Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Ecological and evolutionary mechanisms driving within-patient emergence of antimicrobial resistance

Abstract

The ecological and evolutionary mechanisms of antimicrobial resistance (AMR) emergence within patients and how these vary across bacterial infections are poorly understood. Increasingly widespread use of pathogen genome sequencing in the clinic enables a deeper understanding of these processes. In this Review, we explore the clinical evidence to support four major mechanisms of within-patient AMR emergence in bacteria: spontaneous resistance mutations; in situ horizontal gene transfer of resistance genes; selection of pre-existing resistance; and immigration of resistant lineages. Within-patient AMR emergence occurs across a wide range of host niches and bacterial species, but the importance of each mechanism varies between bacterial species and infection sites within the body. We identify potential drivers of such differences and discuss how ecological and evolutionary analysis could be embedded within clinical trials of antimicrobials, which are powerful but underused tools for understanding why these mechanisms vary between pathogens, infections and individuals. Ultimately, improving understanding of how host niche, bacterial species and antibiotic mode of action combine to govern the ecological and evolutionary mechanism of AMR emergence in patients will enable more predictive and personalized diagnosis and antimicrobial therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Four ecological and evolutionary mechanisms of within-patient emergence of antimicrobial resistance.
Fig. 2: Within-patient emergence of antimicrobial resistance across different modes of emergence, body sites, organisms and antibiotics.
Fig. 3: Addressing limitations of within-patient antimicrobial resistance emergence studies.

Similar content being viewed by others

References

  1. O’Neill, J. Tackling drug-resistant infections globally: final report and recommendations. AMR Review https://amr-review.org/sites/default/files/160518_Final%20paper_with%20cover.pdf (2016).

  2. Murray, C. J. et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399, 629–655 (2022).

    Article  CAS  Google Scholar 

  3. Choudhury, R., Panda, S. & Singh, D. Emergence and dissemination of antibiotic resistance: a global problem. Indian J. Med. Microbiol. 30, 384–390 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Bougnom, B. P. & Piddock, L. J. V. Wastewater for urban agriculture: a significant factor in dissemination of antibiotic resistance. Environ. Sci. Technol. 51, 5863–5864 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Goulas, A. et al. How effective are strategies to control the dissemination of antibiotic resistance in the environment? A systematic review. Environ. Evid. 9, 4 (2020).

    Article  Google Scholar 

  6. Zhu, G. et al. Air pollution could drive global dissemination of antibiotic resistance genes. ISME J. 15, 270–281 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Ellabaan, M. M. H., Munck, C., Porse, A., Imamovic, L. & Sommer, M. O. A. Forecasting the dissemination of antibiotic resistance genes across bacterial genomes. Nat. Commun. 12, 2435 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Grote, A. & Earl, A. M. Within-host evolution of bacterial pathogens during persistent infection of humans. Curr. Opin. Microbiol. 70, 102197 (2022).

    Article  CAS  PubMed  Google Scholar 

  9. Didelot, X., Walker, A. S., Peto, T. E., Crook, D. W. & Wilson, D. J. Within-host evolution of bacterial pathogens. Nat. Rev. Microbiol. 14, 150–162 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Castro, R. A. D., Borrell, S. & Gagneux, S. The within-host evolution of antimicrobial resistance in Mycobacterium tuberculosis. FEMS Microbiol. Rev. 45, fuaa071 (2021).

    Article  CAS  PubMed  Google Scholar 

  11. Winstanley, C., O’Brien, S. & Brockhurst, M. A. Pseudomonas aeruginosa evolutionary adaptation and diversification in cystic fibrosis chronic lung infections. Trends Microbiol. 24, 327–337 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Marvig, R. L., Sommer, L. M., Molin, S. & Johansen, H. K. Convergent evolution and adaptation of Pseudomonas aeruginosa within patients with cystic fibrosis. Nat. Genet. 47, 57–64 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Giulieri, S. G. et al. Niche-specific genome degradation and convergent evolution shaping Staphylococcus aureus adaptation during severe infections. eLife 11, e77195 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Azarian, T., Ridgway, J. P., Yin, Z. & David, M. Z. Long-term intrahost evolution of methicillin resistant Staphylococcus aureus among cystic fibrosis patients with respiratory carriage. Front. Genet. 10, 546 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li, S., Feng, X., Li, M. & Shen, Z. In vivo adaptive antimicrobial resistance in Klebsiella pneumoniae during antibiotic therapy. Front. Microbiol. 14, 1159912 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Friedman, N. D., Temkin, E. & Carmeli, Y. The negative impact of antibiotic resistance. Clin. Microbiol. Infect. 22, 416–422 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Goossens, H., Ferech, M., Stichele, R. V. & Elseviers, M. Outpatient antibiotic use in Europe and association with resistance: a cross-national database study. Lancet 365, 579–587 (2005).

    Article  PubMed  Google Scholar 

  18. Gustafsson, I. Bacteria with increased mutation frequency and antibiotic resistance are enriched in the commensal flora of patients with high antibiotic usage. J. Antimicrob. Chemother. 52, 645–650 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Baquero, F. et al. Evolutionary pathways and trajectories in antibiotic resistance. Clin. Microbiol. Rev. 34, e00050-19 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vanacker, M., Lenuzza, N. & Rasigade, J.-P. The fitness cost of horizontally transferred and mutational antimicrobial resistance in Escherichia coli. Front. Microbiol. 14, 1186920 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Melnyk, A. H., Wong, A. & Kassen, R. The fitness costs of antibiotic resistance mutations. Evol. Appl. 8, 273–283 (2015).

    Article  PubMed  Google Scholar 

  22. Hendriksen, R. S. et al. Using genomics to track global antimicrobial resistance. Front. Public. Health 7, 242 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Darby, E. M. et al. Molecular mechanisms of antibiotic resistance revisited. Nat. Rev. Microbiol. 21, 280–295 (2023).

    Article  CAS  PubMed  Google Scholar 

  24. McEwen, S. A. & Collignon, P. J. Antimicrobial resistance: a one health perspective. Microbiol. Spectr. 6, 6.2.10 (2018).

    Article  Google Scholar 

  25. Hiltunen, T., Virta, M. & Laine, A.-L. Antibiotic resistance in the wild: an eco-evolutionary perspective. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160039 (2017).

    Article  Google Scholar 

  26. Larsson, D. G. J. & Flach, C.-F. Antibiotic resistance in the environment. Nat. Rev. Microbiol. 20, 257–269 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. Chung, H. et al. Rapid expansion and extinction of antibiotic resistance mutations during treatment of acute bacterial respiratory infections. Nat. Commun. 13, 1231 (2022). Captures dynamic fluctuations in resistance mutations across 420 P. aeruginosa isolates during acute infection, capturing both spontaneous mutation and dynamic selection of pre-existing resistance at the start of antibiotic selection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Eklöf, J. et al. Persistence and genetic adaptation of Pseudomonas aeruginosa in patients with chronic obstructive pulmonary disease. Clin. Microbiol. Infect. 28, 990–995 (2022). Study of P. aeruginosa adaptation in patients with chronic obstructive pulmonary disease, covering 153 isolates from 23 patients across 1 year of infection and identifying multiple spontaneous mutations that conferred resistance to anti-pseudomonal drugs.

    Article  PubMed  Google Scholar 

  29. Hjort, K. et al. Dynamics of extensive drug resistance evolution of Mycobacterium tuberculosis in a single patient during 9 years of disease and treatment. J. Infect. Dis. 225, 1011–1020 (2022).

    Article  CAS  PubMed  Google Scholar 

  30. Khademi, S. M. H., Sazinas, P. & Jelsbak, L. Within-host adaptation mediated by intergenic evolution in Pseudomonas aeruginosa. Genome Biol. Evol. 11, 1385–1397 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liao, W. et al. Evolution of tet(A) variant mediating tigecycline resistance in KPC-2-producing Klebsiella pneumoniae during tigecycline treatment. J. Glob. Antimicrob. Resist. 28, 168–173 (2022).

    Article  CAS  PubMed  Google Scholar 

  32. Lindemann, P. C. et al. Case report: whole-genome sequencing of serially collected Haemophilus influenzae from a patient with common variable immunodeficiency reveals within-host evolution of resistance to trimethoprim–sulfamethoxazole and azithromycin after prolonged treatment with these antibiotics. Front. Cell. Infect. Microbiol. 12, 896823 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Long, D. R. et al. Polyclonality, shared strains, and convergent evolution in chronic cystic fibrosis Staphylococcus aureus airway infection. Am. J. Respir. Crit. Care Med. 203, 1127–1137 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sommer, L. M. et al. Bacterial evolution in PCD and CF patients follows the same mutational steps. Sci. Rep. 6, 28732 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Aihara, M. et al. Within-host evolution of a Klebsiella pneumoniae clone: selected mutations associated with the alteration of outer membrane protein expression conferred multidrug resistance. J. Antimicrob. Chemother. 76, 362–369 (2021).

    Article  CAS  PubMed  Google Scholar 

  36. Boulant, T. et al. A 2.5-year within-patient evolution of Pseudomonas aeruginosa isolates with in vivo acquisition of ceftolozane–tazobactam and ceftazidime–avibactam resistance upon treatment. Antimicrob. Agents Chemother. 63, e01637-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Chen, C.-J., Huang, Y.-C. & Shie, S.-S. Evolution of multi-resistance to vancomycin, daptomycin, and linezolid in methicillin-resistant Staphylococcus aureus causing persistent bacteremia. Front. Microbiol. 11, 1414 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Elgrail, M. M. et al. Convergent evolution of antibiotic tolerance in patients with persistent methicillin-resistant Staphylococcus aureus bacteremia. Infect. Immun. 90, e00001–e00022 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Gao, W. et al. Large tandem chromosome expansions facilitate niche adaptation during persistent infection with drug-resistant Staphylococcus aureus. Microb. Genomics 1, e000026 (2015).

    Article  Google Scholar 

  40. Giulieri, S. G. et al. Genomic exploration of sequential clinical isolates reveals a distinctive molecular signature of persistent Staphylococcus aureus bacteraemia. Genome Med. 10, 65 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  41. van Hal, S. J. et al. In vivo evolution of antimicrobial resistance in a series of Staphylococcus aureus patient isolates: the entire picture or a cautionary tale? J. Antimicrob. Chemother. 69, 363–367 (2014).

    Article  PubMed  Google Scholar 

  42. Mwangi, M. M. et al. Tracking the in vivo evolution of multidrug resistance in Staphylococcus aureus by whole-genome sequencing. Proc. Natl Acad. Sci. USA 104, 9451–9456 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jin, X. et al. Resistance evolution of hypervirulent carbapenem-resistant Klebsiella pneumoniae ST11 during treatment with tigecycline and polymyxin. Emerg. Microbes Infect. 10, 1129–1136 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kao, C.-Y., Chen, J.-W., Liu, T.-L., Yan, J.-J. & Wu, J.-J. Comparative genomics of Escherichia coli sequence type 219 clones from the same patient: evolution of the IncI1 blaCMY-carrying plasmid in vivo. Front. Microbiol. 9, 1518 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Vallée, M., Harding, C. & Hall, J. Exploring the in situ evolution of nitrofurantoin resistance in clinically derived uropathogenic Escherichia coli isolates. J. Antimicrob. Chemother. 78, 373–379 (2023). Case of within-patient spontaneous evolution in E. coli of resistance to nitrofurantoin, an antibiotic to which resistance in E. coli is rare. Resistance confers a 2–10% reduction in doubling time in resistant isolates, indicating fitness trade-offs.

    Article  PubMed  Google Scholar 

  46. Ye, M. et al. In vivo development of tigecycline resistance in Klebsiella pneumoniae owing to deletion of the ramR ribosomal binding site. Int. J. Antimicrob. Agents 50, 523–528 (2017).

    Article  CAS  PubMed  Google Scholar 

  47. Hawkey, J. et al. Evolution of carbapenem resistance in Acinetobacter baumannii during a prolonged infection. Microb. Genomics 4, e000165 (2018).

    Article  Google Scholar 

  48. Dengler Haunreiter, V. et al. In-host evolution of Staphylococcus epidermidis in a pacemaker-associated endocarditis resulting in increased antibiotic tolerance. Nat. Commun. 10, 1149 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ji, S. et al. In-host evolution of daptomycin resistance and heteroresistance in methicillin-resistant Staphylococcus aureus strains from three endocarditis patients. J. Infect. Dis. 221, S243–S252 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Bloomfield, S. J. et al. Long-term colonization by Campylobacter jejuni within a human host: evolution, antimicrobial resistance, and adaptation. J. Infect. Dis. 217, 103–111 (2018).

    Article  CAS  Google Scholar 

  51. Low, A. S., MacKenzie, F. M., Gould, I. M. & Booth, I. R. Protected environments allow parallel evolution of a bacterial pathogen in a patient subjected to long-term antibiotic therapy: evolution of a bacterial pathogen. Mol. Microbiol. 42, 619–630 (2008). Case of E. coli infection of liver cysts, studying the action of the protected cyst environment in facilitating resistance evolution. Spontaneous mutation to the ampC promoter conferred β-lactam resistance. The sheltered environment likely offered protection against the action of antibiotics, alongside invasion or interference by other bacterial lineages.

    Article  Google Scholar 

  52. Yu, X. et al. Effect of short-term antimicrobial therapy on the tolerance and antibiotic resistance of multidrug-resistant Staphylococcus capitis. Infect. Drug Resist. 13, 2017–2026 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Notter, J. et al. AmpC hyperproduction in a Cedecea davisae implant-associated bone infection during treatment: a case report and therapeutic implications. BMC Infect. Dis. 22, 33 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Colque, C. A. et al. Hypermutator Pseudomonas aeruginosa exploits multiple genetic pathways to develop multidrug resistance during long-term infections in the airways of cystic fibrosis patients. Antimicrob. Agents Chemother. 64, e02142–19 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Diaz Caballero, J. et al. Selective sweeps and parallel pathoadaptation drive Pseudomonas aeruginosa evolution in the cystic fibrosis lung. mBio 6, e00981-15 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Colque, C. A. et al. Longitudinal evolution of the Pseudomonas-derived cephalosporinase (PDC) structure and activity in a cystic fibrosis patient treated with β-lactams. mBio 13, e01663-22 (2022).24-year study of P. aeruginosa cystic fibrosis airway infection. Documents the emergence of a hypermutator lineage and parallel evolution of PDC during ceftazidime therapy.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Zhang, J. et al. Genomic and phenotypic evolution of tigecycline-resistant Acinetobacter baumannii in critically ill patients. Microbiol. Spectr. 10, e01593-21 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Sherrard, L. J. et al. Within-host whole genome analysis of an antibiotic resistant Pseudomonas aeruginosa strain sub-type in cystic fibrosis. PLoS ONE 12, e0172179 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Alexander, H. K. & MacLean, R. C. Stochastic bacterial population dynamics restrict the establishment of antibiotic resistance from single cells. Proc. Natl Acad. Sci. USA 117, 19455–19464 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. MacLean, R. C., Hall, A. R., Perron, G. G. & Buckling, A. The population genetics of antibiotic resistance: integrating molecular mechanisms and treatment contexts. Nat. Rev. Genet. 11, 405–414 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Wheatley, R. et al. Rapid evolution and host immunity drive the rise and fall of carbapenem resistance during an acute Pseudomonas aeruginosa infection. Nat. Commun. 12, 2460 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mariam, S. H. et al. Dynamics of antibiotic resistant Mycobacterium tuberculosis during long-term infection and antibiotic treatment. PLoS ONE 6, e21147 (2011). Investigation of M. tuberculosis evolution during a 9-year infection case study of one patient. Resistance mutations progressively accumulated through spontaneous mutation during this period, and evidence of clonal sweeps and co-existence of different resistance mutations are reported.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Foster, P. L. Stress-induced mutagenesis in bacteria. Crit. Rev. Biochem. Mol. Biol. 42, 373–397 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Rodríguez-Rojas, A., Oliver, A. & Blázquez, J. Intrinsic and environmental mutagenesis drive diversification and persistence of Pseudomonas aeruginosa in chronic lung infections. J. Infect. Dis. 205, 121–127 (2012).

    Article  PubMed  Google Scholar 

  65. Revitt-Mills, S. A. & Robinson, A. Antibiotic-induced mutagenesis: under the microscope. Front. Microbiol. 11, 585175 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Wright, E. A., Fothergill, J. L., Paterson, S., Brockhurst, M. A. & Winstanley, C. Sub-inhibitory concentrations of some antibiotics can drive diversification of Pseudomonas aeruginosa populations in artificial sputum medium. BMC Microbiol. 13, 170 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Linz, B. et al. A mutation burst during the acute phase of Helicobacter pylori infection in humans and rhesus macaques. Nat. Commun. 5, 4165 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. Estibariz, I. et al. In vivo genome and methylome adaptation of cag-negative Helicobacter pylori during experimental human infection. mBio 11, e01803-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Mehta, H. H. et al. The essential role of hypermutation in rapid adaptation to antibiotic stress. Antimicrob. Agents Chemother. 63, e00744-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Rees, V. E. et al. Characterization of hypermutator Pseudomonas aeruginosa isolates from patients with cystic fibrosis in Australia. Antimicrob. Agents Chemother. 63, e02538-18 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Khil, P. P. et al. Dynamic emergence of mismatch repair deficiency facilitates rapid evolution of ceftazidime-avibactam resistance in Pseudomonas aeruginosa acute infection. mBio 10, e01822-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Gabrielaite, M. et al. Transmission and antibiotic resistance of Achromobacter in cystic fibrosis. J. Clin. Microbiol. 59, e02911–e02920 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Viberg, L. T. et al. Within-host evolution of Burkholderia pseudomallei during chronic infection of seven Australasian cystic fibrosis patients. mBio 8, e00356-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Pompilio, A. et al. Stenotrophomonas maltophilia phenotypic and genotypic diversity during a 10-year colonization in the lungs of a cystic fibrosis patient. Front. Microbiol. 7, 1551 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Turrientes, M. C. et al. Polymorphic mutation frequencies of clinical and environmental Stenotrophomonas maltophilia populations. Appl. Environ. Microbiol. 76, 1746–1758 (2010). Epidemiological data from more than 9,000 patients and genomes of 250 enterobacteria indicate highly frequent patient to patient transmission of pOXA-48 carbapenemase-encoding plasmid and document frequent within-patient transfer of the plasmid horizontally between enterobacterial species.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Iguchi, S., Mizutani, T., Hiramatsu, K. & Kikuchi, K. Rapid acquisition of linezolid resistance in methicillin-resistant Staphylococcus aureus: role of hypermutation and homologous recombination. PLoS ONE 11, e0155512 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Jolivet-Gougeon, A. et al. Bacterial hypermutation: clinical implications. J. Med. Microbiol. 60, 563–573 (2011).

    Article  CAS  PubMed  Google Scholar 

  78. Gottig, S., Gruber, T. M., Stecher, B., Wichelhaus, T. A. & Kempf, V. A. J. In vivo horizontal gene transfer of the carbapenemase OXA-48 during a nosocomial outbreak. Clin. Infect. Dis. 60, 1808–1815 (2015).

    Article  PubMed  Google Scholar 

  79. Evans, D. R. et al. Systematic detection of horizontal gene transfer across genera among multidrug-resistant bacteria in a single hospital. eLife 9, e53886 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Kociolek, L. K. et al. Whole-genome analysis reveals the evolution and transmission of an MDR DH/NAP11/106 Clostridium difficile clone in a paediatric hospital. J. Antimicrob. Chemother. 73, 1222–1229 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yoshino, M. et al. Stepwise evolution of a Klebsiella pneumoniae clone within a host leading to increased multidrug resistance. mSphere 6, e00734-21 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  82. León-Sampedro, R. et al. Pervasive transmission of a carbapenem resistance plasmid in the gut microbiota of hospitalized patients. Nat. Microbiol. 6, 606–616 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  83. DelaFuente, J. et al. Within-patient evolution of plasmid-mediated antimicrobial resistance. Nat. Ecol. Evol. 6, 1980–1991 (2022). Landmark study of within-patient plasmid-mediated AMR evolution, including compensatory mutation and fitness trade-offs to enhance plasmid-borne AMR evolution.

    Article  PubMed  Google Scholar 

  84. Arnold, B. J., Huang, I.-T. & Hanage, W. P. Horizontal gene transfer and adaptive evolution in bacteria. Nat. Rev. Microbiol. 20, 206–218 (2022).

    Article  CAS  PubMed  Google Scholar 

  85. Gaibani, P. et al. Dynamic evolution of imipenem/relebactam resistance in a KPC-producing Klebsiella pneumoniae from a single patient during ceftazidime/avibactam-based treatments. J. Antimicrob. Chemother. 77, 1570–1577 (2022).

    Article  CAS  PubMed  Google Scholar 

  86. Groussin, M. et al. Elevated rates of horizontal gene transfer in the industrialized human microbiome. Cell 184, 2053–2067.e18 (2021).

    Article  CAS  PubMed  Google Scholar 

  87. Zeng, X. & Lin, J. Factors influencing horizontal gene transfer in the intestine. Anim. Health Res. Rev. 18, 153–159 (2018).

    Article  CAS  Google Scholar 

  88. Feasey, N. A. et al. Drug resistance in Salmonella enterica ser. Typhimurium bloodstream infection, Malawi. Emerg. Infect. Dis. 20, 1957–1959 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Weber, R. E. et al. IS26-mediated transfer of blaNDM–1 as the main route of resistance transmission during a polyclonal, multispecies outbreak in a German hospital. Front. Microbiol. 10, 2817 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Enault, F. et al. Phages rarely encode antibiotic resistance genes: a cautionary tale for virome analyses. ISME J. 11, 237–247 (2017).

    Article  CAS  PubMed  Google Scholar 

  91. Billaud, M. et al. Analysis of viromes and microbiomes from pig fecal samples reveals that phages and prophages rarely carry antibiotic resistance genes. ISME Commun. 1, 55 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Fernández-Orth, D. et al. Faecal phageome of healthy individuals: presence of antibiotic resistance genes and variations caused by ciprofloxacin treatment. J. Antimicrob. Chemother. 74, 854–864 (2019).

    Article  PubMed  Google Scholar 

  93. Sutcliffe, S. G., Shamash, M., Hynes, A. P. & Maurice, C. F. Common oral medications lead to prophage induction in bacterial isolates from the human gut. Viruses 13, 455 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Haaber, J., Penadés, J. R. & Ingmer, H. Transfer of antibiotic resistance in Staphylococcus aureus. Trends Microbiol. 25, 893–905 (2017).

    Article  CAS  PubMed  Google Scholar 

  95. Varga, M. et al. Efficient transfer of antibiotic resistance plasmids by transduction within methicillin-resistant Staphylococcus aureus USA300 clone. FEMS Microbiol. Lett. 332, 146–152 (2012).

    Article  CAS  PubMed  Google Scholar 

  96. Barrett, R. & Schluter, D. Adaptation from standing genetic variation. Trends Ecol. Evol. 23, 38–44 (2008).

    Article  PubMed  Google Scholar 

  97. Trindade, S. et al. Positive epistasis drives the acquisition of multidrug resistance. PLoS Genet. 5, e1000578 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Diaz Caballero, J. et al. Mixed strain pathogen populations accelerate the evolution of antibiotic resistance in patients. Nat. Commun. 14, 4083 (2023). Comparison of clonal origin and mixed-strain P. aeruginosa lung infections in evolution of AMR. Demonstrates that mixed-strain infections display accelerated evolution of AMR within patients through selection of pre-existing resistant lineages.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Trauner, A. et al. The within-host population dynamics of Mycobacterium tuberculosis vary with treatment efficacy. Genome Biol. 18, 71 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Ailloud, F. et al. Within-host evolution of Helicobacter pylori shaped by niche-specific adaptation, intragastric migrations and selective sweeps. Nat. Commun. 10, 2273 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Kao, C.-Y. et al. Heteroresistance of Helicobacter pylori from the same patient prior to antibiotic treatment. Infect. Genet. Evol. 23, 196–202 (2014).

    Article  CAS  PubMed  Google Scholar 

  102. Bello Gonzalez, T. D. J. et al. Characterization of Enterococcus isolates colonizing the intestinal tract of intensive care unit patients receiving selective digestive decontamination. Front. Microbiol. 8, 1596 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  103. WHO. Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report: 2022 (World Health Organization, 2022).

  104. Vargas, R. et al. In-host population dynamics of Mycobacterium tuberculosis complex during active disease. eLife 10, e61805 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Roodgar, M. et al. Longitudinal linked-read sequencing reveals ecological and evolutionary responses of a human gut microbiome during antibiotic treatment. Genome Res. 31, 1433–1446 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Li, J. et al. Antibiotic treatment drives the diversification of the human gut resistome. Genomics Proteomics Bioinformatics 17, 39–51 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Malik, U. et al. Association between prior antibiotic therapy and subsequent risk of community-acquired infections: a systematic review. J. Antimicrob. Chemother. 73, 287–296 (2018).

    Article  CAS  PubMed  Google Scholar 

  108. Stracy, M. et al. Minimizing treatment-induced emergence of antibiotic resistance in bacterial infections. Science 375, 889–894 (2022). A large-scale study (>140,000 patients) indicating that the prevailing mode of in-host AMR for urinary tract and wound infections is immigration of resistant lineages, not spontaneous mutation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lieberman, T. D. et al. Parallel bacterial evolution within multiple patients identifies candidate pathogenicity genes. Nat. Genet. 43, 1275–1280 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Azarian, T. et al. Intrahost evolution of methicillin-resistant Staphylococcus aureus USA300 among individuals with reoccurring skin and soft-tissue infections. J. Infect. Dis. 214, 895–905 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Woods, R. J. et al. The evolution of antibiotic resistance in an incurable and ultimately fatal infection. Evol. Med. Public Health 11, 163–173 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Moradigaravand, D. et al. Within-host evolution of Enterococcus faecium during longitudinal carriage and transition to bloodstream infection in immunocompromised patients. Genome Med. 9, 119 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Hayward, C., Brown, M. H. & Whiley, H. Hospital water as the source of healthcare-associated infection and antimicrobial-resistant organisms. Curr. Opin. Infect. Dis. 35, 339–345 (2022).

    Article  PubMed  Google Scholar 

  114. Ding, B. et al. The predominance of strain replacement among Enterobacteriaceae pairs with emerging carbapenem resistance during hospitalization. J. Infect. Dis. 221, S215–S219 (2020). Study identifying evolution of resistance in 41 patients treated with carbapenems, where most (90%) K. pneumoniae infections developed resistance through immigration of strains of a different sequence type.

    Article  CAS  PubMed  Google Scholar 

  115. Wheatley, R. M. et al. Gut to lung translocation and antibiotic mediated selection shape the dynamics of Pseudomonas aeruginosa in an ICU patient. Nat. Commun. 13, 6523 (2022). Case study of meropenem resistance evolution by P. aeruginosa spontaneously in both the lung and gut of a patient, along with translocation of resistant lineages from the gut to the lung.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Dickson, R. P. et al. Enrichment of the lung microbiome with gut bacteria in sepsis and the acute respiratory distress syndrome. Nat. Microbiol. 1, 16113 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Gillings, M. R., Paulsen, I. T. & Tetu, S. G. Genomics and the evolution of antibiotic resistance: genomics and antibiotic resistance. Ann. NY Acad. Sci. 1388, 92–107 (2017).

    Article  PubMed  Google Scholar 

  118. Davies, J. & Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 74, 417–433 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Palmer, A. C. & Kishony, R. Understanding, predicting and manipulating the genotypic evolution of antibiotic resistance. Nat. Rev. Genet. 14, 243–248 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. MacLean, R. C. & San Millan, A. The evolution of antibiotic resistance. Science 365, 1082–1083 (2019).

    Article  CAS  PubMed  Google Scholar 

  121. Baquero, F., Alvarez-Ortega, C. & Martinez, J. L. Ecology and evolution of antibiotic resistance. Environ. Microbiol. Rep. 1, 469–476 (2009).

    Article  CAS  PubMed  Google Scholar 

  122. Eldholm, V. & Balloux, F. Antimicrobial resistance in Mycobacterium tuberculosis: the odd one out. Trends Microbiol. 24, 637–648 (2016).

    Article  CAS  PubMed  Google Scholar 

  123. Sun, G. et al. Dynamic population changes in Mycobacterium tuberculosis during acquisition and fixation of drug resistance in patients. J. Infect. Dis. 206, 1724–1733 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Eldholm, V. et al. Evolution of extensively drug-resistant Mycobacterium tuberculosis from a susceptible ancestor in a single patient. Genome Biol. 15, 490 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Lehtinen, S. et al. Horizontal gene transfer rate is not the primary determinant of observed antibiotic resistance frequencies in Streptococcus pneumoniae. Sci. Adv. 6, eaaz6137 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Hall, R. J. et al. Gene-gene relationships in an Escherichia coli pangenome are linked to function and mobility. Microb. Genom. 7, 000650 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Rocha, J., Henriques, I., Gomila, M. & Manaia, C. M. Common and distinctive genomic features of Klebsiella pneumoniae thriving in the natural environment or in clinical settings. Sci. Rep. 12, 10441 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Matic, I. et al. Highly variable mutation rates in commensal and pathogenic Escherichia coli. Science 277, 1833–1834 (1997).

    Article  CAS  PubMed  Google Scholar 

  129. Kapel, N., Caballero, J. D. & MacLean, R. C. Localized pmrB hypermutation drives the evolution of colistin heteroresistance. Cell Rep. 39, 110929 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Horton, J. S. & Taylor, T. B. Mutation bias and adaptation in bacteria. Microbiology 169, 001404 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Boyce, K. J. Mutators enhance adaptive micro-evolution in pathogenic microbes. Microorganisms 10, 442 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Luján, A. M. et al. Polymicrobial infections can select against Pseudomonas aeruginosa mutators because of quorum-sensing trade-offs. Nat. Ecol. Evol. 6, 979–988 (2022).

    Article  PubMed  Google Scholar 

  133. Rojas, L. J. et al. Genomic heterogeneity underlies multidrug resistance in Pseudomonas aeruginosa: a population-level analysis beyond susceptibility testing. PLoS ONE 17, e0265129 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Bianconi, I. et al. Persistence and microevolution of Pseudomonas aeruginosa in the cystic fibrosis lung: a single-patient longitudinal genomic study. Front. Microbiol. 9, 3242 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Tueffers, L. et al. Pseudomonas aeruginosa populations in the cystic fibrosis lung lose susceptibility to newly applied β-lactams within 3 days. J. Antimicrob. Chemother. 74, 2916–2925 (2019).

    Article  CAS  PubMed  Google Scholar 

  136. Coluzzi, C. et al. Chance favors the prepared genomes: horizontal transfer shapes the emergence of antibiotic resistance mutations in core genes. Mol. Biol. Evol. 40, msad217 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Papkou, A., Hedge, J., Kapel, N., Young, B. & MacLean, R. C. Efflux pump activity potentiates the evolution of antibiotic resistance across S. aureus isolates. Nat. Commun. 11, 3970 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Lopatkin, A. J. et al. Clinically relevant mutations in core metabolic genes confer antibiotic resistance. Science 371, eaba0862 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Gifford, D. R. et al. Identifying and exploiting genes that potentiate the evolution of antibiotic resistance. Nat. Ecol. Evol. 2, 1033–1039 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Connor, C. H. et al. Multidrug-resistant E. coli encoding high genetic diversity in carbohydrate metabolism genes displace commensal E. coli from the intestinal tract. PLoS Biol. 21, e3002329 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Bartell, J. A. et al. Bacterial persisters in long-term infection: emergence and fitness in a complex host environment. PLoS Pathog. 16, e1009112 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Reynoso-García, J. et al. A complete guide to human microbiomes: body niches, transmission, development, dysbiosis, and restoration. Front. Syst. Biol. 2, 951403 (2022).

    Article  Google Scholar 

  143. Schenk, M. F. et al. Population size mediates the contribution of high-rate and large-benefit mutations to parallel evolution. Nat. Ecol. Evol. 6, 439–447 (2022).

    Article  PubMed  Google Scholar 

  144. Andersson, D. I. Improving predictions of the risk of resistance development against new and old antibiotics. Clin. Microbiol. Infect. 21, 894–898 (2015).

    Article  CAS  PubMed  Google Scholar 

  145. Dekaboruah, E., Suryavanshi, M. V., Chettri, D. & Verma, A. K. Human microbiome: an academic update on human body site specific surveillance and its possible role. Arch. Microbiol. 202, 2147–2167 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Baron, S. A., Diene, S. M. & Rolain, J.-M. Human microbiomes and antibiotic resistance. Hum. Microbiome J. 10, 43–52 (2018).

    Article  Google Scholar 

  147. Moura De Sousa, J., Lourenço, M. & Gordo, I. Horizontal gene transfer among host-associated microbes. Cell Host Microbe 31, 513–527 (2023).

    Article  CAS  PubMed  Google Scholar 

  148. Gumpert, H. et al. Transfer and persistence of a multi-drug resistance plasmid in situ of the infant gut microbiota in the absence of antibiotic treatment. Front. Microbiol. 8, 1852 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Baumgartner, M., Bayer, F., Pfrunder-Cardozo, K. R., Buckling, A. & Hall, A. R. Resident microbial communities inhibit growth and antibiotic-resistance evolution of Escherichia coli in human gut microbiome samples. PLoS Biol. 18, e3000465 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. De Nies, L., Kobras, C. M. & Stracy, M. Antibiotic-induced collateral damage to the microbiota and associated infections. Nat. Rev. Microbiol. 21, 789–804 (2023).

    Article  PubMed  Google Scholar 

  151. Bottery, M. J., Pitchford, J. W. & Friman, V.-P. Ecology and evolution of antimicrobial resistance in bacterial communities. ISME J. 15, 939–948 (2021).

    Article  PubMed  Google Scholar 

  152. Flores-Mireles, A. L., Walker, J. N., Caparon, M. & Hultgren, S. J. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat. Rev. Microbiol. 13, 269–284 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Linde, H.-J. et al. In vivo increase in resistance to ciprofloxacin in Escherichia coli associated with deletion of the C-terminal part of MarR. Antimicrob. Agents Chemother. 44, 1865–1868 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Otani, S. & Coopersmith, C. M. Gut integrity in critical illness. J. Intensive Care 7, 17 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Witzany, C., Rolff, J., Regoes, R. R. & Igler, C. The pharmacokinetic–pharmacodynamic modelling framework as a tool to predict drug resistance evolution. Microbiology 169, 001368 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Stanton, I. C., Murray, A. K., Zhang, L., Snape, J. & Gaze, W. H. Evolution of antibiotic resistance at low antibiotic concentrations including selection below the minimal selective concentration. Commun. Biol. 3, 467 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Feliziani, S. et al. Coexistence and within-host evolution of diversified lineages of hypermutable Pseudomonas aeruginosa in long-term cystic fibrosis infections. PLoS Genet. 10, e1004651 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Both, A. et al. Distinct clonal lineages and within-host diversification shape invasive Staphylococcus epidermidis populations. PLoS Pathog. 17, e1009304 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Lewin, A. et al. Genetic diversification of persistent Mycobacterium abscessus within cystic fibrosis patients. Virulence 12, 2415–2429 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Hall, K. M., Pursell, Z. F. & Morici, L. A. The role of the Pseudomonas aeruginosa hypermutator phenotype on the shift from acute to chronic virulence during respiratory infection. Front. Cell. Infect. Microbiol. 12, 943346 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Maciá, M. D. et al. Hypermutation is a key factor in development of multiple-antimicrobial resistance in Pseudomonas aeruginosa strains causing chronic lung infections. Antimicrob. Agents Chemother. 49, 3382–3386 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Prunier, A. et al. High rate of macrolide resistance in Staphylococcus aureus strains from patients with cystic fibrosis reveals high proportions of hypermutable strains. J. Infect. Dis. 187, 1709–1716 (2003).

    Article  CAS  PubMed  Google Scholar 

  163. Spellberg, B. & Rice, L. B. Duration of antibiotic therapy: shorter is better. Ann. Intern. Med. 171, 210 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Martínez, J. L., Baquero, F. & Andersson, D. I. Predicting antibiotic resistance. Nat. Rev. Microbiol. 5, 958–965 (2007).

    Article  PubMed  Google Scholar 

  165. Miller, C. R., Monk, J. M., Szubin, R. & Berti, A. D. Rapid resistance development to three antistaphylococcal therapies in antibiotic-tolerant Staphylococcus aureus bacteremia. PLoS ONE 16, e0258592 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Bjarnsholt, T. The role of bacterial biofilms in chronic infections. APMIS Suppl. 121, 1–58 (2013).

    Article  Google Scholar 

  167. Kolpen, M. et al. Bacterial biofilms predominate in both acute and chronic human lung infections. Thorax 77, 1015–1022 (2022).

    Article  PubMed  Google Scholar 

  168. Henriksen, N. N. S. E. et al. Biofilm cultivation facilitates coexistence and adaptive evolution in an industrial bacterial community. NPJ Biofilms Microbiomes 8, 59 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Jo, J., Price-Whelan, A. & Dietrich, L. E. P. Gradients and consequences of heterogeneity in biofilms. Nat. Rev. Microbiol. 20, 593–607 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Gupta, S., Laskar, N. & Kadouri, D. E. Evaluating the effect of oxygen concentrations on antibiotic sensitivity, growth, and biofilm formation of human pathogens. Microbiol. Insights 9, MBI.S40767 (2016).

    Article  Google Scholar 

  171. Burmølle, M. et al. Enhanced biofilm formation and increased resistance to antimicrobial agents and bacterial invasion are caused by synergistic interactions in multispecies biofilms. Appl. Environ. Microbiol. 72, 3916–3923 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Shewaramani, S. et al. Anaerobically grown Escherichia coli has an enhanced mutation rate and distinct mutational spectra. PLoS Genet. 13, e1006570 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Hull, R. C. et al. Antibiotics limit adaptation of drug-resistant Staphylococcus aureus to hypoxia. Antimicrob. Agents Chemother. 66, e00926-22 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Madsen, J. S., Burmølle, M., Hansen, L. H. & Sørensen, S. J. The interconnection between biofilm formation and horizontal gene transfer. FEMS Immunol. Med. Microbiol. 65, 183–195 (2012).

    Article  CAS  PubMed  Google Scholar 

  175. Stalder, T. & Top, E. Plasmid transfer in biofilms: a perspective on limitations and opportunities. NPJ Biofilms Microbiomes 2, 16022 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Huo, W. et al. Immunosuppression broadens evolutionary pathways to drug resistance and treatment failure during Acinetobacter baumannii pneumonia in mice. Nat. Microbiol. 7, 796–809 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Handel, A., Margolis, E. & Levin, B. R. Exploring the role of the immune response in preventing antibiotic resistance. J. Theor. Biol. 256, 655–662 (2009).

    Article  CAS  PubMed  Google Scholar 

  178. Dropulic, L. K. & Lederman, H. M. Overview of Infections in the Immunocompromised host. Microbiol. Spectr. 4, 4.4.43 (2016).

    Article  Google Scholar 

  179. Xu, Y. et al. In vivo gene expression in a Staphylococcus aureus prosthetic joint infection characterized by RNA sequencing and metabolomics: a pilot study. BMC Microbiol. 16, 80 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Kolpen, M. et al. Nitric oxide production by polymorphonuclear leucocytes in infected cystic fibrosis sputum consumes oxygen. Clin. Exp. Immunol. 177, 310–319 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Dwyer, D. J. et al. Antibiotics induce redox-related physiological alterations as part of their lethality. Proc. Natl Acad. Sci. USA 111, E2100–E2109 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Borriello, G. et al. Oxygen limitation contributes to antibiotic tolerance of Pseudomonas aeruginosa in biofilms. Antimicrob. Agents Chemother. 48, 2659–2664 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Hajdamowicz, N. H., Hull, R. C., Foster, S. J. & Condliffe, A. M. The impact of hypoxia on the host-pathogen interaction between neutrophils and Staphylococcus aureus. Int. J. Mol. Sci. 20, 5561 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Raad, C. et al. Trends in bacterial bloodstream infections and resistance in immuno-compromised patients with febrile neutropenia: a retrospective analysis. Eur. J. Pediatr. 180, 2921–2930 (2021).

    Article  CAS  PubMed  Google Scholar 

  185. Beaume, M. et al. Rapid adaptation drives invasion of airway donor microbiota by Pseudomonas after lung transplantation. Sci. Rep. 7, 40309 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Hughes, D. & Andersson, D. I. Evolutionary trajectories to antibiotic resistance. Annu. Rev. Microbiol. 71, 579–596 (2017).

    Article  CAS  PubMed  Google Scholar 

  187. Luchen, C. C. et al. Impact of antibiotics on gut microbiome composition and resistome in the first years of life in low- to middle-income countries: a systematic review. PLoS Med. 20, e1004235 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Fernández-Calvet, A. et al. The distribution of fitness effects of plasmid pOXA-48 in clinical enterobacteria: this article is part of the microbial evolution collection. Microbiology 169, 001369 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Rodríguez-Beltrán, J. et al. Genetic dominance governs the evolution and spread of mobile genetic elements in bacteria. Proc. Natl Acad. Sci. USA 117, 15755–15762 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Zhou, H., Beltrán, J. F. & Brito, I. L. Functions predict horizontal gene transfer and the emergence of antibiotic resistance. Sci. Adv. 7, eabj5056 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Fragata, I., Blanckaert, A., Dias Louro, M. A., Liberles, D. A. & Bank, C. Evolution in the light of fitness landscape theory. Trends Ecol. Evol. 34, 69–82 (2019).

    Article  PubMed  Google Scholar 

  192. Kivisaar, M. Mutation and recombination rates vary across bacterial chromosome. Microorganisms 8, 25 (2020).

    Article  CAS  Google Scholar 

  193. Wei, W. et al. Rapid evolution of mutation rate and spectrum in response to environmental and population-genetic challenges. Nat. Commun. 13, 4752 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Butler, M. S., Henderson, I. R., Capon, R. J. & Blaskovich, M. A. T. Antibiotics in the clinical pipeline as of December 2022. J. Antibiot. 76, 431–473 (2023).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank members of Microbial Evolution Research Manchester for discussion of the ideas in this manuscript. They gratefully acknowledge funding from the Wellcome Trust (Collaborative Award in Science 220243/Z/20/Z).

Author information

Authors and Affiliations

Authors

Contributions

M.J.S. researched data for the article, substantially contributed to discussion of content, wrote the article, and reviewed and edited the article. M.A.B., N.E.H. and J.L.F. substantially contributed to discussion of content, wrote the article, and reviewed and edited the article. A.K., K.C. and S.P. substantially contributed to discussion of content, and reviewed and edited the article. T.F. researched data for the article and substantially contributed to discussion of content. J.D.C. reviewed and edited the article.

Corresponding authors

Correspondence to Matthew J. Shepherd or Michael A. Brockhurst.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Microbiology thanks Javier de la Fuente, Rachel Wheatley and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Antibiotic

An antibiotic is an agent that is used against bacteria and can be classified as bactericidal (kills bacteria) or bacteriostatic (inhibits bacterial growth).

Antimicrobial resistance

(AMR). The ability of microorganisms — bacteria, viruses, fungi or parasites — to withstand the effects of drugs that would normally inhibit or kill them. This phenomenon occurs when these organisms adapt and develop resistance mechanisms against antimicrobial agents, rendering previously effective treatments ineffective. Clinically, AMR is defined as when the minimum inhibitory concentration of the antimicrobial required to halt growth of a bacterium exceeds the clinical breakpoint, which is the highest concentration of that antimicrobial that can be given to a patient.

Antimicrobial tolerance

The ability of a population of microorganisms to survive transient exposure to a microbicidal agent. It differs from resistance in that the agent remains effective against the microorganism as measured by the minimum inhibitory concentration but requires more prolonged treatment to successfully eliminate the infection.

Bacterial persistence

When a subpopulation of bacteria has a much higher tolerance to an antibiotic than the majority, that population is described as persistent. When the pressure of the antibiotic is removed, this persistent community can re-emerge, leading to recurrent infection despite antibiotic treatment.

Cross-resistance

Antimicrobial resistance that evolves through adaptation to another antimicrobial agent. This can occur when evolution of resistance to one agent confers resistance to another, typically due to a resistance mechanism that equally affects the action of all drugs within a class or to a nonspecific mechanism such as multidrug efflux pumps.

Eco-evolutionary

The reciprocal interactions and feedback between ecological processes and evolutionary changes in populations over short time scales. Ecological shifts promote adaptation of populations to their changing environments, and the resulting evolutionary changes can in turn shape ecological interactions. In the context of infections — the within-patient niche ecology will shape the evolution of antibiotic resistance, which can then affect the ecology of the infection itself through failure to clear the infection, disease progression and loss of sensitive strains and microflora.

Fitness costs

The physiological or energetic cost of an advantage in reproductive success (fitness). For example, the fitness benefit of resistance to an antibiotic may come at the cost of a reduced growth rate. Importantly, this trade-off becomes a disadvantage when the antibiotic is absent.

Fixation

The state in which a genetic variant becomes the only variant present for that specific locus. All individuals within the population share that same allele.

Genetic drift

The change in frequency of an allele owing to random chance. The impact of such random effects is stronger at smaller population sizes. Newly generated random mutations present at very low frequency must escape random loss due to genetic drift even if they provide a benefit before becoming established at a higher frequency in the population.

Horizontal gene transfer

(HGT). The process by which microorganisms may exchange genetic material that bypasses vertical transmission from parent to offspring.

Hypermutator

A microbial strain with an unusually high mutation rate, often caused by deficiencies in DNA repair mechanisms. Under selection pressure from an antimicrobial agent, this rapid accumulation of spontaneous genetic mutations may accelerate the process of selection and thus evolution of antimicrobial resistance by increasing the likelihood of a mutation-conferring resistance to occur.

Selection

The process by which genetic variations within a population become more prevalent because they confer traits that influence the fitness of the organisms in their environment. In the context of antimicrobial therapy, selection refers to the survival and growth of resistant strains and the loss of sensitive ones during treatment.

Selective sweep

An evolutionary event whereby a highly advantageous mutation rapidly increases in frequency owing to strong positive selective pressure. As it does, the genetic diversity in the region of the mutation decreases, creating a detectable signature of reduced allele frequency.

Spontaneous mutations

Also known as de novo mutations. Heritable alterations in the genome of a microorganism that arise spontaneously during replication or repair and were not previously present in the population or acquired from external sources of genetic material.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shepherd, M.J., Fu, T., Harrington, N.E. et al. Ecological and evolutionary mechanisms driving within-patient emergence of antimicrobial resistance. Nat Rev Microbiol (2024). https://doi.org/10.1038/s41579-024-01041-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41579-024-01041-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing