Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nutritional and metabolic factors in amyotrophic lateral sclerosis

Abstract

Amyotrophic lateral sclerosis (ALS) is a complex neurodegenerative disease that is classically thought to impact the motor system. Over the past 20 years, research has started to consider the contribution of non-motor symptoms and features of the disease, and how they might affect ALS prognosis. Of the non-motor features of the disease, nutritional status (for example, malnutrition) and metabolic balance (for example, weight loss and hypermetabolism) have been consistently shown to contribute to more rapid disease progression and/or earlier death. Several complex cellular changes observed in ALS, including mitochondrial dysfunction, are also starting to be shown to contribute to bioenergetic failure. The resulting energy depletion in high energy demanding neurons makes them sensitive to apoptosis. Given that nutritional and metabolic stressors at the whole-body and cellular level can impact the capacity to maintain optimal function, these factors present avenues through which we can identify novel targets for treatment in ALS. Several clinical trials are now underway evaluating the effectiveness of modifying energy balance in ALS, making this article timely in reviewing the evidence base for metabolic and nutritional interventions.

Key points

  • Clinical and epidemiological evidence links metabolic alterations to amyotrophic lateral sclerosis (ALS) onset and progression; these metabolic defects precede motor symptoms, suggesting a causative role in ALS.

  • Although hypermetabolism is consistently observed in ALS, its causes and clinical relevance remain largely unknown; to address this, a consensus approach to identifying hypermetabolism in ALS is needed.

  • Exploring ALS metabolic dysregulation is key for optimizing patient care and analysing nutritional status, especially fat mass stability, is crucial for understanding energy homeostasis; imbalances might require energy intake interventions, orally or via gastrostomy.

  • Compounds that improve cellular bioenergetics exert neuroprotection in in vivo and in vitro ALS models, but most have failed in clinical trials or have provided modest benefit in people living with ALS.

  • Studies in mouse models and patient trials have demonstrated a potential therapeutic role for high-calorie diets in ALS, but optimal nutritional intervention parameters require further elucidation.

  • A personalized approach of bioenergetic enhancement with nutritional interventions might yield superior outcomes in ALS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Direct and indirect effects of amyotrophic lateral sclerosis-related genes on mitochondrial function.
Fig. 2: Potential interventions in treating bioenergetic failure in amyotrophic lateral sclerosis.

Similar content being viewed by others

References

  1. Hardiman, O. et al. Amyotrophic lateral sclerosis. Nat. Rev. Dis. Prim. 3, 17071, https://doi.org/10.1038/nrdp.2017.71 (2017).

    Article  PubMed  Google Scholar 

  2. Van Damme, P., Robberecht, W. & Van Den Bosch, L. Modelling amyotrophic lateral sclerosis: progress and possibilities. Dis. Model. Mech. 10, 537–549 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Renton, A. E., Chio, A. & Traynor, B. J. State of play in amyotrophic lateral sclerosis genetics. Nat. Neurosci. 17, 17–23 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Renton, A. E. et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72, 257–268 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Muller, K. et al. Comprehensive analysis of the mutation spectrum in 301 German ALS families. J. Neurol. Neurosurg. Psychiatry 89, 817–827 (2018).

    Article  PubMed  Google Scholar 

  6. Rosen, D. R. et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362, 59–62 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Kabashi, E. et al. TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat. Genet. 40, 572–574 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Sreedharan, J. et al. TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319, 1668–1672 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vance, C. et al. Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 323, 1208–1211 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. McCann, E. P. et al. Evidence for polygenic and oligogenic basis of Australian sporadic amyotrophic lateral sclerosis. J. Med. Genet. 58, 87–95 (2020).

    Article  Google Scholar 

  11. Mehta, P. R. et al. The impact of age on genetic testing decisions in amyotrophic lateral sclerosis. Brain 145, 4440–4447 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Shepheard, S. R. et al. Value of systematic genetic screening of patients with amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 92, 510–518 (2021).

    Article  PubMed  Google Scholar 

  13. Al-Chalabi, A. et al. Analysis of amyotrophic lateral sclerosis as a multistep process: a population-based modelling study. Lancet Neurol. 13, 1108–1113 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chio, A. et al. The multistep hypothesis of ALS revisited: the role of genetic mutations. Neurology 91, e635–e642 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Filippini, T. et al. Environmental and occupational risk factors of amyotrophic lateral sclerosis: a population-based case-control study. Int. J. Environ. Res. Public Health https://doi.org/10.3390/ijerph17082882 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bradley, W. G., Miller, R. X., Levine, T. D., Stommel, E. W. & Cox, P. A. Studies of environmental risk factors in amyotrophic lateral sclerosis (ALS) and a phase I clinical trial of l-serine. Neurotox. Res. 33, 192–198 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Wang, H. et al. Smoking and risk of amyotrophic lateral sclerosis: a pooled analysis of 5 prospective cohorts. Arch. Neurol. 68, 207–213 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Boddy, S. L. et al. The gut microbiome: a key player in the complexity of amyotrophic lateral sclerosis (ALS). BMC Med. https://doi.org/10.1186/s12916-020-01885-3 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Julian, T. H. et al. Physical exercise is a risk factor for amyotrophic lateral sclerosis: convergent evidence from Mendelian randomisation, transcriptomics and risk genotypes. EBioMedicine 68, 103397 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Desport, J. C. et al. Nutritional status is a prognostic factor for survival in ALS patients. Neurology 53, 1059–1063 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Kasarskis, E. J., Berryman, S., Vanderleest, J. G., Schneider, A. R. & McClain, C. J. Nutritional status of patients with amyotrophic lateral sclerosis: relation to the proximity of death. Am. J. Clin. Nutr. 63, 130–137 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. O’Reilly, E. J. et al. Premorbid body mass index and risk of amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Frontotemporal Degener. 14, 205–211 (2013).

    Article  PubMed  Google Scholar 

  23. Charcot, J. & Joffroy, A. Deux cas d’atrophie musculaire progressive avec lesions de la substance grise et de faisceaux antero-lateraux de la moelle epiniere. Arch. Physiol. Norm. Pathol. 1, 354–367 (1869).

    Google Scholar 

  24. Bensimon, G., Lacomblez, L. & Meininger, V. ALS/Riluzole Study Group. A controlled trial of riluzole in amyotrophic lateral sclerosis. N. Engl. J. Med. 330, 585–591 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Amyotrophic Lateral Sclerosis/Riluzole Study Group II et al. Dose-ranging study of riluzole in amyotrophic lateral sclerosis. Lancet 347, 1425–1431 (1996).

    Article  Google Scholar 

  26. Abe, K. et al. Safety and efficacy of edaravone in well defined patients with amyotrophic lateral sclerosis: a randomised, double-blind, placebo-controlled trial. Lancet Neurol. 16, 505–512 (2017).

    Article  Google Scholar 

  27. Brooks, B. R. et al. Edaravone efficacy in amyotrophic lateral sclerosis with reduced forced vital capacity: post-hoc analysis of Study 19 (MCI186-19) [clinical trial NCT01492686]. PLoS ONE 17, e0258614 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Paganoni, S. et al. Effect of sodium phenylbutyrate/taurursodiol on tracheostomy/ventilation-free survival and hospitalisation in amyotrophic lateral sclerosis: long-term results from the CENTAUR trial. J. Neurol. Neurosurg. Psychiatry 93, 871–875 (2022).

    Article  PubMed  Google Scholar 

  29. Miller, T. M. et al. Trial of antisense oligonucleotide tofersen for SOD1 ALS. N. Engl. J. Med. 387, 1099–1110 (2022).

    Article  CAS  PubMed  Google Scholar 

  30. Vucic, S. et al. ALS is a multistep process in South Korean, Japanese, and Australian patients. Neurology 94, e1657–e1663 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Diekmann, K. et al. Impact of comorbidities and co-medication on disease onset and progression in a large German ALS patient group. J. Neurol. 267, 2130–2141 (2020).

    Article  PubMed  Google Scholar 

  32. Janse van Mantgem, M. R. et al. Prognostic value of weight loss in patients with amyotrophic lateral sclerosis: a population-based study. J. Neurol. Neurosurg. Psychiatry 91, 867–875 (2020).

    Article  PubMed  Google Scholar 

  33. Wei, Q. Q. et al. Early weight instability is associated with cognitive decline and poor survival in amyotrophic lateral sclerosis. Brain Res. Bull. 171, 10–15 (2021).

    Article  PubMed  Google Scholar 

  34. Li, J. Y. et al. Correlation of weight and body composition with disease progression rate in patients with amyotrophic lateral sclerosis. Sci. Rep. https://doi.org/10.1038/s41598-022-16229-9 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kandler, K. et al. Phenotyping of the thoracic-onset variant of amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 93, 563–565 (2022).

    Article  PubMed  Google Scholar 

  36. Xia, K. et al. Mutation-specific metabolic profiles in presymptomatic amyotrophic lateral sclerosis. Eur. J. Neurol. 30, 87–95 (2023).

    Article  PubMed  Google Scholar 

  37. Nakayama, Y. et al. Body weight variation predicts disease progression after invasive ventilation in amyotrophic lateral sclerosis. Sci. Rep. 9, 12262 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hesters, A. et al. Predictive factors for prognosis after gastrostomy placement in routine non-invasive ventilation users ALS patients. Sci. Rep. 10, 15117 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Marin, B. et al. Population-based evidence that survival in amyotrophic lateral sclerosis is related to weight loss at diagnosis. Neurodegener. Dis. 16, 225–234 (2016).

    Article  PubMed  Google Scholar 

  40. Marin, B. et al. Alteration of nutritional status at diagnosis is a prognostic factor for survival of amyotrophic lateral sclerosis patients. J. Neurol. Neurosurg. Psychiatry 82, 628–634 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Dardiotis, E. et al. Body mass index and survival from amyotrophic lateral sclerosis: a meta-analysis. Neurol. Clin. Pract. 8, 437–444 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Dorst, J. et al. Prognostic factors in ALS: a comparison between Germany and China. J. Neurol. 266, 1516–1525 (2019).

    Article  PubMed  Google Scholar 

  43. Witzel, S. et al. Fast versus slow disease progression in amyotrophic lateral sclerosis – clinical and genetic factors at the edges of the survival spectrum. Neurobiol. Aging 119, 117–126 (2022).

    Article  PubMed  Google Scholar 

  44. Dorst, J. et al. Patients with elevated triglyceride and cholesterol serum levels have a prolonged survival in amyotrophic lateral sclerosis. J. Neurol. 258, 613–617 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Dupuis, L. et al. Dyslipidemia is a protective factor in amyotrophic lateral sclerosis. Neurology 70, 1004–1009 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Chio, A. et al. Lower serum lipid levels are related to respiratory impairment in patients with ALS. Neurology 73, 1681–1685 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Tandan, R. et al. Body composition in amyotrophic lateral sclerosis subjects and its effect on disease progression and survival. Am. J. Clin. Nutr. 115, 1378–1392 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lee, I. et al. Fat mass loss correlates with faster disease progression in amyotrophic lateral sclerosis patients: exploring the utility of dual-energy x-ray absorptiometry in a prospective study. PLoS ONE 16, e0251087 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lindauer, E. et al. Adipose tissue distribution predicts survival in amyotrophic lateral sclerosis. PLoS ONE 8, e67783 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Paganoni, S., Deng, J., Jaffa, M., Cudkowicz, M. E. & Wills, A. M. Body mass index, not dyslipidemia, is an independent predictor of survival in amyotrophic lateral sclerosis. Muscle Nerve 44, 20–24 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ngo, S. T. et al. Loss of appetite is associated with a loss of weight and fat mass in patients with amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Frontotemporal Degener. 20, 497–505 (2019).

    Article  PubMed  Google Scholar 

  52. Moglia, C. et al. Early weight loss in amyotrophic lateral sclerosis: outcome relevance and clinical correlates in a population-based cohort. J. Neurol. Neurosurg. Psychiatry 90, 666–673 (2019).

    Article  PubMed  Google Scholar 

  53. Mezoian, T. et al. Loss of appetite in amyotrophic lateral sclerosis is associated with weight loss and decreased calorie consumption independent of dysphagia. Muscle Nerve 61, 230–234 (2020).

    Article  PubMed  Google Scholar 

  54. Mariosa, D. et al. Body mass index and amyotrophic lateral sclerosis: a study of US military veterans. Am. J. Epidemiol. 185, 362–371 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Westeneng, H. J. et al. Associations between lifestyle and amyotrophic lateral sclerosis stratified by C9orf72 genotype: a longitudinal, population-based, case-control study. Lancet Neurol. 20, 373–384 (2021).

    Article  CAS  PubMed  Google Scholar 

  56. Peter, R. S. et al. Life course body mass index and risk and prognosis of amyotrophic lateral sclerosis: results from the ALS registry Swabia. Eur. J. Epidemiol. 32, 901–908 (2017).

    Article  PubMed  Google Scholar 

  57. Nagel, G. et al. Adipokines, C-reactive protein and amyotrophic lateral sclerosis – results from a population- based ALS registry in Germany. Sci. Rep. 7, 4374 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Nagel, G. et al. Association of insulin-like growth factor 1 concentrations with risk for and prognosis of amyotrophic lateral sclerosis – results from the ALS registry Swabia. Sci. Rep. 10, 736 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rosenbohm, A. et al. Association of serum retinol-binding protein 4 concentration with risk for and prognosis of amyotrophic lateral sclerosis. JAMA Neurol. 75, 600–607 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Gallo, V. et al. Prediagnostic body fat and risk of death from amyotrophic lateral sclerosis: the EPIC cohort. Neurology 80, 829–838 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Nakken, O., Meyer, H. E., Stigum, H. & Holmoy, T. High BMI is associated with low ALS risk: a population-based study. Neurology 93, e424–e432 (2019).

    Article  PubMed  Google Scholar 

  62. O’Reilly, E. J. et al. Prediagnostic body size and risk of amyotrophic lateral sclerosis death in 10 studies. Amyotroph. Lateral Scler. Frontotemporal Degener. 19, 396–406 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Mattsson, P., Lonnstedt, I., Nygren, I. & Askmark, H. Physical fitness, but not muscle strength, is a risk factor for death in amyotrophic lateral sclerosis at an early age. J. Neurol. Neurosurg. Psychiatry 83, 390–394 (2012).

    Article  PubMed  Google Scholar 

  64. Bjornevik, K. et al. Pre-diagnostic plasma lipid levels and the risk of amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Frontotemporal Degener. 22, 133–143 (2021).

    Article  CAS  PubMed  Google Scholar 

  65. Steyn, F. J. et al. Altered skeletal muscle glucose–fatty acid flux in amyotrophic lateral sclerosis. Brain Commun. 2, fcaa154 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Dupuis, L., Oudart, H., Rene, F., Gonzalez de Aguilar, J. L. & Loeffler, J. P. Evidence for defective energy homeostasis in amyotrophic lateral sclerosis: benefit of a high-energy diet in a transgenic mouse model. Proc. Natl Acad. Sci. USA 101, 11159–11164 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Boillee, S. et al. Onset and progression in inherited ALS determined by motor neurons and microglia. Science 312, 1389–1392 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Coughlan, K. S., Halang, L., Woods, I. & Prehn, J. H. A high-fat jelly diet restores bioenergetic balance and extends lifespan in the presence of motor dysfunction and lumbar spinal cord motor neuron loss in TDP-43A315T mutant C57BL6/J mice. Dis. Model. Mech. 9, 1029–1037 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Ludolph, A. C., Hugon, J., Dwivedi, M. P., Schaumburg, H. H. & Spencer, P. S. Studies on the aetiology and pathogenesis of motor neuron diseases. 1. Lathyrism: clinical findings in established cases. Brain 110, 149–165 (1987).

    Article  PubMed  Google Scholar 

  70. Hugon, J., Ludolph, A., Roy, D. N., Schaumburg, H. H. & Spencer, P. S. Studies on the etiology and pathogenesis of motor neuron diseases. II. Clinical and electrophysiologic features of pyramidal dysfunction in macaques fed Lathyrus sativus and IDPN. Neurology 38, 435–442 (1988).

    Article  CAS  PubMed  Google Scholar 

  71. Spencer, P. S. et al. Lathyrism: evidence for role of the neuroexcitatory aminoacid BOAA. Lancet 2, 1066–1067 (1986).

    Article  CAS  PubMed  Google Scholar 

  72. Zhang, L., Tang, L., Huang, T. & Fan, D. Life course adiposity and amyotrophic lateral sclerosis: a Mendelian randomization study. Ann. Neurol. 87, 434–441 (2020).

    Article  PubMed  Google Scholar 

  73. van Rheenen, W. et al. Author Correction: Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology. Nat. Genet. 54, 361 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Bandres-Ciga, S. et al. Shared polygenic risk and causal inferences in amyotrophic lateral sclerosis. Ann. Neurol. 85, 470–481 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Esteban-Garcia, N. et al. Body complexion and circulating lipids in the risk of TDP-43 related disorders. Front. Aging Neurosci. 14, 838141 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zeng, P., Wang, T., Zheng, J. & Zhou, X. Causal association of type 2 diabetes with amyotrophic lateral sclerosis: new evidence from Mendelian randomization using GWAS summary statistics. BMC Med. 17, 225 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Chen, H. et al. Type 2 diabetes mellitus and amyotrophic lateral sclerosis: genetic overlap, causality, and mediation. J. Clin. Endocrinol. Metab. 106, e4497–e4508 (2021).

    Article  PubMed  Google Scholar 

  78. Zhang, L., Tang, L., Huang, T. & Fan, D. Association between type 2 diabetes and amyotrophic lateral sclerosis. Sci. Rep. 12, 2544 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hop, P. J. et al. Genome-wide study of DNA methylation shows alterations in metabolic, inflammatory, and cholesterol pathways in ALS. Sci. Transl. Med. 14, eabj0264 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ngo, S. T., Mi, J. D., Henderson, R. D., McCombe, P. A. & Steyn, F. J. Exploring targets and therapies for amyotrophic lateral sclerosis: current insights into dietary interventions. Degener. Neurol. Neuro 7, 95–108 (2017).

    CAS  Google Scholar 

  81. Booth, F. W. Effect of limb immobilization on skeletal muscle. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 52, 1113–1118 (1982).

    CAS  PubMed  Google Scholar 

  82. Burgos, R. et al. ESPEN guideline clinical nutrition in neurology. Clin. Nutr. 37, 354–396 (2018).

    Article  PubMed  Google Scholar 

  83. Lόpez-Gόmez, J. J. et al. Malnutrition at diagnosis in amyotrophic lateral sclerosis (als) and its influence on survival: using GLIM criteria. Clin. Nutr. 40, 237–244 (2021).

    Article  Google Scholar 

  84. Gorges, M. et al. Hypothalamic atrophy is related to body mass index and age at onset in amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 88, 1033–1041 (2017).

    Article  PubMed  Google Scholar 

  85. Chang, J. et al. Lower hypothalamic volume with lower body mass index is associated with shorter survival in patients with amyotrophic lateral sclerosis. Eur. J. Neurol. 30, 57–68 (2023).

    Article  PubMed  Google Scholar 

  86. Gabery, S. et al. Loss of the metabolism and sleep regulating neuronal populations expressing orexin and oxytocin in the hypothalamus in amyotrophic lateral sclerosis. Neuropathol. Appl. Neurobiol. 47, 979–989 (2021).

    Article  CAS  PubMed  Google Scholar 

  87. Desport, J. C. et al. Factors correlated with hypermetabolism in patients with amyotrophic lateral sclerosis. Am. J. Clin. Nutr. 74, 328–334 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Desport, J. C., Torny, F., Lacoste, M., Preux, P. M. & Couratier, P. Hypermetabolism in ALS: correlations with clinical and paraclinical parameters. Neurodegener. Dis. 2, 202–207 (2005).

    Article  PubMed  Google Scholar 

  89. Bouteloup, C. et al. Hypermetabolism in ALS patients: an early and persistent phenomenon. J. Neurol. 256, 1236–1242 (2009).

    Article  CAS  PubMed  Google Scholar 

  90. Funalot, B., Desport, J. C., Sturtz, F., Camu, W. & Couratier, P. High metabolic level in patients with familial amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. 10, 113–117 (2009).

    Article  CAS  PubMed  Google Scholar 

  91. Vaisman, N. et al. Do patients with amyotrophic lateral sclerosis (ALS) have increased energy needs. J. Neurol. Sci. 279, 26–29 (2009).

    Article  PubMed  Google Scholar 

  92. Jésus, P. et al. Hypermetabolism is a deleterious prognostic factor in patients with amyotrophic lateral sclerosis. Eur. J. Neurol. 25, 97–104 (2018).

    Article  PubMed  Google Scholar 

  93. Steyn, F. J. et al. Hypermetabolism in ALS is associated with greater functional decline and shorter survival. J. Neurol. Neurosurg. Psychiatry 89, 1016–1023 (2018).

    Article  PubMed  Google Scholar 

  94. Jésus, P. et al. Increased resting energy expenditure compared with predictive theoretical equations in amyotrophic lateral sclerosis. Nutrition 77, 110805 (2020).

    Article  PubMed  Google Scholar 

  95. Ngo, S. T. et al. Progression and survival of patients with motor neuron disease relative to their fecal microbiota. Amyotroph. Lateral Scler. Frontotemporal Degener. 21, 549–562 (2020).

    Article  CAS  PubMed  Google Scholar 

  96. Fayemendy, P. et al. Hypermetabolism is a reality in amyotrophic lateral sclerosis compared to healthy subjects. J. Neurol. Sci. 420, 117257 (2021).

    Article  PubMed  Google Scholar 

  97. Nakamura, R. et al. Prognostic prediction by hypermetabolism varies depending on the nutritional status in early amyotrophic lateral sclerosis. Sci. Rep. 11, 17943 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Cattaneo, M. et al. The hypometabolic state: a good predictor of a better prognosis in amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 93, 41–47 (2022).

    Article  PubMed  Google Scholar 

  99. He, J. et al. Hypermetabolism associated with worse prognosis of amyotrophic lateral sclerosis. J. Neurol. 269, 1447–1455 (2022).

    Article  PubMed  Google Scholar 

  100. Nakamura, R. et al. Investigation of the prognostic predictive value of serum lipid profiles in amyotrophic lateral sclerosis: roles of sex and hypermetabolism. Sci. Rep. 12, 1826 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zurlo, F., Larson, K., Bogardus, C. & Ravussin, E. Skeletal muscle metabolism is a major determinant of resting energy expenditure. J. Clin. Invest. 86, 1423–1427 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Georges, M., Morelot-Panzini, C., Similowski, T. & Gonzalez-Bermejo, J. Noninvasive ventilation reduces energy expenditure in amyotrophic lateral sclerosis. BMC Pulm. Med. 14, 17 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Ferri, A. & Coccurello, R. What is “hyper” in the ALS hypermetabolism? Mediators Inflamm. 2017, 7821672 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Smith, E. F., Shaw, P. J. & De Vos, K. J. The role of mitochondria in amyotrophic lateral sclerosis. Neurosci. Lett. 710, 132933 (2019).

    Article  PubMed  Google Scholar 

  105. Dorst, J. et al. Metabolic alterations precede neurofilament changes in presymptomatic ALS gene carriers. EBioMedicine 90, 104521 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Genin, E. C. et al. CHCHD10 mutations promote loss of mitochondrial cristae junctions with impaired mitochondrial genome maintenance and inhibition of apoptosis. EMBO Mol. Med. 8, 58–72 (2016).

    Article  CAS  PubMed  Google Scholar 

  107. Genin, E. C. et al. Mitochondrial defect in muscle precedes neuromuscular junction degeneration and motor neuron death in CHCHD10S59L/+ mouse. Acta Neuropathol. 138, 123–145 (2019).

    Article  CAS  PubMed  Google Scholar 

  108. Genin, E. C. et al. Loss of MICOS complex integrity and mitochondrial damage, but not TDP-43 mitochondrial localisation, are likely associated with severity of CHCHD10-related diseases. Neurobiol. Dis. 119, 159–171 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Wang, T. et al. C9orf72 regulates energy homeostasis by stabilizing mitochondrial complex I assembly. Cell Metab. 33, 531–546.e9 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Onesto, E. et al. Gene-specific mitochondria dysfunctions in human TARDBP and C9ORF72 fibroblasts. Acta Neuropathol. Commun. 4, 47 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Gunther, R. et al. Alteration of mitochondrial integrity as upstream event in the pathophysiology of SOD1-ALS. Cells https://doi.org/10.3390/cells11071246 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Devoy, A. et al. Humanized mutant FUS drives progressive motor neuron degeneration without aggregation in ‘FUSDelta14’ knockin mice. Brain 140, 2797–2805 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Shan, X., Chiang, P. M., Price, D. L. & Wong, P. C. Altered distributions of Gemini of coiled bodies and mitochondria in motor neurons of TDP-43 transgenic mice. Proc. Natl Acad. Sci. USA 107, 16325–16330 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Izumikawa, K. et al. TDP-43 stabilises the processing intermediates of mitochondrial transcripts. Sci. Rep. 7, 7709 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Wang, W. et al. The inhibition of TDP-43 mitochondrial localization blocks its neuronal toxicity. Nat. Med. 22, 869–878 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Wang, P. et al. TDP-43 induces mitochondrial damage and activates the mitochondrial unfolded protein response. PLoS Genet. 15, e1007947 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Zuo, X. et al. TDP-43 aggregation induced by oxidative stress causes global mitochondrial imbalance in ALS. Nat. Struct. Mol. Biol. 28, 132–142 (2021).

    Article  CAS  PubMed  Google Scholar 

  118. Kawamata, H. et al. Mutant TDP-43 does not impair mitochondrial bioenergetics in vitro and in vivo. Mol. Neurodegener. 12, 37 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Dafinca, R. et al. Impairment of mitochondrial calcium buffering links mutations in C9ORF72 and TARDBP in iPS-derived motor neurons from patients with ALS/FTD. Stem Cell Rep. 14, 892–908 (2020).

    Article  CAS  Google Scholar 

  120. Fazal, R. et al. HDAC6 inhibition restores TDP-43 pathology and axonal transport defects in human motor neurons with TARDBP mutations. EMBO J. 40, e106177 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Nakaya, T. & Maragkakis, M. Amyotrophic lateral sclerosis associated FUS mutation shortens mitochondria and induces neurotoxicity. Sci. Rep. 8, 15575 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Tsai, Y. L. et al. ALS/FTD-associated protein FUS induces mitochondrial dysfunction by preferentially sequestering respiratory chain complex mRNAs. Genes Dev. 34, 785–805 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Salam, S. et al. Identification of a novel interaction of FUS and syntaphilin may explain synaptic and mitochondrial abnormalities caused by ALS mutations. Sci. Rep. 11, 13613 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Stoica, R. et al. ALS/FTD-associated FUS activates GSK-3β to disrupt the VAPB-PTPIP51 interaction and ER-mitochondria associations. EMBO Rep. 17, 1326–1342 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Deng, J. et al. FUS interacts with HSP60 to promote mitochondrial damage. PLoS Genet. 11, e1005357 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Deng, J. et al. FUS interacts with ATP synthase beta subunit and induces mitochondrial unfolded protein response in cellular and animal models. Proc. Natl Acad. Sci. USA 115, E9678–E9686 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Briese, M. et al. Loss of Tdp-43 disrupts the axonal transcriptome of motoneurons accompanied by impaired axonal translation and mitochondria function. Acta Neuropathol. Commun. 8, 116 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Altman, T. et al. Axonal TDP-43 condensates drive neuromuscular junction disruption through inhibition of local synthesis of nuclear encoded mitochondrial proteins. Nat. Commun. 12, 6914 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Allen, S. P. et al. C9orf72 expansion within astrocytes reduces metabolic flexibility in amyotrophic lateral sclerosis. Brain 142, 3771–3790 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Allen, S. P. et al. Astrocyte adenosine deaminase loss increases motor neuron toxicity in amyotrophic lateral sclerosis. Brain 142, 586–605 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Yu, M. et al. Widespread mislocalization of FUS is associated with mitochondrial abnormalities in skeletal muscle in amyotrophic lateral sclerosis with FUS mutations. J. Neuropathol. Exp. Neurol. 81, 172–181 (2022).

    Article  CAS  PubMed  Google Scholar 

  132. Badu-Mensah, A., Guo, X., McAleer, C. W., Rumsey, J. W. & Hickman, J. J. Functional skeletal muscle model derived from SOD1-mutant ALS patient iPSCs recapitulates hallmarks of disease progression. Sci. Rep. 10, 14302 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Marini, C. et al. Mechanisms underlying the predictive power of high skeletal muscle uptake of FDG in amyotrophic lateral sclerosis. EJNMMI Res. 10, 76 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Dobrowolny, G. et al. Skeletal muscle is a primary target of SOD1G93A-mediated toxicity. Cell Metab. 8, 425–436 (2008).

    Article  CAS  PubMed  Google Scholar 

  135. Dobrowolny, G. et al. Metabolic changes associated with muscle expression of SOD1G93A. Front. Physiol. 9, 831 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Scaricamazza, S. et al. Skeletal-muscle metabolic reprogramming in ALS-SOD1G93A mice predates disease onset and is a promising therapeutic target. iScience 23, 101087 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Palamiuc, L. et al. A metabolic switch toward lipid use in glycolytic muscle is an early pathologic event in a mouse model of amyotrophic lateral sclerosis. EMBO Mol. Med. 7, 526–546 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Wills, A. M. et al. Hypercaloric enteral nutrition in patients with amyotrophic lateral sclerosis: a randomised, double-blind, placebo-controlled phase 2 trial. Lancet 383, 2065–2072 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Dorst, J. et al. Percutaneous endoscopic gastrostomy in amyotrophic lateral sclerosis: a prospective observational study. J. Neurol. 262, 849–858 (2015).

    Article  PubMed  Google Scholar 

  140. Ludolph, A. C. et al. Effect of high-caloric nutrition on survival in amyotrophic lateral sclerosis. Ann. Neurol. 87, 206–216 (2020).

    Article  PubMed  Google Scholar 

  141. Dorst, J. et al. Effect of high-caloric nutrition on serum neurofilament light chain levels in amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 91, 1007–1009 (2020).

    Article  PubMed  Google Scholar 

  142. Dorst, J. et al. Fat-rich versus carbohydrate-rich nutrition in ALS: a randomised controlled study. J. Neurol. Neurosurg. Psychiatry 93, 298–302 (2022).

    Article  PubMed  Google Scholar 

  143. Coates, E. et al. Patient, carer and healthcare professional perspectives on increasing calorie intake in amyotrophic lateral sclerosis. Chronic Illn. 19, 368–382 (2023).

    Article  PubMed  Google Scholar 

  144. Zarotti, N. et al. Health care professionals’ views on psychological factors affecting nutritional behaviour in people with motor neuron disease: a thematic analysis. Br. J. Health Psychol. 24, 953–969 (2019).

    Article  PubMed  Google Scholar 

  145. Biomed Central. ISCRTN registry https://www.isrctn.com/ISRCTN30588041 (2020).

  146. Randle, P. J., Garland, P. B., Hales, C. N. & Newsholme, E. A. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1, 785–789 (1963).

    Article  CAS  PubMed  Google Scholar 

  147. Ray, P. D., Huang, B. W. & Tsuji, Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal. 24, 981–990 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Browne, S. E. et al. Bioenergetic abnormalities in discrete cerebral motor pathways presage spinal cord pathology in the G93A SOD1 mouse model of ALS. Neurobiol. Dis. 22, 599–610 (2006).

    Article  CAS  PubMed  Google Scholar 

  149. Guo, Z., Kindy, M. S., Kruman, I. & Mattson, M. P. ALS-linked Cu/Zn-SOD mutation impairs cerebral synaptic glucose and glutamate transport and exacerbates ischemic brain injury. J. Cereb. Blood Flow. Metab. 20, 463–468 (2000).

    Article  CAS  PubMed  Google Scholar 

  150. Manzo, E. et al. Glycolysis upregulation is neuroprotective as a compensatory mechanism in ALS. Elife https://doi.org/10.7554/eLife.45114 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Martinez-Palma, L. et al. Mitochondrial modulation by dichloroacetate reduces toxicity of aberrant glial cells and gliosis in the SOD1G93A rat model of amyotrophic lateral sclerosis. Neurotherapeutics 16, 203–215 (2019).

    Article  CAS  PubMed  Google Scholar 

  152. Miyazaki, K. et al. Early and progressive impairment of spinal blood flow-glucose metabolism coupling in motor neuron degeneration of ALS model mice. J. Cereb. Blood Flow. Metab. 32, 456–467 (2012).

    Article  CAS  PubMed  Google Scholar 

  153. Weerasekera, A. et al. Non-invasive characterization of amyotrophic lateral sclerosis in a hTDP-43A315T mouse model: a PET-MR study. Neuroimage Clin. 27, 102327 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Desseille, C. et al. Specific physical exercise improves energetic metabolism in the skeletal muscle of amyotrophic-lateral-sclerosis mice. Front. Mol. Neurosci. 10, 332 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Smittkamp, S. E. et al. SOD1-G93A mice exhibit muscle-fiber-type-specific decreases in glucose uptake in the absence of whole-body changes in metabolism. Neurodegener. Dis. 13, 29–37 (2014).

    Article  CAS  PubMed  Google Scholar 

  156. Ferri, A. et al. Familial ALS-superoxide dismutases associate with mitochondria and shift their redox potentials. Proc. Natl Acad. Sci. USA 103, 13860–13865 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Jung, C., Higgins, C. M. & Xu, Z. Mitochondrial electron transport chain complex dysfunction in a transgenic mouse model for amyotrophic lateral sclerosis. J. Neurochem. 83, 535–545 (2002).

    Article  CAS  PubMed  Google Scholar 

  158. Kirkinezos, I. G. et al. Cytochrome c association with the inner mitochondrial membrane is impaired in the CNS of G93A-SOD1 mice. J. Neurosci. 25, 164–172 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Mattiazzi, M. et al. Mutated human SOD1 causes dysfunction of oxidative phosphorylation in mitochondria of transgenic mice. J. Biol. Chem. 277, 29626–29633 (2002).

    Article  CAS  PubMed  Google Scholar 

  160. Scaricamazza, S. et al. Repurposing of trimetazidine for amyotrophic lateral sclerosis: a study in SOD1G93A mice. Br. J. Pharmacol. 179, 1732–1752 (2022).

    Article  CAS  PubMed  Google Scholar 

  161. Allen, S. P. et al. Superoxide dismutase 1 mutation in a cellular model of amyotrophic lateral sclerosis shifts energy generation from oxidative phosphorylation to glycolysis. Neurobiol. Aging 35, 1499–1509 (2014).

    Article  CAS  PubMed  Google Scholar 

  162. Chaytow, H. et al. Targeting phosphoglycerate kinase 1 with terazosin improves motor neuron phenotypes in multiple models of amyotrophic lateral sclerosis. EBioMedicine 83, 104202 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Bannwarth, S. et al. A mitochondrial origin for frontotemporal dementia and amyotrophic lateral sclerosis through CHCHD10 involvement. Brain 137, 2329–2345 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Hor, J. H. et al. ALS motor neurons exhibit hallmark metabolic defects that are rescued by SIRT3 activation. Cell Death Differ. 28, 1379–1397 (2021).

    Article  CAS  PubMed  Google Scholar 

  165. Mehta, A. R. et al. Mitochondrial bioenergetic deficits in C9orf72 amyotrophic lateral sclerosis motor neurons cause dysfunctional axonal homeostasis. Acta Neuropathol. 141, 257–279 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Singh, T. et al. Neuronal mitochondrial dysfunction in sporadic amyotrophic lateral sclerosis is developmentally regulated. Sci. Rep. 11, 18916 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Crugnola, V. et al. Mitochondrial respiratory chain dysfunction in muscle from patients with amyotrophic lateral sclerosis. Arch. Neurol. 67, 849–854 (2010).

    Article  PubMed  Google Scholar 

  168. Dodge, J. C. et al. Metabolic signatures of amyotrophic lateral sclerosis reveal insights into disease pathogenesis. Proc. Natl Acad. Sci. USA 110, 10812–10817 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Echaniz-Laguna, A. et al. Muscular mitochondrial function in amyotrophic lateral sclerosis is progressively altered as the disease develops: a temporal study in man. Exp. Neurol. 198, 25–30 (2006).

    Article  CAS  PubMed  Google Scholar 

  170. Echaniz-Laguna, A. et al. Mitochondrial respiratory chain function in skeletal muscle of ALS patients. Ann. Neurol. 52, 623–627 (2002).

    Article  CAS  PubMed  Google Scholar 

  171. Canosa, A. et al. Brain metabolic changes across King’s stages in amyotrophic lateral sclerosis: a 18F-2-fluoro-2-deoxy-d-glucose-positron emission tomography study. Eur. J. Nucl. Med. Mol. Imaging 48, 1124–1133 (2021).

    Article  PubMed  Google Scholar 

  172. Canosa, A. et al. 18F-FDG-PET correlates of cognitive impairment in ALS. Neurology 86, 44–49 (2016).

    Article  CAS  PubMed  Google Scholar 

  173. Cistaro, A. et al. The metabolic signature of C9ORF72-related ALS: FDG PET comparison with nonmutated patients. Eur. J. Nucl. Med. Mol. Imaging 41, 844–852 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Cistaro, A. et al. Brain hypermetabolism in amyotrophic lateral sclerosis: a FDG PET study in ALS of spinal and bulbar onset. Eur. J. Nucl. Med. Mol. Imaging 39, 251–259 (2012).

    Article  CAS  PubMed  Google Scholar 

  175. Dalakas, M. C., Hatazawa, J., Brooks, R. A. & Di Chiro, G. Lowered cerebral glucose utilization in amyotrophic lateral sclerosis. Ann. Neurol. 22, 580–586 (1987).

    Article  CAS  PubMed  Google Scholar 

  176. Hatazawa, J., Brooks, R. A., Dalakas, M. C., Mansi, L. & Di Chiro, G. Cortical motor-sensory hypometabolism in amyotrophic lateral sclerosis: a PET study. J. Comput. Assist. Tomogr. 12, 630–636 (1988).

    Article  CAS  PubMed  Google Scholar 

  177. Ludolph, A. C. et al. Frontal lobe function in amyotrophic lateral sclerosis: a neuropsychologic and positron emission tomography study. Acta Neurol. Scand. 85, 81–89 (1992).

    Article  CAS  PubMed  Google Scholar 

  178. Marini, C. et al. Interplay between spinal cord and cerebral cortex metabolism in amyotrophic lateral sclerosis. Brain 141, 2272–2279 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Pagani, M. et al. Functional pattern of brain FDG-PET in amyotrophic lateral sclerosis. Neurology 83, 1067–1074 (2014).

    Article  CAS  PubMed  Google Scholar 

  180. Yamashita, T. et al. Flow-metabolism uncoupling in the cervical spinal cord of ALS patients. Neurol. Sci. 38, 659–665 (2017).

    Article  PubMed  Google Scholar 

  181. Andreassen, O. A. et al. Increases in cortical glutamate concentrations in transgenic amyotrophic lateral sclerosis mice are attenuated by creatine supplementation. J. Neurochem. 77, 383–390 (2001).

    Article  CAS  PubMed  Google Scholar 

  182. Klivenyi, P., Gardian, G., Calingasan, N. Y., Yang, L. & Beal, M. F. Additive neuroprotective effects of creatine and a cyclooxygenase 2 inhibitor against dopamine depletion in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson’s disease. J. Mol. Neurosci. 21, 191–198 (2003).

    Article  CAS  PubMed  Google Scholar 

  183. Bordet, T. et al. Identification and characterization of cholest-4-en-3-one, oxime (TRO19622), a novel drug candidate for amyotrophic lateral sclerosis. J. Pharmacol. Exp. Ther. 322, 709–720 (2007).

    Article  CAS  PubMed  Google Scholar 

  184. Thams, S. et al. A stem cell-based screening platform identifies compounds that desensitize motor neurons to endoplasmic reticulum stress. Mol. Ther. 27, 87–101 (2019).

    Article  CAS  PubMed  Google Scholar 

  185. Schutz, B. et al. The oral antidiabetic pioglitazone protects from neurodegeneration and amyotrophic lateral sclerosis-like symptoms in superoxide dismutase-G93A transgenic mice. J. Neurosci. 25, 7805–7812 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Elia, A. E. et al. Tauroursodeoxycholic acid in the treatment of patients with amyotrophic lateral sclerosis. Eur. J. Neurol. 23, 45–52 (2016).

    Article  CAS  PubMed  Google Scholar 

  187. Dupuis, L. et al. A randomized, double blind, placebo-controlled trial of pioglitazone in combination with riluzole in amyotrophic lateral sclerosis. PLoS ONE 7, e37885 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Vercruysse, P. et al. Alterations in the hypothalamic melanocortin pathway in amyotrophic lateral sclerosis. Brain 139, 1106–1122 (2016).

    Article  PubMed  Google Scholar 

  189. Luu, L. C. T., Kasarskis, E. J. & Tandan, R. in Amyotrophic Lateral Sclerosis Ch. 32 (eds Mitsumoto, H, Przedborski, S. & Gordon, P. H.) 721–735 (Taylor & Francis, 2006).

  190. Robison, R. et al. Swallowing safety and efficiency impairment profiles in individuals with amyotrophic lateral sclerosis. Dysphagia 37, 644–654 (2022).

    Article  PubMed  Google Scholar 

  191. Belafsky, P. C. et al. Validity and reliability of the Eating Assessment Tool (EAT-10). Ann. Otol. Rhinol. Laryngol. 117, 919–924 (2008).

    Article  PubMed  Google Scholar 

  192. Cedarbaum, J. M. et al. The ALSFRS-R: a revised ALS functional rating scale that incorporates assessments of respiratory function. J. Neurol. Sci. 169, 13–21 (1999).

    Article  CAS  PubMed  Google Scholar 

  193. Strand, E. A., Miller, R. M., Yorkston, K. M. & Hillel, A. D. Management of oral-pharyngeal dysphagia symptoms in amyotrophic lateral sclerosis. Dysphagia 11, 129–139 (1996).

    Article  CAS  PubMed  Google Scholar 

  194. Shim, J. S., Oh, K. & Kim, H. C. Dietary assessment methods in epidemiologic studies. Epidemiol. Health 36, e2014009 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Trabulsi, J. & Schoeller, D. A. Evaluation of dietary assessment instruments against doubly labeled water, a biomarker of habitual energy intake. Am. J. Physiol. Endocrinol. Metab. 281, E891–E899 (2001).

    Article  CAS  PubMed  Google Scholar 

  196. Kasarskis, E. J. et al. Estimating daily energy expenditure in individuals with amyotrophic lateral sclerosis. Am. J. Clin. Nutr. 99, 792–803 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Shimizu, T. et al. The measurement and estimation of total energy expenditure in Japanese patients with ALS: a doubly labelled water method study. Amyotroph. Lateral Scler. Frontotemporal Degener. 18, 37–45 (2017).

    Article  CAS  PubMed  Google Scholar 

  198. Lopes da Silva, H. F. et al. Dietary intake and zinc status in amyotrophic lateral sclerosis patients. Nutr. Hosp. 34, 1361–1367 (2017).

    PubMed  Google Scholar 

  199. Barros, A., Dourado, M. E. T. Jr., Pedrosa, L. F. C. & Leite-Lais, L. Association of copper status with lipid profile and functional status in patients with amyotrophic lateral sclerosis. J. Nutr. Metab. 2018, 5678698 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Chelstowska, B. & Kuzma-Kozakiewicz, M. Biochemical parameters in determination of nutritional status in amyotrophic lateral sclerosis. Neurol. Sci. 41, 1115–1124 (2020).

    Article  PubMed  Google Scholar 

  201. Lemos, T. & Gallagher, D. Current body composition measurement techniques. Curr. Opin. Endocrinol. Diabetes Obes. 24, 310–314 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Keys, A., Brozek, J., Henschel, A., Mickelson, O. & Taylor, H. L. The Biology of Human Starvation (University of Minnesota Press, 1950).

  203. Park, J.-W. et al. Body fat percentage and availability of oral food intake: prognostic factors and implications for nutrition in amyotrophic lateral sclerosis. Nutrients 13, 3704 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  204. University of Kentucky College of Medicine. ALS Nutrition Calculator. University of Kentucky College of Medicine https://alsnutrcalc.ukhc.org/calc (2023).

  205. Sherman, M. S., Pillai, A., Jackson, A. & Heiman-Patterson, T. Standard equations are not accurate in assessing resting energy expenditure in patients with amyotrophic lateral sclerosis. J. Parenter. Enter. Nutr. 28, 442–446 (2004).

    Article  Google Scholar 

  206. Pontzer, H. et al. Daily energy expenditure through the human life course. Science 373, 808–812 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

C.McD. is supported by the NIHR Sheffield Biomedical Research Centre and an NIHR Research Professorship Award. S.N. is supported by a FightMND Mid-Career Research Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Christopher McDermott.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neurology thanks Andrea Calvo, Philippe Corcia and Dongsheng Fan for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ludolph, A., Dupuis, L., Kasarskis, E. et al. Nutritional and metabolic factors in amyotrophic lateral sclerosis. Nat Rev Neurol 19, 511–524 (2023). https://doi.org/10.1038/s41582-023-00845-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-023-00845-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing