-related pathology. Neuropathol. Appl. Neurobiol. 31, 270–279 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Thal, D. R. et al. Frontotemporal lobar degeneration FTLD-tau: preclinical lesions, vascular, and Alzheimer-related co-pathologies. J. Neural Transm. 122, 1007–1018 (2015).

    Article  CAS  PubMed  Google Scholar 

  98. Josephs, K. A. et al. Argyrophilic grains: a distinct disease or an additive pathology? Neurobiol. Aging 29, 566–573 (2008).

    Article  CAS  PubMed  Google Scholar 

  99. Braak, H. et al. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging 24, 197–211 (2003).

    Article  PubMed  Google Scholar 

  100. Del Tredici, K., Rub, U., De Vos, R. A., Bohl, J. R. & Braak, H. Where does Parkinson disease pathology begin in the brain? J. Neuropathol. Exp. Neurol. 61, 413–426 (2002).

    Article  PubMed  Google Scholar 

  101. Brettschneider, J. et al. Stages of pTDP-43 pathology in amyotrophic lateral sclerosis. Ann. Neurol. 74, 20–38 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Neumann, M. et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314, 130–133 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Van Schoor, E. et al. Necrosome-positive granulovacuolar degeneration is associated with TDP-43 pathological lesions in the hippocampus of ALS/FTLD cases. Neuropathol. Appl. Neurobiol. 47, 328–345 (2020).

    Article  PubMed  Google Scholar 

  104. Fernandes Gomes, B. et al. ɑ-Synuclein seed amplification assay as a diagnostic tool for parkinsonian disorders. Parkinsonism Relat. Disord. 117, 105807 (2023).

    Article  CAS  PubMed  Google Scholar 

  105. Shen, X. N. et al. Plasma amyloid, tau, and neurodegeneration biomarker profiles predict Alzheimer’s disease pathology and clinical progression in older adults without dementia. Alzheimers Dement. 12, e12104 (2020).

    Google Scholar 

  106. Cummings, J. et al. Alzheimer’s disease drug development pipeline: 2023. Alzheimers Dement. 9, e12385 (2023).

    Article  Google Scholar 

  107. Nelson, P. T. et al. Frequency of LATE neuropathologic change across the spectrum of Alzheimer’s disease neuropathology: combined data from 13 community-based or population-based autopsy cohorts. Acta Neuropathol. 144, 27–44 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Hamilton, R. L. Lewy bodies in Alzheimer’s disease: a neuropathological review of 145 cases using ɑ-synuclein immunohistochemistry. Brain Pathol. 10, 378–384 (2000).

    Article  CAS  PubMed  Google Scholar 

  109. Lippa, C. F. et al. Lewy bodies contain altered α-synuclein in brains of many familial Alzheimer’s disease patients with mutations in presenilin and amyloid precursor protein genes. Am. J. Pathol. 153, 1365–1370 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Uchikado, H., Lin, W. L., DeLucia, M. W. & Dickson, D. W. Alzheimer disease with amygdala Lewy bodies: a distinct form of α-synucleinopathy. J. Neuropathol. Exp. Neurol. 65, 685–697 (2006).

    Article  CAS  PubMed  Google Scholar 

  111. Vonsattel, J. P. et al. Cerebral amyloid angiopathy without and with cerebral hemorrhages: a comparative histological study. Ann. Neurol. 30, 637–649 (1991).

    Article  CAS  PubMed  Google Scholar 

  112. Mandybur, T. I. Cerebral amyloid angiopathy: the vascular pathology and complications. J. Neuropathol. Exp. Neurol. 45, 79–90 (1986).

    Article  CAS  PubMed  Google Scholar 

  113. Dickson, D. W., Kouri, N., Murray, M. E. & Josephs, K. A. Neuropathology of frontotemporal lobar degeneration-tau (FTLD-tau). J. Mol. Neurosci. 45, 384–389 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Jansen, W. J. et al. Prevalence estimates of amyloid abnormality across the Alzheimer disease clinical spectrum. JAMA Neurol. 79, 228–243 (2022).

    Article  PubMed  Google Scholar 

  115. Mormino, E. C. et al. Heterogeneity in suspected non-Alzheimer disease pathophysiology among clinically normal older individuals. JAMA Neurol. 73, 1185–1191 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Murray, M. E. et al. Clinicopathologic and 11C-Pittsburgh compound B implications of Thal amyloid phase across the Alzheimer’s disease spectrum. Brain 138, 1370–1381 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Tan, M.-S. et al. Longitudinal trajectories of Alzheimer’s ATN biomarkers in elderly persons without dementia. Alzheimers Res. Ther. 12, 55 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank P. Scheltens for the conception of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

S.J.B.V. and A.D. researched data for the article. S.J.B.V., A.D. and P.J.V. contributed substantially to discussion of the content. All authors wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Stephanie J. B. Vos.

Ethics declarations

Competing interests

S.J.B.V. has received funding from ZonMW (SNAP VIMP grant no. 7330505021), Stichting Adriana van Rinsum-Ponssen and the EPND project, which received funding from the European Commision, IMI 2 Joint Undertaking (JU) under grant agreement no. 101034344. The IMI JU receives support from the European Union’s Horizon 2020 research and innovation programme and EFPIA. D.R.T. has received speakers’ honoraria from Biogen and travel reimbursement from UCB and has collaborated with Novartis Pharma AG, Probiodrug, GE-Healthcare and Janssen Pharmaceutical Companies. He receives funding from Stichting Alzheimer Onderzoek (SAO/FRA 2020/017), Fonds Wetenschappelijk Onderzoek (Vlaanderen) (G0F8516N, G065721N), Alzheimer Association (22-AAIIA-963171) and KU-Leuven Internal Funding (C14/22/132; C3/20/057). P.J.V. has received funding from the European Commission, IMI 2 JU, AMYPAD grant no. 115952; European Commission, IMI 2 JU, RADAR-AD grant no. 806999; and European Commission, IMI 2 JU, EPND grant no. 101034344. He has also received funding from Zon-MW, Redefining Alzheimer’s disease, grant no. 733050824736; and Biogen (Amyloid Biomarker Study Group). Grants were paid to the university. A.D. and C.R.J. declare no competing interests.

Peer review

Peer review information

Nature Reviews Neurology thanks J. Hort and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

AD polygenic risk score

A score that represents an individual’s predicted genetic susceptibility to AD. The score aggregates the genetic effects of single nucleotide variants identified in genome-wide association studies in AD.

Centiloid value

A unit that allows amyloid PET signals obtained with different radiotracers to be combined. Centiloid values can range from 0 (amyloid-β-negative brain) to 100 (typical Alzheimer disease (AD)).

Standardized uptake value ratio

The mean activity concentration in predefined anatomically relevant cortical regions of interest compared with that in a reference region.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vos, S.J.B., Delvenne, A., Jack, C.R. et al. The clinical importance of suspected non-Alzheimer disease pathophysiology. Nat Rev Neurol (2024). https://doi.org/10.1038/s41582-024-00962-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41582-024-00962-y

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research