Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review article
  • Published:

Youth-onset type 2 diabetes mellitus: an urgent challenge

Abstract

The incidence and prevalence of youth-onset type 2 diabetes mellitus (T2DM) and its complications are increasing worldwide. Youth-onset T2DM has been reported in all racial and ethnic groups, but Indigenous peoples and people of colour are disproportionately affected. People with youth-onset T2DM often have a more aggressive clinical course than those with adult-onset T2DM or those with type 1 diabetes mellitus. Moreover, the available treatment options for children and adolescents with T2DM are more limited than for adult patients. Intermediate complications of youth-onset T2DM, such as increased albuminuria, often develop in late childhood or early adulthood, and end-stage complications, including kidney failure, develop in mid-life. The increasing frequency, earlier onset and greater severity of childhood obesity in the past 50 years together with increasingly sedentary lifestyles and an increasing frequency of intrauterine exposure to diabetes are important drivers of the epidemic of youth-onset T2DM. The particularly high risk of the disease in historically disadvantaged populations suggests an important contribution of social and environmental factors, including limited access to high-quality health care, healthy food choices and opportunities for physical activity as well as exposure to stressors including systemic racism and environmental pollutants. Understanding the mechanisms that underlie the development and aggressive clinical course of youth-onset T2DM is key to identifying successful prevention and management strategies.

Key points

  • The incidence and prevalence of youth-onset type 2 diabetes mellitus (T2DM) are increasing worldwide; the disease has been reported in all racial and ethnic groups, but Indigenous peoples and people of colour are disproportionately affected.

  • Important drivers of the epidemic of youth-onset T2DM include the increasing frequency, severity and earlier onset of childhood obesity, the increasing frequency of intrauterine exposure to diabetes, sedentary lifestyles, structural racism and other psychosocial factors.

  • Individuals who develop T2DM during childhood or adolescence often have a more aggressive clinical course than those with type 1 diabetes mellitus or those who develop T2DM in adulthood.

  • Youth-onset T2DM has a more extreme metabolic phenotype than adult-onset T2DM, with greater insulin resistance and more rapid deterioration of β-cell function; intermediate complications often develop in late childhood or early adulthood, and end-stage complications, including kidney failure, develop in mid-life.

  • Owing to limited efficacy and safety data, several drugs that are available for the treatment of adults with T2DM have not been approved for the treatment of youth, which reduces the options that are available to normalize glycaemia in these patients.

  • Managing youth-onset T2DM and mitigating the risk of microvascular and macrovascular complications require the development of more effective interventions as well as strategies to overcome barriers to adherence that are not typically encountered in adult patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Long-term complications of youth-onset T2DM.
Fig. 2: Odds of long-term complications in children and adolescents with T2DM versus those with T1DM.
Fig. 3: Potential mechanisms responsible for the aggressive clinical phenotype in youth-onset T2DM.
Fig. 4: Greater loss of β-cell function in youth-onset versus adult-onset T2DM.

Similar content being viewed by others

References

  1. Fajans, S. S. & Conn, J. W. Tolbutamide-induced improvement in carbohydrate tolerance of young people with mild diabetes mellitus. Diabetes 9, 83–88 (1960).

    CAS  PubMed  Google Scholar 

  2. Burkeholder, J. N., Pickens, J. M. & Womack, W. N. Oral glucose tolerance test in siblings of children with diabetes mellitus. Diabetes 16, 156–160 (1967).

    CAS  PubMed  Google Scholar 

  3. Martin, M. M. & Martin, A. L. Obesity, hyperinsulinism, and diabetes mellitus in childhood. J. Pediatr. 82, 192–201 (1973).

    CAS  PubMed  Google Scholar 

  4. Drash, A. Relationship between diabetes mellitus and obesity in the child. Metabolism 22, 337–344 (1973).

    CAS  PubMed  Google Scholar 

  5. Deschamps, I., Giron, B. J. & Lestradet, H. Blood glucose, insulin, and free fatty acid levels during oral glucose tolerance tests in 158 obese children. Diabetes 26, 89–93 (1977).

    CAS  PubMed  Google Scholar 

  6. Pinhas-Hamiel, O. et al. Increased incidence of non-insulin-dependent diabetes mellitus among adolescents. J. Pediatrics 128, 608–615 (1996).

    CAS  Google Scholar 

  7. Dean, H. J., Mundy, R. L. & Moffatt, M. Non-insulin-dependent diabetes mellitus in Indian children in Manitoba. Can. Med. Assoc. J. 147, 52–57 (1992).

    CAS  Google Scholar 

  8. Kitagawa, T., Owada, M., Urakami, T. & Yamauchi, K. Increased incidence of non-insulin dependent diabetes mellitus among Japanese schoolchildren correlates with an increased intake of animal protein and fat. Clin. Pediatr. 37, 111–115 (1998).

    CAS  Google Scholar 

  9. Pihoker, C., Scott, C. R., Lensing, S. Y., Cradock, M. M. & Smith, J. Non-insulin dependent diabetes mellitus in African-American youths of Arkansas. Clin. Pediatr. 37, 97–102 (1998).

    CAS  Google Scholar 

  10. Harris, S. B., Perkins, B. A. & Whalen-Brough, E. Non-insulin-dependent diabetes mellitus among First Nations children. New entity among First Nations people of north western Ontario. Can. Fam. Physician 42, 869–876 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Neufeld, N. D., Raffel, L. J., Landon, C., Chen, Y. D. & Vadheim, C. M. Early presentation of type 2 diabetes in Mexican-American youth. Diabetes Care 21, 80–86 (1998).

    CAS  PubMed  Google Scholar 

  12. Savage, P. J., Bennett, P. H., Senter, R. G. & Miller, M. High prevalence of diabetes in young Pima Indians: evidence of phenotypic variation in a genetically isolated population. Diabetes 28, 937–942 (1979).

    CAS  PubMed  Google Scholar 

  13. Kadiki, O. A., Reddy, M. R. & Marzouk, A. A. Incidence of insulin-dependent diabetes (IDDM) and non-insulin-dependent diabetes (NIDDM) (0–34 years at onset) in Benghazi, Libya. Diabetes Res. Clin. Pract. 32, 165–173 (1996).

    CAS  PubMed  Google Scholar 

  14. Pinhas-Hamiel, O. & Zeitler, P. The global spread of type 2 diabetes mellitus in children and adolescents. J. Pediatr. 146, 693–700 (2005).

    PubMed  Google Scholar 

  15. Telo, G. H., Cureau, F. V., Szklo, M., Bloch, K. V. & Schaan, B. D. Prevalence of type 2 diabetes among adolescents in Brazil: findings from study of cardiovascular risk in adolescents (ERICA). Pediatr. Diabetes 20, 389–396 (2019).

    CAS  PubMed  Google Scholar 

  16. Fagot-Campagna, A. et al. Type 2 diabetes among North American children and adolescents: an epidemiologic review and a public health perspective. J. Pediatrics 136, 664–672 (2000).

    CAS  Google Scholar 

  17. American Diabetes Association. Type 2 diabetes in children and adolescents. Diabetes Care 23, 381–389 (2000).

    Google Scholar 

  18. Mayer-Davis, E. J. et al. Incidence trends of type 1 and type 2 diabetes among youths, 2002–2012. N. Engl. J. Med. 376, 1419–1429 (2017). The incidence of youth-onset T1DM and T2DM increased significantly between 2002 and 2012, particularly among minority racial and ethnic groups.

    PubMed  PubMed Central  Google Scholar 

  19. Lawrence, J. M. et al. Trends in prevalence of type 1 and type 2 diabetes in children and adolescents in the US, 2001–2017. JAMA 326, 717–727 (2021).

    PubMed  PubMed Central  Google Scholar 

  20. TODAY Study Group et al. Long-term complications in youth-onset type 2 diabetes. N. Engl. J. Med. 385, 416–426 (2021). This study reports a high burden of microvascular and macrovascular complications in youth with T2DM transitioning to adulthood.

    PubMed Central  Google Scholar 

  21. Dabelea, D. et al. Association of type 1 diabetes vs type 2 diabetes diagnosed during childhood and adolescence with complications during teenage years and young adulthood. JAMA 317, 825–835 (2017).

    PubMed  PubMed Central  Google Scholar 

  22. Diabetes Canada Clinical Practice Guidelines Expert Committee et al. Type 2 diabetes and indigenous peoples. Can. J. Diabetes 42, S296–S306 (2018).

    Google Scholar 

  23. Nadeau, K. J. et al. Youth-onset type 2 diabetes consensus report: current status, challenges, and priorities. Diabetes Care 39, 1635–1642 (2016).

    PubMed  PubMed Central  Google Scholar 

  24. Fagot-Campagna, A. et al. Diabetes, impaired fasting glucose, and elevated HbA1c in U.S. adolescents: the Third National Health and Nutrition Examination Survey. Diabetes Care 24, 834–837 (2001).

    CAS  PubMed  Google Scholar 

  25. Demmer, R. T., Zuk, A. M., Rosenbaum, M. & Desvarieux, M. Prevalence of diagnosed and undiagnosed type 2 diabetes mellitus among US adolescents: results from the continuous NHANES, 1999-2010. Am. J. Epidemiol. 178, 1106–1113 (2013).

    PubMed  PubMed Central  Google Scholar 

  26. Bullard, K. M. et al. Prevalence of diagnosed diabetes in adults by diabetes type-United States, 2016. Morb. Mortal. Wkly Rep. 67, 359–361 (2018).

    Google Scholar 

  27. Bennett, P. H., Burch, T. A. & Miller, M. Diabetes mellitus in American (Pima) Indians. Lancet 2, 125–128 (1971).

    CAS  PubMed  Google Scholar 

  28. Katzeff, H. L., Savage, P. J., Barclay-White, B., Nagulesparan, M. & Bennett, P. H. C-peptide measurement in the differentiation of type 1 (insulin-dependent) and type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 28, 264–268 (1985).

    CAS  PubMed  Google Scholar 

  29. Knowler, W. C., Bennett, P. H., Bottazzo, G. F. & Doniach, D. Islet cell antibodies and diabetes mellitus in Pima Indians. Diabetologia 17, 161–164 (1979).

    CAS  PubMed  Google Scholar 

  30. Dabelea, D., Palmer, J. P., Bennett, P. H., Pettitt, D. J. & Knowler, W. C. Absence of glutamic acid decarboxylase antibodies in Pima Indian children with diabetes mellitus. Diabetologia 42, 1265–1266 (1999).

    CAS  PubMed  Google Scholar 

  31. Janssen, R. C., Bogardus, C., Takeda, J., Knowler, W. C. & Thompson, D. B. Linkage analysis of acute insulin secretion with GLUT2 and glucokinase in Pima Indians and the identification of a missense mutation in GLUT2. Diabetes 43, 558–563 (1994).

    CAS  PubMed  Google Scholar 

  32. Muller, Y. L. et al. Variants in hepatocyte nuclear factor 4alpha are modestly associated with type 2 diabetes in Pima Indians. Diabetes 54, 3035–3039 (2005).

    PubMed  Google Scholar 

  33. Dabelea, D. et al. Increasing prevalence of type II diabetes in American Indian children. Diabetologia 41, 904–910 (1998).

    CAS  PubMed  Google Scholar 

  34. Pettitt, D. J., Baird, H. R., Aleck, K. A., Bennett, P. H. & Knowler, W. C. Excessive obesity in offspring of Pima Indian women with diabetes during pregnancy. N. Engl. J. Med. 308, 242–245 (1983).

    CAS  PubMed  Google Scholar 

  35. Vijayakumar, P. et al. Secular changes in physical growth and obesity among southwestern American Indian children over four decades. Pediatr. Obes. 13, 94–102 (2018).

    CAS  PubMed  Google Scholar 

  36. Tanamas, S. K. et al. Effect of severe obesity in childhood and adolescence on risk of type 2 diabetes in youth and early adulthood in an American Indian population. Pediatr. Diabetes 19, 622–629 (2018).

    PubMed  Google Scholar 

  37. Amed, S. et al. Type 2 diabetes, medication-induced diabetes, and monogenic diabetes in Canadian children: a prospective national surveillance study. Diabetes Care 33, 786–791 (2010).

    PubMed  PubMed Central  Google Scholar 

  38. Young, T. K., McIntyre, L. L., Dooley, J. & Rodriguez, J. Epidemiologic features of diabetes mellitus among Indians in northwestern Ontario and northeastern Manitoba. Can. Med. Assoc. J. 132, 793–797 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Green, C., Blanchard, J. F., Young, T. K. & Griffith, J. The epidemiology of diabetes in the Manitoba-registered First Nation population: current patterns and comparative trends. Diabetes Care 26, 1993–1998 (2003).

    PubMed  Google Scholar 

  40. Young, T. K., Reading, J., Elias, B. & O’Neil, J. D. Type 2 diabetes mellitus in Canada’s first nations: status of an epidemic in progress. CMAJ 163, 561–566 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Turin, T. C. et al. Lifetime risk of diabetes among First Nations and non-First Nations people. CMAJ 188, 1147–1153 (2016).

    PubMed  PubMed Central  Google Scholar 

  42. Albisser, A. M., Harris, R. I., Sakkal, S., Parson, I. D. & Chao, S. C. Diabetes intervention in the information age. Med. Inf. 21, 297–316 (1996).

    CAS  Google Scholar 

  43. Shulman, R. et al. Prevalence, incidence and outcomes of diabetes in Ontario First Nations children: a longitudinal population-based cohort study. CMAJ Open 8, E48–E55 (2020).

    PubMed  PubMed Central  Google Scholar 

  44. Dart, A. et al. Screening for kidney disease in Indigenous Canadian children: the FINISHED screen, triage and treat program. Paediatr. Child. Health 23, e134–e142 (2018).

    PubMed  PubMed Central  Google Scholar 

  45. Shulman, R., Miller, F. A., Stukel, T. A., Daneman, D. & Guttmann, A. Resources and population served: a description of the Ontario Paediatric Diabetes Network. CMAJ Open 4, E141–E146 (2016).

    PubMed  PubMed Central  Google Scholar 

  46. Lynch, J. L. et al. Country-specific prevalence and incidence of youth-onset type 2 diabetes: a narrative literature review. Ann. Nutr. Metab. 76, 289–296 (2020).

    CAS  PubMed  Google Scholar 

  47. Haines, L., Wan, K. C., Lynn, R., Barrett, T. G. & Shield, J. P. Rising incidence of type 2 diabetes in children in the U.K. Diabetes Care 30, 1097–1101 (2007).

    PubMed  Google Scholar 

  48. Candler, T. P. et al. Continuing rise of type 2 diabetes incidence in children and young people in the UK. Diabet. Med. 35, 737–744 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. de Almeida-Pititto, B. et al. Type 2 diabetes in Brazil: epidemiology and management. Diabetes Metab. Syndr. Obes. 8, 17–28 (2015).

    PubMed  PubMed Central  Google Scholar 

  50. Singh, R., Shaw, J. & Zimmet, P. Epidemiology of childhood type 2 diabetes in the developing world. Pediatr. Diabetes 5, 154–168 (2004).

    CAS  PubMed  Google Scholar 

  51. Muthuri, S. K. et al. Evidence of an overweight/obesity transition among school-aged children and youth in sub-Saharan Africa: a systematic review. PLoS ONE 9, e92846 (2014).

    PubMed  PubMed Central  Google Scholar 

  52. Kim, J. H. & Lim, J. S. Trends of diabetes and prediabetes prevalence among Korean Adolescents from 2007 to 2018. J. Korean Med. Sci. 36, e112 (2021).

    PubMed  PubMed Central  Google Scholar 

  53. Wang, Z. et al. Prevalence and risk factors of impaired fasting glucose and diabetes among Chinese children and adolescents: a national observational study. Br. J. Nutr. 120, 813–819 (2018).

    CAS  PubMed  Google Scholar 

  54. Fu, J. F. et al. Status and trends of diabetes in Chinese children: analysis of data from 14 medical centers. World J. Pediatr. 9, 127–134 (2013).

    PubMed  Google Scholar 

  55. Urakami, T. Screening of childhood type 2 diabetes in Japan. Diabetes Res. Clin. Pract. 120, https://doi.org/10.1016/s0168-8227(16)30891-9 (2016).

  56. Wei, J. N. et al. National surveillance for type 2 diabetes mellitus in Taiwanese children. JAMA 290, 1345–1350 (2003).

    CAS  PubMed  Google Scholar 

  57. Jensen, E. T. et al. Comparison of the incidence of diabetes in United States and Indian youth: an international harmonization of youth diabetes registries. Pediatr. Diabetes 22, 8–14 (2021).

    PubMed  Google Scholar 

  58. Stone, M., Baker, A. & Maple Brown, L. Diabetes in young people in the Top End of the Northern Territory. J. Paediatr. Child. Health 49, 976–979 (2013).

    PubMed  Google Scholar 

  59. Titmuss, A. et al. Youth-onset type 2 diabetes among First Nations young people in northern Australia: a retrospective, cross-sectional study. Lancet Diabetes Endocrinol. 10, 11–13 (2022).

    PubMed  Google Scholar 

  60. Haynes, A., Kalic, R., Cooper, M., Hewitt, J. K. & Davis, E. A. Increasing incidence of type 2 diabetes in Indigenous and non-Indigenous children in Western Australia, 1990–2012. Med. J. Aust. 204, 303 (2016).

    PubMed  Google Scholar 

  61. Te Whatu Ora. Virtual Diabetes Register and web tool. https://www.tewhatuora.govt.nz/our-health-system/digital-health/virtual-diabetes-tool/ (2020).

  62. Assady S, R. R., Frishberg Y. in Brenner and Rector’s The Kidney (Tenth Edition). Vol. 78 (eds Rector Brenner, F. C. et al.) 2517–2545 (Elsevier, 2018).

  63. Ali, B. A., Abdallah, S. T., Abdallah, A. M. & Hussein, M. M. The frequency of type 2 diabetes mellitus among diabetic children in El Minia Governorate, Egypt. Sultan Qaboos Univ. Med. J. 13, 399–403 (2013).

    PubMed  PubMed Central  Google Scholar 

  64. Moadab, M. H., Kelishadi, R., Hashemipour, M., Amini, M. & Poursafa, P. The prevalence of impaired fasting glucose and type 2 diabetes in a population-based sample of overweight/obese children in the Middle East. Pediatr. Diabetes 11, 101–106 (2010).

    CAS  PubMed  Google Scholar 

  65. Mirbolouk, M. et al. Incidence and predictors of early adulthood pre-diabetes/type 2 diabetes, among Iranian adolescents: the Tehran Lipid and Glucose Study. Pediatr. Diabetes 17, 608–616 (2016).

    CAS  PubMed  Google Scholar 

  66. Alsaffar, Y., Hussain, A. M. A. & Selman, N. A. Prevalence of type 2 diabetes in pediatrics and adolescents newly diagnosed with diabetes in Babylon Governorate, Iraq. AVFT 39, 839–845 (2020).

    Google Scholar 

  67. Zuckerman Levin, N. et al. Youth-onset type 2 diabetes in Israel: a national cohort. Pediatr. Diabetes 23, 649–659 (2022).

    CAS  PubMed  Google Scholar 

  68. Meyerovitch, J., Zlotnik, M., Yackobovitch-Gavan, M., Phillip, M. & Shalitin, S. Real-life glycemic control in children with type 2 diabetes: a population-based study. J. Pediatr. 188, 173–180.e171 (2017).

    CAS  PubMed  Google Scholar 

  69. Al-Kandari, H. et al. Incidence of type 2 diabetes in Kuwaiti children and adolescents: results from the childhood-onset diabetes electronic registry (CODeR). Front. Endocrinol. 10, 836 (2019).

    Google Scholar 

  70. Moussa, M. A. et al. Prevalence of type 2 diabetes mellitus among Kuwaiti children and adolescents. Med. Princ. Pract. 17, 270–275 (2008).

    PubMed  Google Scholar 

  71. Salameh, P. & Barbour, B. Pattern of obesity and associated diabetes in Lebanese adolescents: a pilot study. East. Mediterr. Health J. 17, 226–230 (2011).

    CAS  PubMed  Google Scholar 

  72. Agroiya, P. & Alrawahi, A. H. Pediatric diabetic retinopathy: experience of a tertiary hospital in Oman. Middle East. Afr. J. Ophthalmol. 26, 189–195 (2019).

    PubMed  Google Scholar 

  73. Haris, B. et al. Epidemiology, genetic landscape and classification of childhood diabetes mellitus in the State of Qatar. J. Diabetes Investig. https://doi.org/10.1111/jdi.13610 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Alyafei, F. et al. Prevalence of beta-cell antibodies and associated autoimmune diseases in children and adolescents with type 1 diabetes (T1DM) versus type 2 diabetes (T2DM) in Qatar. Acta Biomed. 89, 32–39 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Al-Agha, A., Ocheltree, A. & Shata, N. Prevalence of hyperinsulinism, type 2 diabetes mellitus and metabolic syndrome among Saudi overweight and obese pediatric patients. Minerva Pediatr. 64, 623–631 (2012).

    CAS  PubMed  Google Scholar 

  76. Al-Rubeaan, K. National surveillance for type 1, type 2 diabetes and prediabetes among children and adolescents: a population-based study (SAUDI-DM). J. Epidemiol. Community Health 69, 1045–1051 (2015).

    PubMed  Google Scholar 

  77. Braham, R. et al. Double diabetes in Saudi Arabia: a new entity or an underestimated condition? World J. Diabetes 7, 621–626 (2016).

    PubMed  PubMed Central  Google Scholar 

  78. Haliloglu, B. et al. The distribution of different types of diabetes in childhood: a single center experience. J. Clin. Res. Pediatr. Endocrinol. 10, 125–130 (2018).

    PubMed  PubMed Central  Google Scholar 

  79. Hatun, S. et al. Characteristics of Turkish children with type 2 diabetes at onset: a multicentre, cross-sectional study. Diabet. Med. 36, 1243–1250 (2019).

    CAS  PubMed  Google Scholar 

  80. Al Amiri, E. et al. The prevalence, risk factors, and screening measure for prediabetes and diabetes among Emirati overweight/obese children and adolescents. BMC Public Health 15, 1298–1298 (2015).

    PubMed  PubMed Central  Google Scholar 

  81. Punnose, J., Agarwal, M. M. & Bin-Uthman, S. Type 2 diabetes mellitus among children and adolescents in Al-Ain: a case series. East. Mediterr. Health J. 11, 788–797 (2005).

    CAS  PubMed  Google Scholar 

  82. Atef, Z., Al-Ghazaly, J. & M, B. Prediabetes and type 2 diabetes among Yemeni adolescents. Eur. J. Biomed. Pharm. Sci. 5, 28–34 (2018).

    Google Scholar 

  83. International Diabetes Federation. IDF Diabetes Atlas 10th edn (International Diabetes Federation, 2021).

  84. Elkum, N., Al-Arouj, M., Sharifi, M., Shaltout, A. & Bennakhi, A. Prevalence of childhood obesity in the state of Kuwait. Pediatr. Obes. 11, e30–e34 (2016).

    CAS  PubMed  Google Scholar 

  85. AlBlooshi, A. et al. Increasing obesity rates in school children in United Arab Emirates. Obes. Sci. Pract. 2, 196–202 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Hamman, R. F. et al. The SEARCH for Diabetes in Youth study: rationale, findings, and future directions. Diabetes Care 37, 3336–3344 (2014).

    PubMed  PubMed Central  Google Scholar 

  87. SEARCH Study Group. SEARCH for Diabetes in Youth: a multicenter study of the prevalence, incidence and classification of diabetes mellitus in youth. Control. Clin. Trials 25, 458–471 (2004).

    Google Scholar 

  88. Divers, J. et al. Trends in incidence of type 1 and type 2 diabetes among youths — selected counties and Indian reservations, United States, 2002–2015. MMWR Morb. Mortal. Wkly Rep. 69, 161–165 (2020).

    PubMed  PubMed Central  Google Scholar 

  89. Hales, C. M., Carroll, M. D., Fryer, C. D. & Ogden, C. L. Prevalence of obesity among adults and youth: United States, 2015–2016. NCHS Data Brief, 1–8 (2017).

  90. Ogden, C. L. et al. Trends in obesity prevalence by race and hispanic origin-1999–2000 to 2017–2018. JAMA 324, 1208–1210 (2020).

    PubMed  PubMed Central  Google Scholar 

  91. CDC. Prevalence of diagnosed diabetes. https://www.cdc.gov/diabetes/data/statistics-report/diagnosed-diabetes.html (2022).

  92. Dabelea, D. et al. Association of intrauterine exposure to maternal diabetes and obesity with type 2 diabetes in youth: the SEARCH case-control study. Diabetes Care 31, 1422–1426 (2008).

    PubMed  PubMed Central  Google Scholar 

  93. Mayer-Davis, E. J. et al. Breast-feeding and type 2 diabetes in the youth of three ethnic groups: the SEARCH for Diabetes in Youth case-control study. Diabetes Care 31, 470–475 (2008).

    PubMed  Google Scholar 

  94. Fernandez-Twinn, D. S., Hjort, L., Novakovic, B., Ozanne, S. E. & Saffery, R. Intrauterine programming of obesity and type 2 diabetes. Diabetologia 62, 1789–1801 (2019).

    PubMed  PubMed Central  Google Scholar 

  95. Navas-Acien, A., Silbergeld, E. K., Pastor-Barriuso, R. & Guallar, E. Arsenic exposure and prevalence of type 2 diabetes in US adults. JAMA 300, 814–822 (2008).

    CAS  PubMed  Google Scholar 

  96. Maull, E. A. et al. Evaluation of the association between arsenic and diabetes: a National Toxicology Program workshop review. Environ. Health Perspect. 120, 1658–1670 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Liese, A. D. et al. Neighborhood characteristics, food deserts, rurality, and type 2 diabetes in youth: findings from a case-control study. Health Place. 50, 81–88 (2018).

    PubMed  PubMed Central  Google Scholar 

  98. Findholt, N. E., Michael, Y. L., Davis, M. M. & Brogoitti, V. W. Environmental influences on children’s physical activity and diets in rural oregon: results of a youth photovoice project. Online J. Rural. Nurs. Health Care 10, 11–20 (2010).

    PubMed  PubMed Central  Google Scholar 

  99. Zhang, X. et al. Neighborhood commuting environment and obesity in the United States: an urban-rural stratified multilevel analysis. Prev. Med. 59, 31–36 (2014).

    CAS  PubMed  Google Scholar 

  100. TODAY Study Group et al. A clinical trial to maintain glycemic control in youth with type 2 diabetes. N. Engl. J. Med. 366, 2247–2256 (2012). This trial shows high rates of glycaemic failure irrespective of treatment group (metformin versus metformin plus lifestyle changes versus metformin plus rosiglitazone).

    PubMed Central  Google Scholar 

  101. Maahs, D. M. et al. Higher prevalence of elevated albumin excretion in youth with type 2 than type 1 diabetes: the SEARCH for Diabetes in Youth study. Diabetes care 30, 2593–2598 (2007).

    PubMed  Google Scholar 

  102. Pavkov, M. E. et al. Effect of youth-onset type 2 diabetes mellitus on incidence of end-stage renal disease and mortality in young and middle-aged Pima Indians. JAMA 296, 421–426 (2006). This study reports a 5-fold greater risk of diabetic kidney failure and a 2-fold greater risk of death in mid-life (aged 25–54 years) among Pima Indians with youth-onset compared with older-onset T2DM.

    CAS  PubMed  Google Scholar 

  103. Sellers, E. A. C. et al. Persistent albuminuria in children with type 2 diabetes: a Canadian Paediatric Surveillance Program study. J. Pediatr. 168, 112–117 (2016).

    PubMed  Google Scholar 

  104. Cioana, M. et al. Prevalence of hypertension and albuminuria in pediatric type 2 diabetes: a systematic review and meta-analysis. JAMA Netw. Open. 4, e216069 (2021).

    PubMed  PubMed Central  Google Scholar 

  105. Dart, A. B., Sellers, E. A. & Dean, H. J. Kidney disease and youth onset type 2 diabetes: considerations for the general practitioner. Int. J. Pediatr. 2012, 237360 (2012).

    PubMed  PubMed Central  Google Scholar 

  106. Wang, Z. & Hoy, W. E. Remaining lifetime risk for developing end stage renal disease among Australian aboriginal people with diabetes. Diabetes Res. Clin. Pract. 103, e24–e26 (2014).

    PubMed  Google Scholar 

  107. Krakoff, J. et al. Incidence of retinopathy and nephropathy in youth-onset compared with adult-onset type 2 diabetes. Diabetes Care 26, 76–81 (2003).

    PubMed  Google Scholar 

  108. Looker, H. C. et al. Structural lesions on kidney biopsy in youth-onset and adult-onset type 2 diabetes. Diabetes Care 45, 436–443 (2022). More severe structural lesions are observed in kidney biopsy samples from Pima Indians with youth-onset T2DM than in those with adult-onset T2DM irrespective of age and diabetes duration.

    PubMed  PubMed Central  Google Scholar 

  109. Pavkov, M. E., Sievers, M. L., Knowler, W. C., Bennett, P. H. & Nelson, R. G. An explanation for the increase in heart disease mortality rates in diabetic Pima Indians: effect of renal replacement therapy. Diabetes Care 27, 1132–1136 (2004).

    PubMed  Google Scholar 

  110. Nelson, R. G. et al. Pima Indian contributions to our understanding of diabetic kidney disease. Diabetes 70, 1603–1616 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Koye, D. N. et al. Trends in incidence of ESKD in people with type 1 and type 2 diabetes in Australia, 2002-2013. Am. J. Kidney Dis. 73, 300–308 (2019).

    PubMed  Google Scholar 

  112. Middleton, T. L. et al. Young adult onset type 2 diabetes versus type 1 diabetes: progression to and survival on renal replacement therapy. J. Diabetes Complicat. 35, 108023 (2021).

    CAS  Google Scholar 

  113. Shah, A. S. et al. A cross sectional study to compare cardiac structure and diastolic function in adolescents and young adults with youth-onset type 1 and type 2 diabetes: the SEARCH for Diabetes in Youth Study. Cardiovasc. Diabetol. 20, 136 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Lawrence, J. M. et al. Demographic correlates of short-term mortality among youth and young adults with youth-onset diabetes diagnosed from 2002 to 2015: the SEARCH for Diabetes in Youth Study. Diabetes Care 44, 2691–2698 (2021).

    PubMed  PubMed Central  Google Scholar 

  115. Constantino, M. I. et al. Long-term complications and mortality in young-onset diabetes: type 2 diabetes is more hazardous and lethal than type 1 diabetes. Diabetes Care 36, 3863–3869 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Levitt Katz, L. et al. Alterations in left ventricular, left atrial, and right ventricular structure and function to cardiovascular risk factors in adolescents with type 2 diabetes participating in the TODAY clinical trial. Pediatr. Diabetes 16, 39–47 (2015).

    PubMed  Google Scholar 

  117. Group, T. S. Longitudinal changes in cardiac structure and function from adolescence to young adulthood in participants with type 2 diabetes mellitus: the TODAY follow-up study. Circ. Heart Fail. 13, e006685 (2020).

    Google Scholar 

  118. Lynch, S. K. & Abramoff, M. D. Diabetic retinopathy is a neurodegenerative disorder. Vis. Res. 139, 101–107 (2017).

    PubMed  Google Scholar 

  119. White, N. H. et al. Beneficial effects of intensive therapy of diabetes during adolescence: outcomes after the conclusion of the diabetes control and complications trial (DCCT). J. Pediatr. 139, 804–812 (2001).

    CAS  PubMed  Google Scholar 

  120. Rajalakshmi, R. et al. Prevalence and risk factors for diabetic retinopathy in Asian Indians with young onset type 1 and type 2 diabetes. J. Diabetes Complicat. 28, 291–297 (2014).

    Google Scholar 

  121. Bai, P., Barkmeier, A. J., Hodge, D. O. & Mohney, B. G. Ocular sequelae in a population-based cohort of youth diagnosed with diabetes during a 50-year period. JAMA Ophthalmol. 140, 51–57 (2022).

    PubMed  Google Scholar 

  122. Wang, S. Y., Andrews, C. A., Herman, W. H., Gardner, T. W. & Stein, J. D. Incidence and risk factors for developing diabetic retinopathy among youths with type 1 or type 2 diabetes throughout the United States. Ophthalmology 124, 424–430 (2017).

    PubMed  Google Scholar 

  123. Mayer-Davis, E. J. et al. Diabetic retinopathy in the SEARCH for Diabetes in Youth cohort: a pilot study. Diabet. Med. 29, 1148–1152 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Unnikrishnan, R. et al. Younger-onset versus older-onset type 2 diabetes: clinical profile and complications. J. Diabetes Complicat. 31, 971–975 (2017).

    Google Scholar 

  125. Zhang, X. et al. Prevalence of diabetic retinopathy in the United States, 2005–2008. JAMA 304, 649–656 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Akinci, G., Savelieff, M. G., Gallagher, G., Callaghan, B. C. & Feldman, E. L. Diabetic neuropathy in children and youth: new and emerging risk factors. Pediatr. Diabetes 22, 132–147 (2021).

    PubMed  Google Scholar 

  127. Dart, A. B. et al. Earlier onset of complications in youth with type 2 diabetes. Diabetes Care 37, 436–443 (2014).

    CAS  PubMed  Google Scholar 

  128. He, J., Ryder, A. G., Li, S., Liu, W. & Zhu, X. Glycemic extremes are related to cognitive dysfunction in children with type 1 diabetes: a meta-analysis. J. Diabetes Investig. 9, 1342–1353 (2018).

    PubMed  PubMed Central  Google Scholar 

  129. Shapiro, A. L. B. et al. Cognitive function in adolescents and young adults with youth-onset type 1 versus type 2 diabetes: the SEARCH for Diabetes in Youth study. Diabetes Care 44, 1273–1280 (2021).

    PubMed  PubMed Central  Google Scholar 

  130. Nadeau, K. J., Klingensmith, G. & Zeitler, P. Type 2 diabetes in children is frequently associated with elevated alanine aminotransferase. J. Pediatr. Gastroenterol. Nutr. 41, 94–98 (2005).

    CAS  PubMed  Google Scholar 

  131. Hudson, O. D., Nunez, M. & Shaibi, G. Q. Ethnicity and elevated liver transaminases among newly diagnosed children with type 2 diabetes. BMC Pediatr. 12, 174 (2012).

    PubMed  PubMed Central  Google Scholar 

  132. Weinstock, R. S. et al. Metabolic syndrome is common and persistent in youth-onset type 2 diabetes: results from the TODAY clinical trial. Obesity 23, 1357–1361 (2015).

    PubMed  Google Scholar 

  133. Punthakee, Z. et al. Impact of rosiglitazone on body composition, hepatic fat, fatty acids, adipokines and glucose in persons with impaired fasting glucose or impaired glucose tolerance: a sub-study of the DREAM trial. Diabet. Med. 31, 1086–1092 (2014).

    CAS  PubMed  Google Scholar 

  134. Virtanen, K. A. et al. Differential effects of rosiglitazone and metformin on adipose tissue distribution and glucose uptake in type 2 diabetic subjects. Diabetes 52, 283–290 (2003).

    CAS  PubMed  Google Scholar 

  135. Iozzo, P. et al. Effects of metformin and rosiglitazone monotherapy on insulin-mediated hepatic glucose uptake and their relation to visceral fat in type 2 diabetes. Diabetes Care 26, 2069–2074 (2003).

    CAS  PubMed  Google Scholar 

  136. Carey, D. G. et al. Effect of rosiglitazone on insulin sensitivity and body composition in type 2 diabetic patients [corrected]. Obes. Res. 10, 1008–1015 (2002).

    CAS  PubMed  Google Scholar 

  137. Yokoyama, H. et al. High incidence of diabetic nephropathy in early-onset Japanese NIDDM patients. Risk analysis. Diabetes Care 21, 1080–1085 (1998).

    CAS  PubMed  Google Scholar 

  138. Eppens, M. C. et al. Prevalence of diabetes complications in adolescents with type 2 compared with type 1 diabetes. Diabetes Care 29, 1300–1306 (2006).

    PubMed  Google Scholar 

  139. Eppens, M. C. et al. Type 2 diabetes in youth from the Western Pacific region: glycaemic control, diabetes care and complications. Curr. Med. Res. Opin. 22, 1013–1020 (2006).

    PubMed  Google Scholar 

  140. Dart, A. B. et al. A holistic approach to risk for early kidney injury in indigenous youth with type 2 diabetes: a proof of concept paper from the iCARE cohort. Can. J. Kidney Health Dis. 6, 2054358119838836 (2019).

    PubMed  PubMed Central  Google Scholar 

  141. Jaiswal, M. et al. Prevalence of and risk factors for diabetic peripheral neuropathy in youth with type 1 and type 2 diabetes: SEARCH for Diabetes in Youth study. Diabetes Care 40, 1226–1232 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Bjornstad, P. et al. Elevated serum uric acid is associated with greater risk for hypertension and diabetic kidney diseases in obese adolescents with type 2 diabetes: an observational analysis from the treatment options for type 2 diabetes in adolescents and youth (TODAY) study. Diabetes Care 42, 1120–1128 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Group, T. S. Retinopathy in youth with type 2 diabetes participating in the TODAY clinical trial. Diabetes Care 36, 1772–1774 (2013).

    Google Scholar 

  144. Carino, M. et al. Comparison of clinical and social characteristics of Canadian youth living with type 1 and type 2 diabetes. Can. J. diabetes 45, 428–435 (2021).

    PubMed  Google Scholar 

  145. Kershnar, A. K. et al. Lipid abnormalities are prevalent in youth with type 1 and type 2 diabetes: the SEARCH for Diabetes in Youth study. J. Pediatr. 149, 314–319 (2006).

    CAS  PubMed  Google Scholar 

  146. Rodriguez, B. L. et al. Prevalence of cardiovascular disease risk factors in U.S. children and adolescents with diabetes: the SEARCH for Diabetes in Youth study. Diabetes Care 29, 1891–1896 (2006).

    PubMed  Google Scholar 

  147. Rodriguez, B. L. et al. Prevalence and correlates of elevated blood pressure in youth with diabetes mellitus: the SEARCH for Diabetes in Youth study. J. Pediatr. 157, 245–251.e241 (2010).

    PubMed  Google Scholar 

  148. Albers, J. J. et al. Prevalence and determinants of elevated apolipoprotein B and dense low-density lipoprotein in youths with type 1 and type 2 diabetes. J. Clin. Endocrinol. Metab. 93, 735–742 (2008).

    CAS  PubMed  Google Scholar 

  149. Jaiswal, M. et al. Cardiovascular autonomic neuropathy in adolescents and young adults with type 1 and type 2 diabetes: the SEARCH for Diabetes in Youth cohort study. Pediatr. Diabetes 19, 680–689 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Reynolds, K. et al. Prevalence of tobacco use and association between cardiometabolic risk factors and cigarette smoking in youth with type 1 or type 2 diabetes mellitus. J. Pediatr. 158, 594–601 e591 (2011).

    PubMed  Google Scholar 

  151. Nanayakkara, N. et al. Age, age at diagnosis and diabetes duration are all associated with vascular complications in type 2 diabetes. J. Diabetes Complicat. 32, 279–290 (2018).

    Google Scholar 

  152. Zoungas, S. et al. Impact of age, age at diagnosis and duration of diabetes on the risk of macrovascular and microvascular complications and death in type 2 diabetes. Diabetologia 57, 2465–2474 (2014).

    PubMed  Google Scholar 

  153. Huo, L. et al. Impact of age at diagnosis and duration of type 2 diabetes on mortality in Australia 1997-2011. Diabetologia 61, 1055–1063 (2018).

    PubMed  Google Scholar 

  154. Yeap, B. B. et al. Diabetes, myocardial infarction and stroke are distinct and duration-dependent predictors of subsequent cardiovascular events and all-cause mortality in older men. J. Clin. Endocrinol. Metab. 100, 1038–1047 (2015).

    CAS  PubMed  Google Scholar 

  155. Noh, M. et al. Impact of diabetes duration and degree of carotid artery stenosis on major adverse cardiovascular events: a single-center, retrospective, observational cohort study. Cardiovasc. Diabetol. 16, 74 (2017).

    PubMed  PubMed Central  Google Scholar 

  156. Al-Saeed, A. H. et al. An inverse relationship between age of type 2 diabetes onset and complication risk and mortality: the impact of youth-onset type 2 diabetes. Diabetes Care 39, 823–829 (2016).

    CAS  PubMed  Google Scholar 

  157. Hu, C. et al. Association between age at diagnosis of type 2 diabetes and cardiovascular diseases: a nationwide, population-based, cohort study. Front. Endocrinol. 12, 717069 (2021).

    Google Scholar 

  158. Visaria, J. et al. Incidence and prevalence of microvascular and macrovascular diseases and all-cause mortality in type 2 diabetes mellitus: a 10-year study in a US commercially insured and Medicare Advantage population. Clin. Ther. 41, 1522–1536 e1521 (2019).

    PubMed  Google Scholar 

  159. Hillier, T. A. & Pedula, K. L. Complications in young adults with early-onset type 2 diabetes: losing the relative protection of youth. Diabetes Care 26, 2999–3005 (2003).

    PubMed  Google Scholar 

  160. Magliano, D. J. et al. Young-onset type 2 diabetes mellitus — implications for morbidity and mortality. Nat. Rev. Endocrinol. 16, 321–331 (2020).

    PubMed  Google Scholar 

  161. Lascar, N. et al. Type 2 diabetes in adolescents and young adults. Lancet Diabetes Endocrinol. 6, 69–80 (2018).

    PubMed  Google Scholar 

  162. Druet, C. et al. Characterization of insulin secretion and resistance in type 2 diabetes of adolescents. J. Clin. Endocrinol. Metab. 91, 401–404 (2006).

    CAS  PubMed  Google Scholar 

  163. Mohan, V. et al. Associations of beta-cell function and insulin resistance with youth-onset type 2 diabetes and prediabetes among Asian Indians. Diabetes Technol. Ther. 15, 315–322 (2013).

    CAS  PubMed  Google Scholar 

  164. Bacha, F. et al. Determinants of glycemic control in youth with type 2 diabetes at randomization in the TODAY study. Pediatr. Diabetes 13, 376–383 (2012).

    CAS  PubMed  Google Scholar 

  165. Utzschneider, K. M. et al. Differential loss of beta-cell function in youth vs. adults following treatment withdrawal in the Restoring Insulin Secretion (RISE) study. Diabetes Res. Clin. Pract. 178, 108948 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. RISE Consortium. Restoring Insulin Secretion (RISE): design of studies of beta-cell preservation in prediabetes and early type 2 diabetes across the life span Diabetes Care 37, 780–788 (2014).

    Google Scholar 

  167. Kahn, S. E. et al. Hyperglucagonemia does not explain the beta-cell hyperresponsiveness and insulin resistance in dysglycemic youth compared with adults: lessons from the RISE study. Diabetes Care 44, 1961–1969 (2021).

    PubMed  PubMed Central  Google Scholar 

  168. Sam, S. et al. Baseline predictors of glycemic worsening in youth and adults with impaired glucose tolerance or recently diagnosed type 2 diabetes in the Restoring Insulin Secretion (RISE) study. Diabetes Care 44, 1938–1947 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. RISE Consortium. Metabolic contrasts between youth and adults with impaired glucose tolerance or recently diagnosed type 2 diabetes: I. Observations using the hyperglycemic clamp. Diabetes Care 41, 1696–1706 (2018). In comparison with adults with pre-diabetes and T2DM, youth with pre-diabetes and T2DM were more insulin resistant, had lower insulin clearance and, despite similar glycaemia, had much higher insulin secretion as assessed by hyperglycaemic clamp.

    Google Scholar 

  170. RISE Consortium. Metabolic contrasts between youth and adults with impaired glucose tolerance or recently diagnosed type 2 diabetes: II. Observations using the oral glucose tolerance test. Diabetes Care 41, 1707–1716 (2018).

    Google Scholar 

  171. Utzschneider, K. M. et al. β-Cells in youth with impaired glucose tolerance or early type 2 diabetes secrete more insulin and are more responsive than in adults. Pediatr. Diabetes 21, 1421–1429 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. RISE Consortium. Effects of treatment of impaired glucose tolerance or recently diagnosed type 2 diabetes with metformin alone or in combination with insulin glargine on beta-cell function: comparison of responses in youth and adults. Diabetes 68, 1670–1680 (2019). More youth than adults had glycaemic worsening on treatment at month 12, and in adults, β-cell function improved during treatment whereas β-cell function deteriorated during treatment in youth.

    Google Scholar 

  173. Srinivasan, S. et al. The first genome-wide association study for type 2 diabetes in youth: the Progress in Diabetes Genetics in Youth (ProDiGY) consortium. Diabetes 70, 996–1005 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Jabar, F., Colatruglio, S., Sellers, E., Kroeker, K. & Wicklow, B. The next generation cohort: a description of a cohort at high risk for childhood onset type 2 diabetes. J. Dev. Orig. Health Dis. 10, 24–30 (2019).

    CAS  PubMed  Google Scholar 

  175. Kriska, A. et al. Impact of lifestyle behavior change on glycemic control in youth with type 2 diabetes. Pediatr. Diabetes 19, 36–44 (2018).

    CAS  PubMed  Google Scholar 

  176. Berkowitz, R. I. et al. Adherence to a lifestyle program for youth with type 2 diabetes and its association with treatment outcome in the TODAY clinical trial. Pediatr. Diabetes 19, 191–198 (2018).

    PubMed  Google Scholar 

  177. Trief, P. M. et al. Medication adherence in young adults with youth-onset type 2 diabetes: iCount, an observational study. Diabetes Res. Clin. Pract. 184, 109216 (2022).

    PubMed  Google Scholar 

  178. Anderson, B. J. et al. Depressive symptoms and quality of life in adolescents with type 2 diabetes: baseline data from the TODAY study. Diabetes Care 34, 2205–2207 (2011).

    PubMed  PubMed Central  Google Scholar 

  179. Copeland, K. C. et al. Characteristics of adolescents and youth with recent-onset type 2 diabetes: the TODAY cohort at baseline. J. Clin. Endocrinol. Metab. 96, 159–167 (2011).

    CAS  PubMed  Google Scholar 

  180. Miller, J. L. & Silverstein, J. H. The treatment of type 2 diabetes mellitus in youth: which therapies? Treat. Endocrinol. 5, 201–210 (2006).

    CAS  PubMed  Google Scholar 

  181. Yeung, R. O. et al. Metabolic profiles and treatment gaps in young-onset type 2 diabetes in Asia (the JADE programme): a cross-sectional study of a prospective cohort. Lancet Diabetes Endocrinol. 2, 935–943 (2014).

    CAS  PubMed  Google Scholar 

  182. Ke, C. et al. Age at diagnosis, glycemic trajectories, and responses to oral glucose-lowering drugs in type 2 diabetes in Hong Kong: a population-based observational study. PLoS Med. 17, e1003316 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Group, T. S. Health care coverage and glycemic control in young adults with youth-onset type 2 diabetes: results from the TODAY2 study. Diabetes Care 43, 2469–2477 (2020).

    Google Scholar 

  184. Duke, N. N. Food insecurity and prediabetes among adolescents taking a school-based survey. Am. J. Health Behav. 45, 384–396 (2021).

    PubMed  Google Scholar 

  185. Pulling Kuhn, A. et al. Home and neighborhood physical activity location availability among African American adolescent girls living in low-income, urban communities: associations with objectively measured physical activity. Int. J. Environ. Res. Public Health 18, 5003 (2021).

    PubMed  PubMed Central  Google Scholar 

  186. Kornides, M. L. et al. US adolescents at risk for not meeting physical activity recommendations by season. Pediatr. Res. 84, 50–56 (2018).

    PubMed  PubMed Central  Google Scholar 

  187. Kahn, J. A. et al. Patterns and determinants of physical activity in U.S. adolescents. J. Adolesc. Health 42, 369–377 (2008).

    PubMed  Google Scholar 

  188. Gordon-Larsen, P., Adair, L. S. & Popkin, B. M. Ethnic differences in physical activity and inactivity patterns and overweight status. Obes. Res. 10, 141–149 (2002).

    PubMed  Google Scholar 

  189. Hannon, J. C. Physical activity levels of overweight and nonoverweight high school students during physical education classes. J. Sch. Health 78, 425–431 (2008).

    PubMed  Google Scholar 

  190. Simon, S. et al. Poor sleep is related to metabolic syndrome severity in adolescents with PCOS and obesity. J. Clin. Endocrinol. Metab. 105, e1827–e1834 (2020).

    PubMed  PubMed Central  Google Scholar 

  191. Simon, S. L., Higgins, J., Melanson, E., Wright, K. P. Jr & Nadeau, K. J. A model of adolescent sleep health and risk for type 2 diabetes. Curr. Diab Rep. 21, 4 (2021).

    PubMed  PubMed Central  Google Scholar 

  192. Simon, S. L. et al. Too late and not enough: school year sleep duration, timing, and circadian misalignment are associated with reduced insulin sensitivity in adolescents with overweight/obesity. J. Pediatr. 205, 257–264 e251 (2019).

    PubMed  Google Scholar 

  193. Mokhlesi, B. et al. The association of sleep disturbances with glycemia and obesity in youth at risk for or with recently diagnosed type 2 diabetes. Pediatr. Diabetes 20, 1056–1063 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Grandner, M. A. et al. Who gets the best sleep? Ethnic and socioeconomic factors related to sleep complaints. Sleep. Med. 11, 470–478 (2010).

    PubMed  PubMed Central  Google Scholar 

  195. Qureshi, F. et al. Childhood assets and cardiometabolic health in adolescence Pediatrics 143 e20182004 (2019).

    PubMed  Google Scholar 

  196. Downs, C. A. & Faulkner, M. S. Toxic stress, inflammation and symptomatology of chronic complications in diabetes. World J. Diabetes 6, 554–565 (2015).

    PubMed  PubMed Central  Google Scholar 

  197. Shomaker, L. B. et al. Design of a randomized controlled trial to decrease depression and improve insulin sensitivity in adolescents: Mood and INsulin sensitivity to prevent Diabetes (MIND). Contemp. Clin. Trials 75, 19–28 (2018).

    PubMed  PubMed Central  Google Scholar 

  198. Brenner, B. M. & Chertow, G. M. Congenital oligonephropathy and the etiology of adult hypertension and progressive renal injury. Am. J. Kidney Dis. 23, 171–175 (1994).

    CAS  PubMed  Google Scholar 

  199. Crume, T. L. et al. Association of exposure to diabetes in utero with adiposity and fat distribution in a multiethnic population of youth: the Exploring Perinatal Outcomes among Children (EPOCH) study. Diabetologia 54, 87–92 (2011).

    CAS  PubMed  Google Scholar 

  200. Fetita, L. S., Sobngwi, E., Serradas, P., Calvo, F. & Gautier, J. F. Consequences of fetal exposure to maternal diabetes in offspring. J. Clin. Endocrinol. Metab. 91, 3718–3724 (2006).

    CAS  PubMed  Google Scholar 

  201. Dong, M. Z. et al. Diabetic uterine environment leads to disorders in metabolism of offspring. Front. Cell Dev. Biol. 9, 706879 (2021).

    PubMed  PubMed Central  Google Scholar 

  202. Hockett, C. W. et al. Persistent effects of in utero overnutrition on offspring adiposity: the Exploring Perinatal Outcomes among Children (EPOCH) study. Diabetologia 62, 2017–2024 (2019).

    PubMed  PubMed Central  Google Scholar 

  203. Sauder, K. A., Hockett, C. W., Ringham, B. M., Glueck, D. H. & Dabelea, D. Fetal overnutrition and offspring insulin resistance and beta-cell function: the Exploring Perinatal Outcomes among Children (EPOCH) study. Diabet. Med. 34, 1392–1399 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Crume, T. L. et al. The influence of exposure to maternal diabetes in utero on the rate of decline in beta-cell function among youth with diabetes. J. Pediatr. Endocrinol. Metab. 26, 721–727 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Wicklow, B. A. et al. Association of gestational diabetes and type 2 diabetes exposure in utero with the development of type 2 diabetes in first nations and non-first nations offspring. JAMA Pediatr. 172, 724–731 (2018).

    PubMed  PubMed Central  Google Scholar 

  206. Agarwal, P. et al. Maternal obesity, diabetes during pregnancy and epigenetic mechanisms that influence the developmental origins of cardiometabolic disease in the offspring. Crit. Rev. Clin. Lab. Sci. 55, 71–101 (2018).

    CAS  PubMed  Google Scholar 

  207. Wicklow, B. A. & Sellers, E. A. Maternal health issues and cardio-metabolic outcomes in the offspring: a focus on Indigenous populations. Best. Pract. Res. Clin. Obstet. Gynaecol. 29, 43–53 (2015).

    PubMed  Google Scholar 

  208. Dabelea, D., Knowler, W. C. & Pettitt, D. J. Effect of diabetes in pregnancy on offspring: follow-up research in the Pima Indians. J. Matern. Fetal Med. 9, 83–88 (2000).

    CAS  PubMed  Google Scholar 

  209. Freinkel, N. Banting Lecture 1980. Of pregnancy and progeny. Diabetes 29, 1023–1035 (1980).

    CAS  PubMed  Google Scholar 

  210. Damm, P. et al. Gestational diabetes mellitus and long-term consequences for mother and offspring: a view from Denmark. Diabetologia 59, 1396–1399 (2016).

    CAS  PubMed  Google Scholar 

  211. Nelson, R. G., Morgenstern, H. & Bennett, P. H. Intrauterine diabetes exposure and the risk of renal disease in diabetic Pima Indians. Diabetes 47, 1489–1493 (1998).

    CAS  PubMed  Google Scholar 

  212. Cerqueira, D. M. et al. In utero exposure to maternal diabetes impairs nephron progenitor differentiation. Am. J. Physiol. Ren. Physiol. 317, F1318–F1330 (2019).

    CAS  Google Scholar 

  213. American Diabetes Association. 13. Children and adolescents: standards of medical care in diabetes-2021. Diabetes Care 44, S180–S199 (2021).

    Google Scholar 

  214. American Diabetes Association. 10. Cardiovascular disease and risk management: standards of medical care in diabetes-2021. Diabetes Care 44, S125–S150 (2021).

    Google Scholar 

  215. Arnett, D. K. et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 140, e596–e646 (2019).

    PubMed  PubMed Central  Google Scholar 

  216. Whelton, S. P., Chin, A., Xin, X. & He, J. Effect of aerobic exercise on blood pressure: a meta-analysis of randomized, controlled trials. Ann. Intern. Med. 136, 493–503 (2002).

    PubMed  Google Scholar 

  217. Pierce, G. L., Eskurza, I., Walker, A. E., Fay, T. N. & Seals, D. R. Sex-specific effects of habitual aerobic exercise on brachial artery flow-mediated dilation in middle-aged and older adults. Clin. Sci. 120, 13–23 (2011).

    Google Scholar 

  218. DeSouza, C. A. et al. Regular aerobic exercise prevents and restores age-related declines in endothelium-dependent vasodilation in healthy men. Circulation 102, 1351–1357 (2000).

    CAS  PubMed  Google Scholar 

  219. Look, A. R. G. Effect of a long-term behavioural weight loss intervention on nephropathy in overweight or obese adults with type 2 diabetes: a secondary analysis of the Look AHEAD randomised clinical trial. Lancet Diabetes Endocrinol. 2, 801–809 (2014).

    Google Scholar 

  220. Eskurza, I., Monahan, K. D., Robinson, J. A. & Seals, D. R. Effect of acute and chronic ascorbic acid on flow-mediated dilatation with sedentary and physically active human ageing. J. Physiol. 556, 315–324 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Martens, C. R., Kirkman, D. L. & Edwards, D. G. The vascular endothelium in chronic kidney disease: a novel target for aerobic exercise. Exerc. sport. Sci. Rev. 44, 12–19 (2016).

    PubMed  PubMed Central  Google Scholar 

  222. Slaght, J. L. et al. Physical activity and cardiometabolic health in adolescents with type 2 diabetes: a cross-sectional study. BMJ Open Diabetes Res. Care 9, e002134 (2021).

    PubMed  PubMed Central  Google Scholar 

  223. Stutts, W. C. Physical activity determinants in adults. Perceived benefits, barriers, and self efficacy. AAOHN J. 50, 499–507 (2002).

    PubMed  Google Scholar 

  224. El Ansari, W. & Lovell, G. Barriers to exercise in younger and older non-exercising adult women: a cross sectional study in London, United Kingdom. Int. J. Env. Res. Public Health 6, 1443–1455 (2009).

    Google Scholar 

  225. Kelly, S. et al. Barriers and facilitators to the uptake and maintenance of healthy behaviours by people at mid-life: a rapid systematic review. PLoS ONE 11, e0145074 (2016).

    PubMed  PubMed Central  Google Scholar 

  226. Faulkner, M. S. & Michaliszyn, S. F. Exercise adherence in hispanic adolescents with obesity or type 2 diabetes. J. Pediatr. Nurs. 56, 7–12 (2021).

    PubMed  Google Scholar 

  227. Egan, A. M. et al. Barriers to exercise in obese patients with type 2 diabetes. QJM 106, 635–638 (2013).

    CAS  PubMed  Google Scholar 

  228. Thomas, N., Alder, E. & Leese, G. P. Barriers to physical activity in patients with diabetes. Postgrad. Med. J. 80, 287–291 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  229. Siddiqi, Z., Tiro, J. A. & Shuval, K. Understanding impediments and enablers to physical activity among African American adults: a systematic review of qualitative studies. Health Educ. Res. 26, 1010–1024 (2011).

    PubMed  Google Scholar 

  230. Yarwood, J., Carryer, J. & Gagan, M. J. Women maintaining physical activity at midlife: contextual complexities. Nurs. Prax. N. Z. 21, 24–37 (2005).

    PubMed  Google Scholar 

  231. Babakus, W. S. & Thompson, J. L. Physical activity among South Asian women: a systematic, mixed-methods review. Int. J. Behav. Nutr. Phys. Act. 9, 150 (2012).

    PubMed  PubMed Central  Google Scholar 

  232. Jaser, S. S., Holl, M. G., Jefferson, V. & Grey, M. Correlates of depressive symptoms in urban youth at risk for type 2 diabetes mellitus. J. Sch. Health 79, 286–292 (2009).

    PubMed  PubMed Central  Google Scholar 

  233. Roshanravan, B., Gamboa, J. & Wilund, K. Exercise and CKD: skeletal muscle dysfunction and practical application of exercise to prevent and treat physical impairments in CKD. Am. J. Kidney Dis. 69, 837–852 (2017).

    PubMed  PubMed Central  Google Scholar 

  234. McGavock, J., Dart, A. & Wicklow, B. Lifestyle therapy for the treatment of youth with type 2 diabetes. Curr. Diab Rep. 15, 568 (2015).

    PubMed  Google Scholar 

  235. Zeitler, P. et al. ISPAD clinical practice consensus guidelines 2018: type 2 diabetes mellitus in youth. Pediatr. Diabetes 19, 28–46 (2018).

    PubMed  Google Scholar 

  236. Madiraju, A. K. et al. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature 510, 542–546 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  237. Kelsey, M. M. et al. Presentation and effectiveness of early treatment of type 2 diabetes in youth: lessons from the TODAY study. Pediatr. Diabetes 17, 212–221 (2016).

    CAS  PubMed  Google Scholar 

  238. RISE Consortium. Impact of insulin and metformin versus metformin alone on beta-cell function in youth with impaired glucose tolerance or recently diagnosed type 2 diabetes. Diabetes Care 41, 1717–1725 (2018).

    Google Scholar 

  239. Tamborlane, W. V. et al. Liraglutide in children and adolescents with type 2 diabetes. N. Engl. J. Med. 381, 637–646 (2019).

    CAS  PubMed  Google Scholar 

  240. Arslanian, S. A. et al. Once-weekly dulaglutide for the treatment of youths with type 2 diabetes. N. Engl. J. Med. 387, 433–443 (2022).

    CAS  PubMed  Google Scholar 

  241. Tamborlane, W. V. et al. Once-weekly exenatide in youth with type 2 diabetes. Diabetes Care 45, 1833–1840 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  242. Nauck, M. A., Quast, D. R., Wefers, J. & Meier, J. J. GLP-1 receptor agonists in the treatment of type 2 diabetes - state-of-the-art. Mol. Metab. 46, 101102 (2021).

    CAS  PubMed  Google Scholar 

  243. Lebovitz, H. E. Thiazolidinediones: the forgotten diabetes medications. Curr. Diab. Rep. 19, 151 (2019).

    PubMed  PubMed Central  Google Scholar 

  244. DeFronzo, R. A., Eldor, R. & Abdul-Ghani, M. Pathophysiologic approach to therapy in patients with newly diagnosed type 2 diabetes. Diabetes Care 36, S127–S138 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  245. Singh, S., Loke, Y. K. & Furberg, C. D. Thiazolidinediones and heart failure: a teleo-analysis. Diabetes Care 30, 2148–2153 (2007).

    CAS  PubMed  Google Scholar 

  246. Gottschalk, M., Danne, T., Vlajnic, A. & Cara, J. F. Glimepiride versus metformin as monotherapy in pediatric patients with type 2 diabetes: a randomized, single-blind comparative study. Diabetes Care 30, 790–794 (2007).

    CAS  PubMed  Google Scholar 

  247. Tamborlane, W. V. et al. Efficacy and safety of dapagliflozin in children and young adults with type 2 diabetes: a prospective, multicentre, randomised, parallel group, phase 3 study. Lancet Diabetes Endocrinol. 10, 341–350 (2022).

    CAS  PubMed  Google Scholar 

  248. Bjornstad, P. et al. Acute effect of empagliflozin on fractional excretion of sodium and eGFR in youth with type 2 diabetes. Diabetes Care 41, e129–e130 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  249. Schauer, P. R. et al. Bariatric surgery versus intensive medical therapy in obese patients with diabetes. N. Engl. J. Med. 366, 1567–1576 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  250. Sjostrom, L. Review of the key results from the Swedish Obese Subjects (SOS) trial-a prospective controlled intervention study of bariatric surgery. J. Intern. Med. 273, 219–234 (2013).

    CAS  PubMed  Google Scholar 

  251. Sjostrom, L. et al. Association of bariatric surgery with long-term remission of type 2 diabetes and with microvascular and macrovascular complications. JAMA 311, 2297–2304 (2014).

    PubMed  Google Scholar 

  252. Schauer, P. R. et al. Bariatric surgery versus intensive medical therapy for diabetes–5-year outcomes. N. Engl. J. Med. 376, 641–651 (2017).

    PubMed  PubMed Central  Google Scholar 

  253. Schauer, P. R. et al. Bariatric surgery versus intensive medical therapy for diabetes–3–year outcomes. N. Engl. J. Med. 370, 2002–2013 (2014).

    PubMed  PubMed Central  Google Scholar 

  254. Inge, T. H. et al. Weight loss and health status 3 years after bariatric surgery in adolescents. N. Engl. J. Med. 374, 113–123 (2016).

    CAS  PubMed  Google Scholar 

  255. Inge, T. H. et al. Comparison of surgical and medical therapy for type 2 diabetes in severely obese adolescents. JAMA Pediatr. 172, 452–460 (2018).

    PubMed  PubMed Central  Google Scholar 

  256. Ryder, J. R. et al. Effect of surgical versus medical therapy on estimated cardiovascular event risk among adolescents with type 2 diabetes and severe obesity. Surg. Obes. Relat. Dis. 17, 23–33 (2021).

    PubMed  Google Scholar 

  257. Bjornstad, P. et al. Effect of surgical versus medical therapy on diabetic kidney disease over 5 years in severely obese adolescents with type 2 diabetes. Diabetes Care 43, 187–195 (2020).

    PubMed  Google Scholar 

  258. Shah, A. S. et al. Study protocol: a prospective controlled clinical trial to assess surgical or medical treatment for paediatric type 2 diabetes (ST(2)OMP). BMJ Open. 11, e047766 (2021).

    PubMed  PubMed Central  Google Scholar 

  259. Shah, A. S. et al. Metabolic outcomes of surgery in youth with type 2 diabetes. Semin. Pediatr. Surg. 29, 150893 (2020).

    PubMed  PubMed Central  Google Scholar 

  260. Dabelea, D. et al. Prevalence of type 1 and type 2 diabetes among children and adolescents from 2001 to 2009. JAMA 311, 1778–1786 (2014). Among teenagers and young adults who were diagnosed with diabetes during childhood or adolescence, the prevalence of complications and comorbidities was higher in those with T2DM than those with T1DM.

    CAS  PubMed  PubMed Central  Google Scholar 

  261. WHO. Obesity, https://www.who.int/health-topics/obesity (2022).

  262. Tönnies, T. et al. 156-OR: Projections of type 1 and type 2 diabetes burden in the U.S. population aged <20 years through 2060. Diabetes 70 (Suppl. 1), Abstr. 156-OR (2021).

  263. TODAY Study Group. Rapid rise in hypertension and nephropathy in youth with type 2 diabetes: the TODAY clinical trial. Diabetes Care 36, 1735–1741 (2013).

    PubMed Central  Google Scholar 

  264. RISE Consortium. Lack of durable improvements in beta-cell function following withdrawal of pharmacological interventions in adults with impaired glucose tolerance or recently diagnosed type 2 diabetes. Diabetes Care 42, 1742–1751 (2019).

    Google Scholar 

  265. Bhatt, D. L. et al. Sotagliflozin in patients with diabetes and chronic kidney disease. N. Engl. J. Med. 384, 129–139 (2020).

    PubMed  Google Scholar 

  266. Perkovic, V. et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N. Engl. J. Med. 380, 2295–2306 (2019).

    CAS  PubMed  Google Scholar 

  267. Mann, J. F. E. et al. Liraglutide and renal outcomes in type 2 diabetes. N. Engl. J. Med. 377, 839–848 (2017).

    CAS  PubMed  Google Scholar 

  268. Wanner, C. et al. Empagliflozin and progression of kidney disease in type 2 diabetes. N. Engl. J. Med. 375, 323–334 (2016).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors’ work was supported in part by the Intramural Research Program of the NIDDK. P.B. receives salary and research support from NIDDK (R01 DK129211, R01 DK132399, R21 DK129720, K23 DK116720, UC DK114886 and P30 DK116073), NHLBI (R01 HL165433), JDRF (3-SRA-2022-1097-M-B, 3-SRA-2022-1243-M-B, 2-SRA-2019-845-S-B), Boettcher Foundation, AHA (20IPA35260142), Center for Women’s Health Research at University of Colorado, the Department of Paediatrics, Section of Endocrinology and Barbara Davis Center for Diabetes at University of Colorado School of Medicine. D.H.v.R. is supported by a senior fellowship of the Dutch Diabetes Foundation. K.J.N. receives salary and research support from NIDDK (R01 DK119450) and NHLBI (K24 HL145076, R01 HL165433). A.S.S. receives salary and research support from NIDDK (R01 DK119450), NHLBI (R01 HL157260) and NINDS (R01 NS125316). The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, made substantial contributions to discussions of the content, wrote, reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Robert G. Nelson.

Ethics declarations

Competing interests

P.B. has acted as a consultant for AstraZeneca, Bayer, Bristol-Myers Squibb, Boehringer Ingelheim, Eli Lilly, LG Chem, Sanofi, Novo Nordisk, Horizon Pharma, XORTX. P.B. serves on the advisory boards of AstraZeneca, Bayer, Boehringer Ingelheim, Novo Nordisk and XORTX. D.H.v.R. has acted as a consultant and received honoraria from AstraZeneca, Boehringer Ingelheim, Eli Lilly, Merck and Sanofi, and received research operating funding from AstraZeneca, Boehringer Ingelheim–Eli Lilly Diabetes Alliance and Merck. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks Amy Mottl, Angela Titmuss and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

DiCAYA: https://www.dicaya.org

Glossary

Standardized mortality ratio

The ratio of the number of deaths observed in a population over a given period to the number that would be expected over the same period in the general population.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bjornstad, P., Chao, L.C., Cree-Green, M. et al. Youth-onset type 2 diabetes mellitus: an urgent challenge. Nat Rev Nephrol 19, 168–184 (2023). https://doi.org/10.1038/s41581-022-00645-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-022-00645-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing