Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Composition and functions of bacterial membrane vesicles

Abstract

Extracellular vesicles are produced by species across all domains of life, suggesting that vesiculation represents a fundamental principle of living matter. In Gram-negative bacteria, membrane vesicles (MVs) can originate either from blebs of the outer membrane or from endolysin-triggered explosive cell lysis, which is often induced by genotoxic stress. Although less is known about the mechanisms of vesiculation in Gram-positive and Gram-neutral bacteria, recent research has shown that both lysis and blebbing mechanisms also exist in these organisms. Evidence has accumulated over the past years that different biogenesis routes lead to distinct types of MV with varied structure and composition. In this Review, we discuss the different types of MV and their potential cargo packaging mechanisms. We summarize current knowledge regarding how MV composition determines their various functions including support of bacterial growth via the disposal of waste material, nutrient scavenging, export of bioactive molecules, DNA transfer, neutralization of phages, antibiotics and bactericidal functions, delivery of virulence factors and toxins to host cells and inflammatory and immunomodulatory effects. We also discuss the advantages of MV-mediated secretion compared with classic bacterial secretion systems and we introduce the concept of quantal secretion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Membrane vesicle types with different structures and compositions have different biogenesis routes.
Fig. 2: Membrane vesicle cargo transport and delivery.
Fig. 3: Membrane vesicles as quantal delivery systems.
Fig. 4: Membrane vesicles have diverse biological functions.
Fig. 5: Bacterial membrane vesicles enter host cells to modulate immunity and mediate pathogenesis.

Similar content being viewed by others

References

  1. Gill, S., Catchpole, R. & Forterre, P. Extracellular membrane vesicles in the three domains of life and beyond. FEMS Microbiol. Rev. 43, 273–303 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Guerrero-Mandujano, A., Hernandez-Cortez, C., Ibarra, J. A. & Castro-Escarpulli, G. The outer membrane vesicles: secretion system type zero. Traffic 18, 425–432 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Toyofuku, M., Nomura, N. & Eberl, L. Types and origins of bacterial membrane vesicles. Nat. Rev. Microbiol. 17, 13–24 (2019). This review highlights the different routes of MV biogenesis that give rise to different types of MV.

    Article  CAS  PubMed  Google Scholar 

  4. Turnbull, L. et al. Explosive cell lysis as a mechanism for the biogenesis of bacterial membrane vesicles and biofilms. Nat. Commun. 7, 11220 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Toyofuku, M. et al. Prophage-triggered membrane vesicle formation through peptidoglycan damage in Bacillus subtilis. Nat. Commun. 8, 481 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Breitbart, M. & Rohwer, F. Here a virus, there a virus, everywhere the same virus? Trends Microbiol. 13, 278–284 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Zhang, L. et al. Proteomic analysis of vesicle-producing Pseudomonas aeruginosa PAO1 exposed to X-ray irradiation. Front. Microbiol. 11, 558233 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Pérez-Cruz, C., Briansó, F., Sonnleitner, E., Bläsi, U. & Mercadé, E. RNA release via membrane vesicles in Pseudomonas aeruginosa PAO1 is associated with the growth phase. Env. Microbiol. 23, 5030–5041 (2021).

    Article  Google Scholar 

  9. Mandal, P. K., Ballerin, G., Nolan, L. M., Petty, N. K. & Whitchurch, C. B. Bacteriophage infection of Escherichia coli leads to the formation of membrane vesicles via both explosive cell lysis and membrane blebbing. Microbiology 167, 001021 (2021). Using cutting-edge microscopy, this paper shows that lytic phages cause MV formation via explosive cell lysis and also via blebbing owing to binding of phages to the OM.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cooke, A. C., Nello, A. V., Ernst, R. K. & Schertzer, J. W. Analysis of Pseudomonas aeruginosa biofilm membrane vesicles supports multiple mechanisms of biogenesis. PLoS ONE 14, e0212275 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Baeza, N., Delgado, L., Comas, J. & Mercade, E. Phage-mediated explosive cell lysis induces the formation of a different type of O-IMV in Shewanella vesiculosa M7T. Front. Microbiol. 12, 713669 (2021). This work used flow cytometry and cryo-electron microscopy analysis to show that explosive cell lysis can result in a new class of double membrane MVs.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Jiang, M. et al. Reductions in bacterial viability stimulate the production of extra-intestinal pathogenic Escherichia coli (ExPEC) cytoplasm-carrying extracellular vesicles (EVs). PLoS Pathog. 18, e1010908 (2022). This extensive study demonstrates that extraintestinal pathogenic E. coli (ExPEC) produces at least three types of vesicle: OMVs, OIMVs and EOMVs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. McMillan, H. M. & Kuehn, M. J. The extracellular vesicle generation paradox: a bacterial point of view. EMBO J. 40, e108174 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pérez-Cruz, C. et al. New type of outer membrane vesicle produced by the Gram-negative bacterium Shewanella vesiculosa M7T: implications for DNA content. Appl. Env. Microbiol. 79, 1874–1881 (2013).

    Article  Google Scholar 

  15. Brown, L., Wolf, J. M., Prados-Rosales, R. & Casadevall, A. Through the wall: extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi. Nat. Rev. Microbiol. 13, 620–630 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Briaud, P. & Carroll, R. K. Extracellular vesicle biogenesis and functions in Gram-positive bacteria. Infect. Immun. https://doi.org/10.1128/IAI.00433-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Liu, Y. et al. Extracellular vesicle formation in Lactococcus lactis is stimulated by prophage-encoded holin-lysin system. Microb. Biotechnol. 15, 1281–1295 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nagakubo, T., Tahara, Y. O., Miyata, M., Nomura, N. & Toyofuku, M. Mycolic acid-containing bacteria trigger distinct types of membrane vesicles through different routes. iScience 24, 102015 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Andreoni, F. et al. Antibiotics stimulate formation of vesicles in Staphylococcus aureus in both phage-dependent and -independent fashions and via different routes. Antimicrob. Agents Chemother. 63, e01439-18 (2019). This study shows that certain antibiotics can induce specific MV biogenesis mechanisms.

    Article  PubMed  PubMed Central  Google Scholar 

  20. da Silva Barreira, D. et al. Spontaneous prophage induction contributes to the production of membrane vesicles by the Gram-positive bacterium Lacticaseibacillus casei BL23. mBio https://doi.org/10.1128/mbio.02375-22 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Abe, K., Toyofuku, M., Nomura, N. & Obana, N. Autolysis-mediated membrane vesicle formation in Bacillus subtilis. Environ. Microbiol. 23, 2632–2647 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Lee, E. Y. et al. Gram-positive bacteria produce membrane vesicles: proteomics-based characterization of Staphylococcus aureus-derived membrane vesicles. Proteomics 9, 5425–5436 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Lee, J. et al. Proteomic analysis of extracellular vesicles derived from Mycobacterium tuberculosis. Proteomics 15, 3331–3337 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Karthikeyan, R., Gayathri, P., Gunasekaran, P., Jagannadham, M. V. & Rajendhran, J. Comprehensive proteomic analysis and pathogenic role of membrane vesicles of Listeria monocytogenes serotype 4b reveals proteins associated with virulence and their possible interaction with host. Int. J. Med. Microbiol. 309, 199–212 (2019).

    Article  CAS  PubMed  Google Scholar 

  25. Haas, B. & Grenier, D. Isolation, characterization and biological properties of membrane vesicles produced by the swine pathogen Streptococcus suis. PloS ONE https://doi.org/10.1371/journal.pone.0130528 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Dean, S. N., Leary, D. H., Sullivan, C. J., Oh, E. & Walper, S. A. Isolation and characterization of Lactobacillus-derived membrane vesicles. Sci. Rep. 9, 877 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Resch, U. et al. A two-component regulatory system impacts extracellular membrane-derived vesicle production in group A Streptococcus. mBio https://doi.org/10.1128/mBio.00207-16 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Mitchell, G. J., Wiesenfeld, K., Nelson, D. C. & Weitz, J. S. Critical cell wall hole size for lysis in Gram-positive bacteria. J. R. Soc. Interface 10, 20120892 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Schuch, R., Nelson, D. & Fischetti, V. A. A bacteriolytic agent that detects and kills Bacillus anthracis. Nature 418, 884–889 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Daniel, A. et al. Synergism between a novel chimeric lysin and oxacillin protects against infection by methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 54, 1603–1612 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vermassen, A. et al. Cell-wall hydrolases as antimicrobials against Staphylococcus species: focus on Sle1. Microorganisms https://doi.org/10.3390/microorganisms7110559 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wang, X. G., Thompson, C. D., Weidenmaier, C. & Lee, J. C. Release of Staphylococcus aureus extracellular vesicles and their application as a vaccine platform. Nat. Commun. https://doi.org/10.1038/s41467-018-03847-z (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Schlatterer, K. et al. The mechanism behind bacterial lipoprotein release: phenol-soluble modulins mediate toll-like receptor 2 activation via extracellular vesicle release from Staphylococcus aureus. mBio https://doi.org/10.1128/mBio.01851-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ebner, P. et al. Non-classical protein excretion is boosted by PSMα-induced cell leakage. Cell Rep. 20, 1278–1286 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Marsollier, L. et al. Impact of Mycobacterium ulcerans biofilm on transmissibility to ecological niches and Buruli ulcer pathogenesis. PLoS Pathog. 3, e62 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Mehaffy, C., Ryan, J. M., Kruh-Garcia, N. A. & Dobos, K. M. Extracellular vesicles in Mycobacteria and tuberculosis. Front. Cell Infect. Microbiol. 12, 912831 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chernov, V. M. et al. Extracellular vesicles derived from Acholeplasma laidlawii PG8. Scientific World J 11, 1120–1130 (2011).

    Article  Google Scholar 

  38. Gaurivaud, P. et al. Mycoplasmas are no exception to extracellular vesicles release: revisiting old concepts. PLoS ONE 13, e0208160 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Biller, S. J. et al. Bacterial vesicles in marine ecosystems. Science 343, 183–186 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Zarantonello, V. et al. The cyanobacterium Cylindrospermopsis raciborskii (CYRF-01) responds to environmental stresses with increased vesiculation detected at single-cell resolution. Front. Microbiol. 9, 272 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ellen, A. F. et al. Proteomic analysis of secreted membrane vesicles of archaeal Sulfolobus species reveals the presence of endosome sorting complex components. Extremophiles 13, 67–79 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Orench-Rivera, N. & Kuehn, M. J. Differential packaging into outer membrane vesicles upon oxidative stress reveals a general mechanism for cargo selectivity. Front. Microbiol. 12, 561863 (2021). Using a proteomics approach, this study identified a mechanism for cargo selectivity that explains why proteins that are anchored in the peptidoglycan layer are preferentially retained.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Tartaglia, N. R. et al. Extracellular vesicles produced by human and animal Staphylococcus aureus strains share a highly conserved core proteome. Sci. Rep. 10, 8467 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liao, S. et al. Streptococcus mutans extracellular DNA is upregulated during growth in biofilms, actively released via membrane vesicles, and influenced by components of the protein secretion machinery. J. Bacteriol. 196, 2355–2366 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Wang, X., Eagen, W. J. & Lee, J. C. Orchestration of human macrophage NLRP3 inflammasome activation by Staphylococcus aureus extracellular vesicles. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1915829117 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Codemo, M. et al. Immunomodulatory effects of pneumococcal extracellular vesicles on cellular and humoral host defenses. mBio https://doi.org/10.1128/mBio.00559-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Orench-Rivera, N. & Kuehn, M. J. Environmentally controlled bacterial vesicle-mediated export. Cell Microbiol. 18, 1525–1536 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Toyofuku, M., Roschitzki, B., Riedel, K. & Eberl, L. Identification of proteins associated with the Pseudomonas aeruginosa biofilm extracellular matrix. J. Proteome Res. 11, 4906–4915 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Villageliu, D. N. & Samuelson, D. R. The role of bacterial membrane vesicles in human health and disease. Front. Microbiol. 13, 828704 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Jin, J. S. et al. Acinetobacter baumannii secretes cytotoxic outer membrane protein A via outer membrane vesicles. PLoS ONE 6, e17027 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gurung, M. et al. Staphylococcus aureus produces membrane-derived vesicles that induce host cell death. PLoS ONE 6, e27958 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tulkens, J., De Wever, O. & Hendrix, A. Analyzing bacterial extracellular vesicles in human body fluids by orthogonal biophysical separation and biochemical characterization. Nat. Protoc. 15, 40–67 (2020).

    Article  CAS  PubMed  Google Scholar 

  53. Zingl, F. G. et al. Outer membrane vesiculation facilitates surface exchange and in vivo adaptation of Vibrio cholerae. Cell Host Microbe 27, 225–237.e8 (2020). This study highlights the advantages, molecular requirements and in vivo relevance of a bacterial toxin being delivered via OMVs to host cells.

    Article  CAS  PubMed  Google Scholar 

  54. Macion, A., Wyszyńska, A. & Godlewska, R. Delivery of toxins and effectors by bacterial membrane vesicles. Toxins https://doi.org/10.3390/toxins13120845 (2021). This timely review provides a comprehensive overview of bacterial virulence factors associated with MVs.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Bomberger, J. M. et al. Long-distance delivery of bacterial virulence factors by Pseudomonas aeruginosa outer membrane vesicles. PLoS Pathog. 5, e1000382 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Rueter, C. & Bielaszewska, M. Secretion and delivery of intestinal pathogenic Escherichia coli virulence factors vis outer membrane vesicles. Front. Cell Infect. Microbiol. 10, 91 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Aldick, T. et al. Vesicular stabilization and activity augmentation of enterohaemorrhagic Escherichia coli haemolysin. Mol. Microbiol. 71, 1496–1508 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Zingl, F. G. et al. Outer membrane vesicles of Vibrio cholerae protect and deliver active cholera toxin to host cells via porin-dependent uptake. mBio 12, e0053421 (2021). This recent study demonstrates that OMV release contributes to OM remodelling promoting bacterial adaptation to enviromental changes.

    Article  PubMed  Google Scholar 

  59. Horstman, A. L. & Kuehn, M. J. Bacterial surface association of heat-labile enterotoxin through lipopolysaccharide after secretion via the general secretory pathway. J. Biol. Chem. 277, 32538–32545 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Rompikuntal, P. K. et al. Outer membrane vesicle-mediated export of processed PrtV protease from Vibrio cholerae. PLoS ONE 10, e0134098 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Roier, S. et al. A novel mechanism for the biogenesis of outer membrane vesicles in Gram-negative bacteria. Nat. Commun. 7, 10515 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Roier, S. et al. A basis for vaccine development: comparative characterization of Haemophilus influenzae outer membrane vesicles. Int. J. Med. Microbiol. 305, 298–309 (2015).

    Article  CAS  PubMed  Google Scholar 

  63. Sartorio, M. G., Valguarnera, E., Hsu, F. F. & Feldman, M. F. Lipidomics analysis of outer membrane vesicles and elucidation of the inositol phosphoceramide biosynthetic pathway in Bacteroides thetaiotaomicron. Microbiol. Spectr. 10, e0063421 (2022).

    Article  PubMed  Google Scholar 

  64. Kadurugamuwa, J. L. & Beveridge, T. J. Virulence factors are released from Pseudomonas aeruginosa in association with membrane vesicles during normal growth and exposure to gentamicin: a novel mechanism of enzyme secretion. J. Bacteriol. 177, 3998–4008 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Haurat, M. F. et al. Selective sorting of cargo proteins into bacterial membrane vesicles. J. Biol. Chem. 286, 1269–1276 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Bonnington, K. E. & Kuehn, M. J. Outer membrane vesicle production facilitates LPS remodeling and outer membrane maintenance in Salmonella during environmental transitions. mBio https://doi.org/10.1128/mBio.01532-16 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Elhenawy, W. et al. LPS remodeling triggers formation of outer membrane vesicles in Salmonella. mBio https://doi.org/10.1128/mBio.00940-16 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Wensink, J. & Witholt, B. Outer-membrane vesicles released by normally growing Escherichia coli contain very little lipoprotein. Eur. J. Biochem. 116, 331–335 (1981).

    Article  CAS  PubMed  Google Scholar 

  69. Lappann, M., Otto, A., Becher, D. & Vogel, U. Comparative proteome analysis of spontaneous outer membrane vesicles and purified outer membranes of Neisseria meningitidis. J. Bacteriol. 195, 4425–4435 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wessel, A. K., Liew, J., Kwon, T., Marcotte, E. M. & Whiteley, M. Role of Pseudomonas aeruginosa peptidoglycan-associated outer membrane proteins in vesicle formation. J. Bacteriol. 195, 213–219 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cassin, E. K. & Tseng, B. S. Pushing beyond the envelope: the potential roles of OprF in in Pseudomonas aeruginosa biofilm formation and pathogenicity. J. Bacteriol. https://doi.org/10.1128/JB.00050-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Deo, P. et al. Outer membrane vesicles from Neisseria gonorrhoeae target PorB to mitochondria and induce apoptosis. PLoS Pathog. 14, e1006945 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Tiku, V. et al. Outer membrane vesicles containing OmpA induce mitochondrial fragmentation to promote pathogenesis of Acinetobacter baumannii. Sci. Rep. 11, 618 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ciofu, O., Beveridge, T. J., Kadurugamuwa, J., Walther-Rasmussen, J. & Høiby, N. Chromosomal beta-lactamase is packaged into membrane vesicles and secreted from Pseudomonas aeruginosa. J. Antimicrob. Chemother. 45, 9–13 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Schaar, V., Nordstrom, T., Morgelin, M. & Riesbeck, K. Moraxella catarrhalis outer membrane vesicles carry beta-lactamase and promote survival of Streptococcus pneumoniae and Haemophilus influenzae by inactivating amoxicillin. Antimicrob. Agents Chemother. 55, 3845–3853 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Schaar, V., Paulsson, M., Mörgelin, M. & Riesbeck, K. Outer membrane vesicles shield Moraxella catarrhalis β-lactamase from neutralization by serum IgG. J. Antimicrob. Chemother. 68, 593–600 (2013).

    Article  CAS  PubMed  Google Scholar 

  77. Kim, S. W. et al. Outer membrane vesicles from β-lactam-resistant Escherichia coli enable the survival of β-lactam-susceptible E. coli in the presence of β-lactam antibiotics. Sci. Rep. 8, 5402 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Bielaszewska, M., Daniel, O., Nyč, O. & Mellmann, A. In vivo secretion of β-lactamase-carrying outer membrane vesicles as a mechanism of β-lactam therapy failure. Membranes https://doi.org/10.3390/membranes11110806 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Martínez, M. M. B., Bonomo, R. A., Vila, A. J., Maffía, P. C. & González, L. J. On the offensive: the role of outer membrane vesicles in the successful dissemination of New Delhi metallo-β-lactamase (NDM-1). mBio 12, e0183621 (2021).

    Article  PubMed  Google Scholar 

  80. González, L. J. et al. Membrane anchoring stabilizes and favors secretion of New Delhi metallo-β-lactamase. Nat. Chem. Biol. 12, 516–522 (2016). This study describes the secretion of an emerging membrane-anchored β-lactamase via OMVs, which confers protection to nearby bacterial populations.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Olaya-Abril, A. et al. Characterization of protective extracellular membrane-derived vesicles produced by Streptococcus pneumoniae. J. Proteom. 106, 46–60 (2014).

    Article  CAS  Google Scholar 

  82. Vendeville, A., Larivière, D. & Fourmentin, E. An inventory of the bacterial macromolecular components and their spatial organization. FEMS Microbiol. Rev. 35, 395–414 (2011).

    Article  CAS  PubMed  Google Scholar 

  83. Dorward, D. W. & Garon, C. F. DNA is packaged within membrane-derived vesicles of Gram-negative but not Gram-positive bacteria. Appl. Environ. Microbiol. 56, 1960–1962 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Dorward, D. W., Garon, C. F. & Judd, R. C. Export and intercellular transfer of DNA via membrane blebs of Neisseria gonorrhoeae. J. Bacteriol. 171, 2499–2505 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Li, J., Azam, F. & Zhang, S. Outer membrane vesicles containing signalling molecules and active hydrolytic enzymes released by a coral pathogen Vibrio shilonii AK1. Environ. Microbiol. 18, 3850–3866 (2016).

    Article  PubMed  Google Scholar 

  86. Renelli, M., Matias, V., Lo, R. Y. & Beveridge, T. J. DNA-containing membrane vesicles of Pseudomonas aeruginosa PAO1 and their genetic transformation potential. Microbiology 150, 2161–2169 (2004). This paper shows that P. aeruginosa MVs contain plasmids but not chromosomal DNA and provides evidence that extracellular DNA can be encapsulated by broken MVs.

    Article  CAS  PubMed  Google Scholar 

  87. Zhou, L., Srisatjaluk, R., Justus, D. E. & Doyle, R. J. On the origin of membrane vesicles in Gram-negative bacteria. FEMS Microbiol. Lett. 163, 223–228 (1998).

    Article  CAS  PubMed  Google Scholar 

  88. Crispim, J. S. et al. Desulfovibrio alaskensis prophages and their possible involvement in the horizontal transfer of genes by outer membrane vesicles. Gene 703, 50–57 (2019).

    Article  CAS  PubMed  Google Scholar 

  89. Bitto, N. J. et al. Bacterial membrane vesicles transport their DNA cargo into host cells. Sci. Rep. 7, 7072 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Wang, H. et al. Dinoroseobacter shibae outer membrane vesicles are enriched for the chromosome dimer resolution site. mSystems https://doi.org/10.1128/mSystems.00693-20 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Jiang, Y., Kong, Q., Roland, K. L. & Curtiss, R. Membrane vesicles of Clostridium perfringens type A strains induce innate and adaptive immunity. Int. J. Med. Microbiol. 304, 431–443 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Surve, M. V. et al. Membrane vesicles of group B Streptococcus disrupt feto-maternal barrier leading to preterm birth. PLoS Pathog. 12, e1005816 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Rodriguez, B. V. & Kuehn, M. J. Staphylococcus aureus secretes immunomodulatory RNA and DNA via membrane vesicles. Sci. Rep. 10, 18293 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Joshi, B. et al. Transcriptome profiling of Staphylococcus aureus associated extracellular vesicles reveals presence of small RNA-cargo. Front. Mol. Biosci. 7, 566207 (2020).

    Article  CAS  PubMed  Google Scholar 

  95. Luz, B. S. R. D. et al. Environmental plasticity of the RNA content of Staphylococcus aureus extracellular vesicles. Front. Microbiol. 12, 634226 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Koeppen, K. et al. A novel mechanism of host–pathogen interaction through sRNA in bacterial outer membrane vesicles. PLoS Pathog. 12, e1005672 (2016). This study demonstrates that MVs of P. aeruginosa contain tRNA-derived sRNAs that after delivery in its target cell attenuate its immune response.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Malabirade, A. et al. The RNA complement of outer membrane vesicles from Samonella enterica serovar Typhimurium under distinct culture conditions. Front. Microbiol. 9, 2015 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Blenkiron, C. et al. Uropathogenic Escherichia coli releases extracellular vesicles that are associated with RNA. PLoS ONE 11, e0160440 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Langlete, P., Krabberød, A. K. & Winther-Larsen, H. C. Vesicles from Vibrio cholerae contain AT-rich DNA and shorter mRNAs that do not correlate with their protein products. Front. Microbiol. 10, 2708 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Dauros-Singorenko, P., Blenkiron, C., Phillips, A. & Swift, S. The functional RNA cargo of bacterial membrane vesicles. FEMS Microbiol. Lett. https://doi.org/10.1093/femsle/fny023 (2018).

    Article  PubMed  Google Scholar 

  101. Quereda, J. J. & Cossart, P. Regulating bacterial virulence with RNA. Annu. Rev. Microbiol. 71, 263–280 (2017).

    Article  CAS  PubMed  Google Scholar 

  102. Tsatsaronis, J. A., Franch-Arroyo, S., Resch, U. & Charpentier, E. Extracellular vesicle RNA: a universal mediator of microbial communication? Trends Microbiol. 26, 401–410 (2018).

    Article  CAS  PubMed  Google Scholar 

  103. Biller, S. J. et al. Prochlorococcus extracellular vesicles: molecular composition and adsorption to diverse microbes. Env. Microbiol. 24, 420–435 (2022).

    Article  CAS  Google Scholar 

  104. Bos, J., Cisneros, L. H. & Mazel, D. Real-time tracking of bacterial membrane vesicles reveals enhanced membrane traffic upon antibiotic exposure. Sci. Adv. https://doi.org/10.1126/sciadv.abd1033 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Pirolli, N. H., Bentley, W. E. & Jay, S. M. Bacterial extracellular vesicles and the gut-microbiota brain axis: emerging roles in communication and potential as therapeutics. Adv. Biol. 5, e2000540 (2021).

    Article  Google Scholar 

  106. Stentz, R., Carvalho, A. L., Jones, E. J. & Carding, S. R. Fantastic voyage: the journey of intestinal microbiota-derived microvesicles through the body. Biochem. Soc. Trans. 46, 1021–1027 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Han, E. C. et al. Extracellular RNAs in periodontopathogenic outer membrane vesicles promote TNF-α production in human macrophages and cross the blood–brain barrier in mice. FASEB J. 33, 13412–13422 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wispelwey, B., Hansen, E. J. & Scheld, W. M. Haemophilus influenzae outer membrane vesicle-induced blood–brain barrier permeability during experimental meningitis. Infect. Immun. 57, 2559–2562 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Dominy, S. S. et al. Porphyromonas gingivalis in Alzheimer’s disease brains: evidence for disease causation and treatment with small-molecule inhibitors. Sci. Adv. 5, eaau3333 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Elluri, S. et al. Outer membrane vesicles mediate transport of biologically active Vibrio cholerae cytolysin (VCC) from V. cholerae strains. PLoS ONE 9, e106731 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Nice, J. B. et al. Aggregatibacter actinomycetemcomitans leukotoxin is delivered to host cells in an LFA-1-indepdendent manner when associated with outer membrane vesicles. Toxins https://doi.org/10.3390/toxins10100414 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Alves, N. J., Turner, K. B., Medintz, I. L. & Walper, S. A. Protecting enzymatic function through directed packaging into bacterial outer membrane vesicles. Sci. Rep. 6, 24866 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Toyofuku, M. et al. Membrane vesicle-mediated bacterial communication. ISME J. 11, 1504–1509 (2017). This paper proposes a binary signalling mechanism, which formed the basis to develop the concept of quantal secretion.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Wettstadt, S. Death in a sphere: Chromobacterium violaceum secretes outer membrane vesicles filled with antibiotics. Environ. Microbiol. Rep. 12, 255–257 (2020).

    Article  PubMed  Google Scholar 

  115. Wang, M., Nie, Y. & Wu, X. L. Extracellular heme recycling and sharing across species by novel mycomembrane vesicles of a Gram-positive bacterium. ISME J. 15, 605–617 (2021).

    Article  CAS  PubMed  Google Scholar 

  116. Tashiro, Y. et al. Interaction of bacterial membrane vesicles with specific species and their potential for delivery to target cells. Front. Microbiol. 8, 571 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  117. MacDonald, K. L. & Beveridge, T. J. Bactericidal effect of gentamicin-induced membrane vesicles derived from Pseudomonas aeruginosa PAO1 on Gram-positive bacteria. Can. J. Microbiol. 48, 810–820 (2002).

    Article  CAS  PubMed  Google Scholar 

  118. Lin, J. et al. A Pseudomonas T6SS effector recruits PQS-containing outer membrane vesicles for iron acquisition. Nat. Commun. 8, 14888 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Li, C. et al. T6SS secretes an LPS-binding effector to recruit OMVs for exploitative competition and horizontal gene transfer. ISME J. 16, 500–510 (2022).

    Article  CAS  PubMed  Google Scholar 

  120. McBroom, A. J. & Kuehn, M. J. Release of outer membrane vesicles by Gram-negative bacteria is a novel envelope stress response. Mol. Microbiol. 63, 545–558 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Schwechheimer, C., Kulp, A. & Kuehn, M. J. Modulation of bacterial outer membrane vesicle production by envelope structure and content. BMC Microbiol. 14, 324 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Macdonald, I. A. & Kuehn, M. J. Stress-induced outer membrane vesicle production by Pseudomonas aeruginosa. J. Bacteriol. 195, 2971–2981 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Prados-Rosales, R. et al. Role for Mycobacterium tuberculosis membrane vesicles in iron acquisition. J. Bacteriol. 196, 1250–1256 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Rakoff-Nahoum, S., Coyne, M. J. & Comstock, L. E. An ecological network of polysaccharide utilization among human intestinal symbionts. Curr. Biol. 24, 40–49 (2014).

    Article  CAS  PubMed  Google Scholar 

  125. Dürwald, A. et al. Reaching out in anticipation: bacterial membrane extensions represent a permanent investment in polysaccharide sensing and utilization. Env. Microbiol. 23, 3149–3163 (2021).

    Article  Google Scholar 

  126. Faddetta, T. et al. Streptomyces coelicolor vesicles: many molecules to be delivered. Appl. Env. Microbiol. 88, e0188121 (2022).

    Article  Google Scholar 

  127. Manning, A. J. & Kuehn, M. J. Contribution of bacterial outer membrane vesicles to innate bacterial defense. BMC Microbiol. 11, 258 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Aung, K. M. et al. Naturally occurring IgG antibodies provide innate protection against Vibrio cholerae bacteremia by recognition of the outer membrane protein U. J. Innate Immun. 8, 269–283 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Augustyniak, D., Olszak, T. & Drulis-Kawa, Z. Outer membrane vesicles (OMVs) of Pseudomonas aeruginosa provide passive resistance but not sensitization to LPS-specific phages. Viruses https://doi.org/10.3390/v14010121 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Fulsundar, S. et al. Gene transfer potential of outer membrane vesicles of Acinetobacter baylyi and effects of stress on vesiculation. Appl. Environ. Microbiol. 80, 3469–3483 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Tran, F. & Boedicker, J. Q. Genetic cargo and bacterial species set the rate of vesicle-mediated horizontal gene transfer. Sci. Rep. 7, 8813 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Blesa, A. & Berenguer, J. Contribution of vesicle-protected extracellular DNA to horizontal gene transfer in Thermus spp. Int. Microbiol. 18, 177–187 (2015).

    CAS  PubMed  Google Scholar 

  133. Biller, S. J. et al. Membrane vesicles in sea water: heterogeneous DNA content and implications for viral abundance estimates. ISME J. 11, 394–404 (2017).

    Article  CAS  PubMed  Google Scholar 

  134. Gaudin, M. et al. Extracellular membrane vesicles harbouring viral genomes. Environ. Microbiol. 16, 1167–1175 (2014).

    Article  CAS  PubMed  Google Scholar 

  135. Kadurugamuwa, J. L. & Beveridge, T. J. Bacteriolytic effect of membrane vesicles from Pseudomonas aeruginosa on other bacteria including pathogens: conceptually new antibiotics. J. Bacteriol. 178, 2767–2774 (1996). This study provides a demonstration that MVs can kill bacteria.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Li, Z., Clarke, A. J. & Beveridge, T. J. Gram-negative bacteria produce membrane vesicles which are capable of killing other bacteria. J. Bacteriol. 180, 5478–5483 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Chen, Y.-C., Kalawong, R., Toyofuku, M. & Eberl, L. The role of peptidoglycan hydrolases in the formation and toxicity of Pseudomonas aeruginosa membrane vesicles. MicroLife https://doi.org/10.1093/femsml/uqac009 (2022).

    Article  PubMed  Google Scholar 

  138. Yue, H. et al. Outer membrane vesicle-mediated codelivery of the antifungal HSAF metabolites and lytic polysaccharide monooxygenase in the predatory Lysobacter enzymogenes. ACS Chem. Biol. 16, 1079–1089 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Meers, P. R. et al. Vesicular delivery of the antifungal antibiotics of Lysobacter enzymogenes C3. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.01353-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Vasilyeva, N. V., Tsfasman, I. M., Suzina, N. E., Stepnaya, O. A. & Kulaev, I. S. Secretion of bacteriolytic endopeptidase L5 of Lysobacter sp. XL1 into the medium by means of outer membrane vesicles. FEBS J. 275, 3827–3835 (2008).

    Article  CAS  PubMed  Google Scholar 

  141. Florez, C., Raab, J. E., Cooke, A. C. & Schertzer, J. W. Membrane distribution of the Pseudomonas quinolone signal modulates outer membrane vesicle production in Pseudomonas aeruginosa. mBio https://doi.org/10.1128/mBio.01034-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Schertzer, J. W. & Whiteley, M. A bilayer-couple model of bacterial outer membrane vesicle biogenesis. mBio https://doi.org/10.1128/mBio.00297-11 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Brameyer, S. et al. Outer membrane vesicles facilitate trafficking of the hydrophobic signaling molecule CAI-1 between Vibrio harveyi cells. J. Bacteriol. https://doi.org/10.1128/JB.00740-17 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Mashburn, L. M. & Whiteley, M. Membrane vesicles traffic signals and facilitate group activities in a prokaryote. Nature 437, 422–425 (2005). This study shows that MVs can be involved in bacterial communication.

    Article  CAS  PubMed  Google Scholar 

  145. Wang, Y. et al. Burkholderia thailandensis outer membrane vesicles exert antimicrobial activity against drug-resistant and competitor microbial species. J. Microbiol. 58, 550–562 (2020).

    Article  CAS  PubMed  Google Scholar 

  146. Choi, S. Y. et al. Chromobacterium violaceum delivers violacein, a hydrophobic antibiotic, to other microbes in membrane vesicles. Environ. Microbiol. 22, 705–713 (2020). This study reveals that violacein is released via vesicles, which solubilize this hydrophobic antibiotic and transport it to other microorganisms.

    Article  CAS  PubMed  Google Scholar 

  147. Hoefler, B. C. et al. A link between linearmycin biosynthesis and extracellular vesicle genesis connects specialized metabolism and bacterial membrane physiology. Cell Chem. Biol. 24, 1238–1249.e7 (2017).

    Article  CAS  PubMed  Google Scholar 

  148. Liu, Y. et al. Essential role of membrane vesicles for biological activity of the bacteriocin micrococcin P1. J. Extracell. Vesicles 11, e12212 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Jager, J., Keese, S., Roessle, M., Steinert, M. & Schromm, A. B. Fusion of Legionella pneumophila outer membrane vesicles with eukaryotic membrane systems is a mechanism to deliver pathogen factors to host cell membranes. Cell Microbiol. 17, 607–620 (2015).

    Article  PubMed  Google Scholar 

  150. Rompikuntal, P. K. et al. Perinuclear localization of internalized outer membrane vesicles carrying active cytolethal distending toxin from Aggregatibacter actinomycetemcomitans. Infect. Immun. 80, 31–42 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Kaparakis, M. et al. Bacterial membrane vesicles deliver peptidoglycan to NOD1 in epithelial cells. Cell Microbiol. 12, 372–385 (2010).

    Article  CAS  PubMed  Google Scholar 

  152. Caruana, J. C. & Walper, S. A. Bacterial membrane vesicles as mediators of microbe–microbe and microbe–host community interactions. Front. Microbiol. 11, 432 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Pavkova, I. et al. Francisella tularensis outer membrane vesicles participate in the early phase of interaction with macrophages. Front. Microbiol. 12, 748706 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Thay, B., Wai, S. N. & Oscarsson, J. Staphylococcus aureus α-toxin-dependent induction of host cell death by membrane-derived vesicles. PLoS ONE 8, e54661 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Turner, L. et al. Helicobacter pylori outer membrane vesicle size determines their mechanisms of host cell entry and protein content. Front. Immunol. 9, 1466 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  156. O’Donoghue, E. J. et al. Lipopolysaccharide structure impacts the entry kinetics of bacterial outer membrane vesicles into host cells. PLoS Pathog. 13, e1006760 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Kaparakis-Liaskos, M. & Ferrero, R. L. Immune modulation by bacterial outer membrane vesicles. Nat. Rev. Immunol. 15, 375–387 (2015). This comprehensive review summarizes the current knowledge on immunomodulatory activities of bacterial MVs.

    Article  CAS  PubMed  Google Scholar 

  158. Soderblom, T. et al. Effects of the Escherichia coli toxin cytolysin A on mucosal immunostimulation via epithelial Ca2 + signalling and toll-like receptor 4. Cell Microbiol. 7, 779–788 (2005).

    Article  PubMed  Google Scholar 

  159. Zhao, K., Deng, X., He, C., Yue, B. & Wu, M. Pseudomonas aeruginosa outer membrane vesicles modulate host immune responses by targeting the toll-like receptor 4 signaling pathway. Infect. Immun. 81, 4509–4518 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Bielaszewska, M. et al. Enterohemorrhagic Escherichia coli O157 outer membrane vesicles induce interleukin 8 production in human intestinal epithelial cells by signaling via toll-like receptors TLR4 and TLR5 and activation of the nuclear factor NF-kappaB. Int. J. Med. Microbiol. 308, 882–889 (2018).

    Article  CAS  PubMed  Google Scholar 

  161. Prados-Rosales, R. et al. Mycobacteria release active membrane vesicles that modulate immune responses in a TLR2-dependent manner in mice. J. Clin. Invest. 121, 1471–1483 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Bitto, N. J. et al. Staphylococcus aureus membrane vesicles contain immunostimulatory DNA, RNA and peptidoglycan that activate innate immune receptors and induce autophagy. J. Extracell. Vesicles 10, e12080 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Cecil, J. D. et al. Differential responses of pattern recognition rceptors to outer membrane vesicles of three periodontal pathogens. PLoS ONE 11, e0151967 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Bitto, N. J. et al. Considerations for the analysis of bacterial membrane vesicles: methods of vesicle production and quantification can influence biological and experimental outcomes. Microbiol. Spectr. 9, e0127321 (2021).

    Article  PubMed  Google Scholar 

  165. Rocha, F. G., Ottenberg, G., Eure, Z. G., Davey, M. E. & Gibson, F. C. Sphingolipid-containing outer membrane vesicles serve as a delivery vehicle to limit macrophage immune response to Porphyromonas gingivalis. Infect. Immun. https://doi.org/10.1128/IAI.00614-20 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Chen, G., Sun, Q., Cai, Q. & Zhou, H. Outer membrane vesicles from Fusobacterium nucleatum switch M0-like macrophages toward the m1 phenotype to destroy periodontal tissues in mice. Front. Microbiol. 13, 815638 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Rivera, J., Cordero, R. J. B., Nakouzi, A. S. & Frases, S. Bacillus anthracis produces membrane-derived vesicles containing biologically active toxins. Proc. Natl Acad. Sci. USA 107, 19002–19007 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Rasti, E. S., Schappert, M. L. & Brown, A. C. Association of Vibrio cholerae 569B outer membrane vesicles with host cells occurs in a GM1-independent manner. Cell Microbiol. 20, e12828 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Parker, H., Chitcholtan, K., Hampton, M. B. & Keenan, J. I. Uptake of Helicobacter pylori outer membrane vesicles by gastric epithelial cells. Infect. Immun. 78, 5054–5061 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Choi, J. W., Kim, S. C., Hong, S. H. & Lee, H. J. Secretable small RNAs via outer membrane vesicles in periodontal pathogens. J. Dent. Res. 96, 458–466 (2017).

    Article  CAS  PubMed  Google Scholar 

  171. Zhang, H. et al. sncRNAs packaged by Helicobacter pylori outer membrane vesicles attenuate IL-8 secretion in human cells. Int. J. Med. Microbiol. 310, 151356 (2020).

    Article  CAS  PubMed  Google Scholar 

  172. Bielig, H. et al. NOD-like receptor activation by outer membrane vesicles from Vibrio cholerae non-O1 non-O139 strains is modulated by the quorum-sensing regulator HapR. Infect. Immun. 79, 1418–1427 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Thay, B., Damm, A., Kufer, T. A., Wai, S. N. & Oscarsson, J. Aggregatibacter actinomycetemcomitans outer membrane vesicles are internalized in human host cells and trigger NOD1- and NOD2-dependent NF-kappaB activation. Infect. Immun. 82, 4034–4046 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Irving, A. T. et al. The immune receptor NOD1 and kinase RIP2 interact with bacterial peptidoglycan on early endosomes to promote autophagy and inflammatory signaling. Cell Host Microbe 15, 623–635 (2014).

    Article  CAS  PubMed  Google Scholar 

  175. Johnston, E. L., Heras, B., Kufer, T. A. & Kaparakis-Liaskos, M. Detection of bacterial membrane vesicles by NOD-like receptors. Int. J. Mol. Sci. 22, 1005 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Vanaja, S. K. et al. Bacterial outer membrane vesicles mediate cytosolic localization of LPS and caspase-11 activation. Cell 165, 1106–1119 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Diaz-Garrido, N., Badia, J. & Baldoma, L. Microbiota-derived extracellular vesicles in interkingdom communication in the gut. J. Extracell. Vesicles 10, e12161 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Cañas, M. A. et al. Outer membrane vesicles from the probiotic Escherichia coli Nissle 1917 and the commensal ECOR12 enter intestinal epithelial cells via clathrin-dependent endocytosis and elicit differential effects on DNA damage. PLoS ONE 11, e0160374 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Jones, E. J. et al. The uptake, trafficking, and biodistribution of Bacteroides thetaiotaomicron generated outer membrane vesicles. Front. Microbiol. 11, 57 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Canas, M. A., Fabrega, M. J., Gimenez, R., Badia, J. & Baldoma, L. Outer membrane vesicles from probiotic and commensal Escherichia coli activate NOD1-mediated immune responses in intestinal epithelial cells. Front. Microbiol. 9, 498 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Martin-Gallausiaux, C., Malabirade, A., Habier, J. & Wilmes, P. Fusobacterium nucleatum extracellular vesicles modulate gut epithelial cell innate immunity via FomA and TLR2. Front. Immunol. 11, 583644 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Shen, Y. et al. Outer membrane vesicles of a human commensal mediate immune regulation and disease protection. Cell Host Microbe 12, 509–520 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Gilmore, W. J. et al. Outer membrane vesicles preferentially activate innate immune receptors compared to their parent bacteria. Front. Immunol. 13, 970725 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Erttmann, S. F. et al. The gut microbiota prime systemic antiviral immunity via the cGAS-STING-IFN-I axis. Immunity 55, 847–861.e10 (2022).

    Article  CAS  PubMed  Google Scholar 

  185. Palmer, T., Finney, A. J., Saha, C. K., Atkinson, G. C. & Sargent, F. A holin/peptidoglycan hydrolase-dependent protein secretion system. Mol. Microbiol. 115, 345–355 (2021).

    Article  CAS  PubMed  Google Scholar 

  186. Hamilton, J. J. et al. A holin and an endopeptidase are essential for chitinolytic protein secretion in Serratia marcescens. J. Cell Biol. 207, 615–626 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Hong, J. et al. Analysis of the Escherichia coli extracellular vesicle proteome identifies markers of purity and culture conditions. J. Extracell. Vesicles 8, 1632099 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Hofer, U. Marine microbiology: message in a bottle. Nat. Rev. Microbiol. 12, 153 (2014).

    Article  CAS  PubMed  Google Scholar 

  189. Harris, L. K. & Theriot, J. A. Surface area to volume ratio: a natural variable for bacterial morphogenesis. Trends Microbiol. 26, 815–832 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Volkmer, B. & Heinemann, M. Condition-dependent cell volume and concentration of Escherichia coli to facilitate data conversion for systems biology modeling. PLoS ONE 6, e23126 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Wagner, P. L. & Waldor, M. K. Bacteriophage control of bacterial virulence. Infect. Immun. 70, 3985–3993 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Goerke, C., Köller, J. & Wolz, C. Ciprofloxacin and trimethoprim cause phage induction and virulence modulation in Staphylococcus aureus. Antimicrob. Agents Chemother. 50, 171–177 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Kimmitt, P. T., Harwood, C. R. & Barer, M. R. Toxin gene expression by shiga toxin-producing Escherichia coli: the role of antibiotics and the bacterial SOS response. Emerg. Infect. Dis. 6, 458–465 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Quinones, M., Kimsey, H. H. & Waldor, M. K. LexA cleavage is required for CTX prophage induction. Mol. Cell 17, 291–300 (2005).

    Article  CAS  PubMed  Google Scholar 

  195. Sumby, P. & Waldor, M. K. Transcription of the toxin genes present within the Staphylococcal phage phiSa3ms is intimately linked with the phage’s life cycle. J. Bacteriol. 185, 6841–6851 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Yamanashi, Y. et al. Effects of growth stage on the characterization of enterotoxin A-producing Staphylococcus aureus-derived membrane vesicles. Microorganisms https://doi.org/10.3390/microorganisms10030574 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Wang, X., Koffi, P. F., English, O. F. & Lee, J. C. Staphylococcus aureus extracellular vesicles: a story of toxicity and the stress of 2020. Toxins https://doi.org/10.3390/toxins13020075 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Wai, S. N. et al. Vesicle-mediated export and assembly of pore-forming oligomers of the enterobacterial ClyA cytotoxin. Cell 115, 25–35 (2003).

    Article  CAS  PubMed  Google Scholar 

  199. Oscarsson, J., Westermark, M., Beutin, L. & Uhlin, B. E. The bacteriophage-associated ehly1 and ehly2 determinants from Escherichia coli O26:H- strains do not encode enterohemolysins per se but cause release of the ClyA cytolysin. Int. J. Med. Microbiol. 291, 625–631 (2002).

    Article  CAS  PubMed  Google Scholar 

  200. Freedman, S. B. et al. Shiga toxin-producing Escherichia coli infection, antibiotics, and risk of developing hemolytic uremic syndrome: a meta-analysis. Clin. Infect. Dis. 62, 1251–1258 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

M.T. was supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT) (projects 19H05682 and 19H02866), the Suntory Rising Stars Encouragement Program in Life Sciences (SunRiSE) and the Japan Science and Technology Agency ERATO (JPMJER1502), S.S. was supported by the Austrian Science Fund (FWF) (grants P 33073 and P 32577), M.K.-L. was supported by the Australian Research Council (Discovery Project DP190101655) and by a veski Inspiring Women Fellowship, and L.E. was supported by the Swiss National Science Foundation (SNSF) (projects 310030_192800 and CRSII5_186410).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Leo Eberl.

Peer review

Peer review information

Nature Reviews Microbiology thanks Simon Swift and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Bistable gene expression

A regulatory system that results in the same gene being expressed in some cells and silenced in others to trigger stochastic switch-like transitions between cellular differentiation states.

Endolysins

Hydrolytic enzymes that are produced by bacteriophages to degrade the cell wall of the bacterial host during the final stage of the lytic cycle.

Intercalation

Reversible insertion of molecules into materials with layered structures such as the cellular membrane.

Pattern recognition receptors

PRRs. Germline-encoded innate immune receptors expressed by macrophages, dendritic cells and epithelial cells that recognize different types of pathogen-associated molecular pattern.

Quantal secretion

Secretion of molecule packages to ensure biological activity on delivery to target cells.

Quorum sensing

QS. A cell-to-cell communication mechanism in bacteria by which gene regulation is controlled in a population-dependent manner through the production and perception of signal molecules.

SOS response

A global regulatory system that allows bacteria to respond to DNA damage by arresting growth and inducing DNA repair and mutagenesis as well as controlling prophage induction.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toyofuku, M., Schild, S., Kaparakis-Liaskos, M. et al. Composition and functions of bacterial membrane vesicles. Nat Rev Microbiol 21, 415–430 (2023). https://doi.org/10.1038/s41579-023-00875-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41579-023-00875-5

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology