Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Engineered disorder in photonics

Abstract

Disorder, which qualitatively describes some measure of irregularities in spatial patterns, is ubiquitous in many-body systems, equilibrium and non-equilibrium states of matter, network structures, biological systems and wave–matter interactions. In photonics, the introduction of order and disorder for device applications has traditionally been treated separately. However, recent developments in nanofabrication and design strategies have enabled the use of materials that lie between the extremes of order and disorder that can yield innovative optical phenomena owing to their engineered disordered patterns. Here, we review recent achievements in the emerging field of engineered disorder in photonics by outlining milestones in the control of the spectrum, transport, wavefront and topology of light in disordered structures. We show that engineered disorder has begun to transform the traditional landscape of photonics by introducing a greatly enhanced design freedom and, hence, has great potential for the rational design of the next generation of materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Landscape of order and disorder.
Fig. 2: Engineering disorder by designing nontrivial loci between order and uncorrelated disorder.
Fig. 3: Engineered spectral responses in deformed microcavities.
Fig. 4: Engineered spectral responses in hyperuniform structures.
Fig. 5: Engineered spectral responses using isospectrality.
Fig. 6: Controlled localization and transport in engineered disordered systems.
Fig. 7: Shaped wavefront and controlled directivity obtained with engineered disorder.
Fig. 8: Topological phenomena engineered by structural disorder.

Similar content being viewed by others

References

  1. Hughes, S., Ramunno, L., Young, J. F. & Sipe, J. E. Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity. Phys. Rev. Lett. 94, 033903 (2005).

    CAS  Google Scholar 

  2. Barabási, A.-L. Network Science (Cambridge Univ. Press, 2016).

  3. Barabási, A.-L. & Albert, R. Emergence of scaling in random networks. Science 286, 509–512 (1999).

    Google Scholar 

  4. Torquato, S. & Stillinger, F. H. Local density fluctuations, hyperuniformity, and order metrics. Phys. Rev. E 68, 041113 (2003). This work first introduced the concept of hyperuniformity, that is, the suppression of long-range fluctuations.

    Google Scholar 

  5. Man, W. et al. Isotropic band gaps and freeform waveguides observed in hyperuniform disordered photonic solids. Proc. Natl Acad. Sci. USA 110, 15886–15891 (2013). This paper experimentally measured the isotropic, complete bandgap in hyperuniform structures.

    CAS  Google Scholar 

  6. Goodrich, C. P., Liu, A. J. & Nagel, S. R. Solids between the mechanical extremes of order and disorder. Nat. Phys. 10, 578–581 (2014).

    CAS  Google Scholar 

  7. Rayleigh, L. XVII. On the maintenance of vibrations by forces of double frequency, and on the propagation of waves through a medium endowed with a periodic structure. Philos. Mag. 24, 145–159 (1887).

    Google Scholar 

  8. Joannopoulos, J. D., Johnson, S. G., Winn, J. N. & Meade, R. D. Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, 2011).

  9. Vardeny, Z. V., Nahata, A. & Agrawal, A. Optics of photonic quasicrystals. Nat. Photonics 7, 177–187 (2013).

    CAS  Google Scholar 

  10. Lu, L., Joannopoulos, J. D. & Soljačić, M. Topological photonics. Nat. Photonics 8, 821–829 (2014).

    CAS  Google Scholar 

  11. Freedman, B. et al. Wave and defect dynamics in nonlinear photonic quasicrystals. Nature 440, 1166–1169 (2006).

    CAS  Google Scholar 

  12. Lahini, Y. et al. Observation of a localization transition in quasiperiodic photonic lattices. Phys. Rev. Lett. 103, 013901 (2009).

    CAS  Google Scholar 

  13. Wang, P. et al. Localization and delocalization of light in photonic moiré lattices. Nature 577, 42–46 (2020).

    CAS  Google Scholar 

  14. Anderson, P. W. Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492 (1958).

    CAS  Google Scholar 

  15. John, S. Electromagnetic absorption in a disordered medium near a photon mobility edge. Phys. Rev. Lett. 53, 2169 (1984).

    Google Scholar 

  16. Van Albada, M. P. & Lagendijk, A. Observation of weak localization of light in a random medium. Phys. Rev. Lett. 55, 2692 (1985).

    Google Scholar 

  17. Anderson, P. W. The question of classical localization A theory of white paint? Philos. Mag. B 52, 505–509 (1985).

    CAS  Google Scholar 

  18. John, S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486 (1987).

    CAS  Google Scholar 

  19. Pursiainen, O. L. et al. Nanoparticle-tuned structural color from polymer opals. Opt. Express 15, 9553–9561 (2007).

    CAS  Google Scholar 

  20. Saranathan, V. et al. Structure and optical function of amorphous photonic nanostructures from avian feather barbs: a comparative small angle X-ray scattering (SAXS) analysis of 230 bird species. J. R. Soc. Interface 9, 2563–2580 (2012).

    Google Scholar 

  21. Vukusic, P. & Sambles, J. R. Photonic structures in biology. Nature 424, 852–855 (2003).

    CAS  Google Scholar 

  22. Li, Z.-Y. & Zhang, Z.-Q. Fragility of photonic band gaps in inverse-opal photonic crystals. Phys. Rev. B 62, 1516 (2000).

    CAS  Google Scholar 

  23. Sebbah, P. Waves and Imaging Through Complex Media (Springer, 2012).

  24. Pratesi, F., Burresi, M., Riboli, F., Vynck, K. & Wiersma, D. S. Disordered photonic structures for light harvesting in solar cells. Opt. Express 21, A460–A468 (2013).

    Google Scholar 

  25. Liu, J. et al. Random nanolasing in the Anderson localized regime. Nat. Nanotechnol. 9, 285–289 (2014).

    Google Scholar 

  26. Wiersma, D. S. Disordered photonics. Nat. Photonics 7, 188–196 (2013).

    CAS  Google Scholar 

  27. Rintoul, M. & Torquato, S. Metastability and crystallization in hard-sphere systems. Phys. Rev. Lett. 77, 4198 (1996).

    CAS  Google Scholar 

  28. Torquato, S., Truskett, T. M. & Debenedetti, P. G. Is random close packing of spheres well defined? Phys. Rev. Lett. 84, 2064 (2000).

    CAS  Google Scholar 

  29. Torquato, S. Perspective: basic understanding of condensed phases of matter via packing models. J. Chem. Phys. 149, 020901 (2018).

    CAS  Google Scholar 

  30. Errington, J. R., Debenedetti, P. G. & Torquato, S. Quantification of order in the Lennard-Jones system. J. Chem. Phys. 118, 2256–2263 (2003).

    CAS  Google Scholar 

  31. Zhang, G., Stillinger, F. & Torquato, S. The perfect glass paradigm: disordered hyperuniform glasses down to absolute zero. Sci. Rep. 6, 36963 (2016).

    CAS  Google Scholar 

  32. Errington, J. R. & Debenedetti, P. G. Relationship between structural order and the anomalies of liquid water. Nature 409, 318–321 (2001).

    CAS  Google Scholar 

  33. DiStasio, R. A. Jr, Zhang, G., Stillinger, F. H. & Torquato, S. Rational design of stealthy hyperuniform two-phase media with tunable order. Phys. Rev. E 97, 023311 (2018).

    Google Scholar 

  34. Jiao, Y. et al. Avian photoreceptor patterns represent a disordered hyperuniform solution to a multiscale packing problem. Phys. Rev. E 89, 022721 (2014).

    Google Scholar 

  35. Chen, D. & Torquato, S. Designing disordered hyperuniform two-phase materials with novel physical properties. Acta Mater. 142, 152–161 (2018).

    CAS  Google Scholar 

  36. Shechtman, D., Blech, I., Gratias, D. & Cahn, J. W. Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53, 1951 (1984).

    CAS  Google Scholar 

  37. Levine, D. & Steinhardt, P. J. Quasicrystals: a new class of ordered structures. Phys. Rev. Lett. 53, 2477 (1984).

    CAS  Google Scholar 

  38. Kansal, A. R., Truskett, T. M. & Torquato, S. Nonequilibrium hard-disk packings with controlled orientational order. J. Chem. Phys. 113, 4844–4851 (2000).

    CAS  Google Scholar 

  39. Steinhardt, P. J., Nelson, D. R. & Ronchetti, M. Bond-orientational order in liquids and glasses. Phys. Rev. B 28, 784 (1983).

    CAS  Google Scholar 

  40. Torquato, S., Zhang, G. & Stillinger, F. Ensemble theory for stealthy hyperuniform disordered ground states. Phys. Rev. X 5, 021020 (2015).

    Google Scholar 

  41. Zachary, C. E. & Torquato, S. Hyperuniformity in point patterns and two-phase random heterogeneous media. J. Stat. Mech. Theory Exp. 2009, P12015 (2009).

    Google Scholar 

  42. Yu, S., Piao, X., Hong, J. & Park, N. Bloch-like waves in random-walk potentials based on supersymmetry. Nat. Commun. 6, 8269 (2015).

    Google Scholar 

  43. Torquato, S. Random Heterogeneous Materials: Microstructure and Macroscopic Properties (Springer, 2002).

  44. Torquato, S., Zhang, G. & De Courcy-Ireland, M. Hidden multiscale order in the primes. J. Phys. A 52, 135002 (2019).

    Google Scholar 

  45. Klatt, M. A., Kim, J. & Torquato, S. Cloaking the underlying long-range order of randomly perturbed lattices. Phys. Rev. E 101, 032118 (2020).

    CAS  Google Scholar 

  46. Jiang, X. et al. Chaos-assisted broadband momentum transformation in optical microresonators. Science 358, 344–347 (2017). This paper presented a strategy to overcome the traditional bandwidth limitation in evanescent coupling methods by exploiting dynamical tunnelling.

    CAS  Google Scholar 

  47. Florescu, M., Torquato, S. & Steinhardt, P. J. Designer disordered materials with large, complete photonic band gaps. Proc. Natl Acad. Sci. USA 106, 20658–20663 (2009).

    CAS  Google Scholar 

  48. Hsu, C. W., Goetschy, A., Bromberg, Y., Stone, A. D. & Cao, H. Broadband coherent enhancement of transmission and absorption in disordered media. Phys. Rev. Lett. 115, 223901 (2015).

    Google Scholar 

  49. Bigourdan, F., Pierrat, R. & Carminati, R. Enhanced absorption of waves in stealth hyperuniform disordered media. Opt. Express 27, 8666–8682 (2019).

    CAS  Google Scholar 

  50. Batten, R. D., Stillinger, F. H. & Torquato, S. Classical disordered ground states: super-ideal gases and stealth and equi-luminous materials. J. Appl. Phys. 104, 033504 (2008).

    Google Scholar 

  51. Klatt, M. A. et al. Universal hidden order in amorphous cellular geometries. Nat. Commun. 10, 811 (2019).

    CAS  Google Scholar 

  52. Kim, J. & Torquato, S. C. New tessellation-based procedure to design perfectly hyperuniform disordered dispersions for materials discovery. Acta Mater. 168, 143–151 (2019).

    CAS  Google Scholar 

  53. Cao, H. & Wiersig, J. Dielectric microcavities: model systems for wave chaos and non-Hermitian physics. Rev. Mod. Phys. 87, 61 (2015).

    Google Scholar 

  54. Kellert, S. H. In the Wake of Chaos: Unpredictable Order in Dynamical Systems (Univ. Chicago Press, 1993).

  55. Bäcker, A. et al. Dynamical tunneling in mushroom billiards. Phys. Rev. Lett. 100, 174103 (2008).

    Google Scholar 

  56. Bittner, S. et al. Suppressing spatiotemporal lasing instabilities with wave-chaotic microcavities. Science 361, 1225–1231 (2018).

    CAS  Google Scholar 

  57. Yi, C.-H., Kullig, J. & Wiersig, J. Pair of exceptional points in a microdisk cavity under an extremely weak deformation. Phys. Rev. Lett. 120, 093902 (2018). This paper showed that even a very weak deformation in a microdisk can lead to the emergence of exceptional points.

    CAS  Google Scholar 

  58. Miri, M.-A. & Alù, A. Exceptional points in optics and photonics. Science 363, eaar7709 (2019).

    CAS  Google Scholar 

  59. Kim, Y. et al. Designing whispering gallery modes via transformation optics. Nat. Photonics 10, 647–652 (2016).

    CAS  Google Scholar 

  60. Torquato, S. Hyperuniform states of matter. Phys. Rep. 745, 1–95 (2018).

    CAS  Google Scholar 

  61. Uche, O. U., Stillinger, F. H. & Torquato, S. Constraints on collective density variables: two dimensions. Phys. Rev. E 70, 046122 (2004).

    Google Scholar 

  62. Leseur, O., Pierrat, R. & Carminati, R. High-density hyperuniform materials can be transparent. Optica 3, 763–767 (2016).

    Google Scholar 

  63. Froufe-Pérez, L. S. et al. Role of short-range order and hyperuniformity in the formation of band gaps in disordered photonic materials. Phys. Rev. Lett. 117, 053902 (2016).

    Google Scholar 

  64. Muller, N., Haberko, J., Marichy, C. & Scheffold, F. Photonic hyperuniform networks obtained by silicon double inversion of polymer templates. Optica 4, 361–366 (2017).

    CAS  Google Scholar 

  65. Ma, T. et al. 3D printed hollow-core terahertz optical waveguides with hyperuniform disordered dielectric reflectors. Adv. Opt. Mater. 4, 2085–2094 (2016).

    CAS  Google Scholar 

  66. Piechulla, P. M. et al. Fabrication of nearly-hyperuniform substrates by tailored disorder for photonic applications. Adv. Opt. Mater. 6, 1701272 (2018).

    Google Scholar 

  67. Kac, M. Can one hear the shape of a drum? Am. Math. Monthly 73, 1–23 (1966).

    Google Scholar 

  68. Gordon, C., Webb, D. L. & Wolpert, S. One cannot hear the shape of a drum. Bull. Am. Math. Soc. 27, 134–138 (1992).

    Google Scholar 

  69. Miri, M.-A., Heinrich, M., El-Ganainy, R. & Christodoulides, D. N. Supersymmetric optical structures. Phys. Rev. Lett. 110, 233902 (2013).

    Google Scholar 

  70. Heinrich, M. et al. Supersymmetric mode converters. Nat. Commun. 5, 3698 (2014).

    CAS  Google Scholar 

  71. Hokmabadi, M. P., Nye, N. S., El-Ganainy, R., Christodoulides, D. N. & Khajavikhan, M. Supersymmetric laser arrays. Science 363, 623–626 (2019).

    CAS  Google Scholar 

  72. Longhi, S. Bloch oscillations in tight-binding lattices with defects. Phys. Rev. B 81, 195118 (2010).

    Google Scholar 

  73. Teimourpour, M., Christodoulides, D. N. & El-Ganainy, R. Optical revivals in nonuniform supersymmetric photonic arrays. Opt. Lett. 41, 372–375 (2016).

    CAS  Google Scholar 

  74. Miri, M.-A., Heinrich, M. & Christodoulides, D. N. Supersymmetry-generated complex optical potentials with real spectra. Phys. Rev. A 87, 043819 (2013).

    Google Scholar 

  75. Miri, M.-A., Heinrich, M. & Christodoulides, D. N. SUSY-inspired one-dimensional transformation optics. Optica 1, 89–95 (2014).

    Google Scholar 

  76. Zhong, Q., Nelson, S., Khajavikhan, M., Christodoulides, D. & El-Ganainy, R. Bosonic discrete supersymmetry for quasi-two-dimensional optical arrays. Photonics Res. 7, 1240–1243 (2019).

    CAS  Google Scholar 

  77. Yu, S., Piao, X., Hong, J. & Park, N. Interdimensional optical isospectrality inspired by graph networks. Optica 3, 836–839 (2016).

    Google Scholar 

  78. Teimourpour, M. H., Ge, L., Christodoulides, D. N. & El-Ganainy, R. Non-Hermitian engineering of single mode two dimensional laser arrays. Sci. Rep. 6, 33253 (2016).

    CAS  Google Scholar 

  79. Maczewsky, L. J. et al. Synthesizing multi-dimensional excitation dynamics and localization transition in one-dimensional lattices. Nat. Photonics 14, 76–81 (2020).

    CAS  Google Scholar 

  80. Abrahams, E., Anderson, P., Licciardello, D. & Ramakrishnan, T. Scaling theory of localization: absence of quantum diffusion in two dimensions. Phys. Rev. Lett. 42, 673 (1979).

    Google Scholar 

  81. Sheng, P. Introduction to Wave Scattering, Localization and Mesoscopic Phenomena (Springer, 2006).

  82. Segev, M., Silberberg, Y. & Christodoulides, D. N. Anderson localization of light. Nat. Photonics 7, 197–204 (2013).

    CAS  Google Scholar 

  83. De Raedt, H., Lagendijk, A. & de Vries, P. Transverse localization of light. Phys. Rev. Lett. 62, 47 (1989). This paper first predicted the transverse localization of light.

    Google Scholar 

  84. Chabanov, A., Stoytchev, M. & Genack, A. Statistical signatures of photon localization. Nature 404, 850–853 (2000). This paper reported the landmark observation of microwave localization in a quasi-1D geometry.

    CAS  Google Scholar 

  85. Lahini, Y. et al. Anderson localization and nonlinearity in one-dimensional disordered photonic lattices. Phys. Rev. Lett. 100, 013906 (2008).

    Google Scholar 

  86. Szameit, A. et al. Wave localization at the boundary of disordered photonic lattices. Opt. Lett. 35, 1172–1174 (2010).

    CAS  Google Scholar 

  87. Pertsch, T. et al. Nonlinearity and disorder in fiber arrays. Phys. Rev. Lett. 93, 053901 (2004).

    Google Scholar 

  88. Schwartz, T., Bartal, G., Fishman, S. & Segev, M. Transport and Anderson localization in disordered two-dimensional photonic lattices. Nature 446, 52–55 (2007).

    CAS  Google Scholar 

  89. Skipetrov, S. & Page, J. H. Red light for Anderson localization. New J. Phys. 18, 021001 (2016).

    Google Scholar 

  90. Choi, S. H. et al. Anderson light localization in biological nanostructures of native silk. Nat. Commun. 9, 452 (2018).

    Google Scholar 

  91. Leonetti, M., Karbasi, S., Mafi, A. & Conti, C. Light focusing in the Anderson regime. Nat. Commun. 5, 4534 (2014).

    CAS  Google Scholar 

  92. Ruocco, G., Abaie, B., Schirmacher, W., Mafi, A. & Leonetti, M. Disorder-induced single-mode transmission. Nat. Commun. 8, 14571 (2017).

    Google Scholar 

  93. Gaio, M. et al. A nanophotonic laser on a graph. Nat. Commun. 10, 226 (2019).

    Google Scholar 

  94. Niklasson, G. A., Granqvist, C. & Hunderi, O. Effective medium models for the optical properties of inhomogeneous materials. Appl. Opt. 20, 26–30 (1981).

    CAS  Google Scholar 

  95. Sheinfux, H. H., Kaminer, I., Plotnik, Y., Bartal, G. & Segev, M. Subwavelength multilayer dielectrics: ultrasensitive transmission and breakdown of effective-medium theory. Phys. Rev. Lett. 113, 243901 (2014).

    Google Scholar 

  96. Sheinfux, H. H., Kaminer, I., Genack, A. Z. & Segev, M. Interplay between evanescence and disorder in deep subwavelength photonic structures. Nat. Commun. 7, 12927 (2016). This study theoretically demonstrated the emergence of measurable transverse Anderson localization in deep-subwavelength optical structures.

    Google Scholar 

  97. Sheinfux, H. H. et al. Observation of Anderson localization in disordered nanophotonic structures. Science 356, 953–956 (2017).

    CAS  Google Scholar 

  98. Zhang, Z.-Q. & Sheng, P. Superdiffusive transport and metal-insulator transition in two dimensions. Phys. Rev. Lett. 67, 2541 (1991).

    CAS  Google Scholar 

  99. Xue, W., Sheng, P., Chu, Q.-J. & Zhang, Z.-Q. Localization transition in media with anisotropic diagonal disorder. Phys. Rev. Lett. 63, 2837 (1989).

    CAS  Google Scholar 

  100. Feng, L., El-Ganainy, R. & Ge, L. Non-Hermitian photonics based on parity–time symmetry. Nat. Photonics 11, 752–762 (2017).

    CAS  Google Scholar 

  101. Barthelemy, P., Bertolotti, J. & Wiersma, D. S. A Lévy flight for light. Nature 453, 495–498 (2008). This paper first demonstrated the engineering of optical materials to achieve light waves that realize a Lévy flight.

    CAS  Google Scholar 

  102. Bertolotti, J. et al. Engineering disorder in superdiffusive Levy glasses. Adv. Funct. Mater. 20, 965–968 (2010).

    CAS  Google Scholar 

  103. Burresi, M. et al. Weak localization of light in superdiffusive random systems. Phys. Rev. Lett. 108, 110604 (2012).

    Google Scholar 

  104. Conley, G. M., Burresi, M., Pratesi, F., Vynck, K. & Wiersma, D. S. Light transport and localization in two-dimensional correlated disorder. Phys. Rev. Lett. 112, 143901 (2014).

    Google Scholar 

  105. Makris, K. G., Musslimani, Z. H., Christodoulides, D. N. & Rotter, S. Constant-intensity waves and their modulation instability in non-Hermitian potentials. Nat. Commun. 6, 7257 (2015).

    CAS  Google Scholar 

  106. Yu, S., Piao, X., Hong, J. & Park, N. Metadisorder for designer light in random systems. Sci. Adv. 2, e1501851 (2016).

    Google Scholar 

  107. Makris, K. G., Brandstötter, A., Ambichl, P., Musslimani, Z. H. & Rotter, S. Wave propagation through disordered media without backscattering and intensity variations. Light Sci. Appl. 6, e17035 (2017).

    CAS  Google Scholar 

  108. Yu, S., Piao, X. & Park, N. Bohmian photonics for independent control of the phase and amplitude of waves. Phys. Rev. Lett. 120, 193902 (2018).

    CAS  Google Scholar 

  109. Brandstötter, A., Makris, K. G. & Rotter, S. Scattering-free pulse propagation through invisible non-Hermitian media. Phys. Rev. B 99, 115402 (2019).

    Google Scholar 

  110. Hatano, N. & Nelson, D. R. Localization transitions in non-Hermitian quantum mechanics. Phys. Rev. Lett. 77, 570 (1996).

    CAS  Google Scholar 

  111. Kildishev, A. V., Boltasseva, A. & Shalaev, V. M. Planar photonics with metasurfaces. Science 339, 1232009 (2013).

    Google Scholar 

  112. Mosk, A. P., Lagendijk, A., Lerosey, G. & Fink, M. Controlling waves in space and time for imaging and focusing in complex media. Nat. Photonics 6, 283–292 (2012).

    CAS  Google Scholar 

  113. Vellekoop, I. M. & Mosk, A. Focusing coherent light through opaque strongly scattering media. Opt. Lett. 32, 2309–2311 (2007). This paper first suggested the use of wavefront shaping for designed focusing through disordered media.

    CAS  Google Scholar 

  114. Popoff, S. et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys. Rev. Lett. 104, 100601 (2010). This paper first realized wavefront shaping through the experimental measurement of the transmission matrix.

    CAS  Google Scholar 

  115. Huang, Y.-F., Jen, Y.-J., Chen, L.-C., Chen, K.-H. & Chattopadhyay, S. Design for approaching cicada-wing reflectance in low-and high-index biomimetic nanostructures. ACS Nano 9, 301–311 (2015).

    CAS  Google Scholar 

  116. McCoy, D. E., Feo, T., Harvey, T. A. & Prum, R. O. Structural absorption by barbule microstructures of super black bird of paradise feathers. Nat. Commun. 9, 1 (2018).

    CAS  Google Scholar 

  117. Freund, I. Looking through walls and around corners. Phys. A Stat. Mech. Appl. 168, 49–65 (1990).

    Google Scholar 

  118. Vellekoop, I. M., Lagendijk, A. & Mosk, A. Exploiting disorder for perfect focusing. Nat. Photonics 4, 320–322 (2010). This cornerstone paper demonstrated the increase of the numerical aperture in disordered materials.

    CAS  Google Scholar 

  119. Horstmeyer, R., Ruan, H. & Yang, C. Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue. Nat. Photonics 9, 563–571 (2015).

    CAS  Google Scholar 

  120. Rotter, S. & Gigan, S. Light fields in complex media: mesoscopic scattering meets wave control. Rev. Mod. Phys. 89, 015005 (2017). This review provides a solid theoretical background on wavefront shaping.

    Google Scholar 

  121. Lee, P. A. & Stone, A. D. Universal conductance fluctuations in metals. Phys. Rev. Lett. 55, 1622 (1985).

    CAS  Google Scholar 

  122. Hsu, C. W., Liew, S. F., Goetschy, A., Cao, H. & Stone, A. D. Correlation-enhanced control of wave focusing in disordered media. Nat. Phys. 13, 497–502 (2017).

    CAS  Google Scholar 

  123. Derode, A., Roux, P. & Fink, M. Robust acoustic time reversal with high-order multiple scattering. Phys. Rev. Lett. 75, 4206 (1995).

    CAS  Google Scholar 

  124. Lerosey, G., De Rosny, J., Tourin, A. & Fink, M. Focusing beyond the diffraction limit with far-field time reversal. Science 315, 1120–1122 (2007).

    CAS  Google Scholar 

  125. Choi, Y. et al. Overcoming the diffraction limit using multiple light scattering in a highly disordered medium. Phys. Rev. Lett. 107, 023902 (2011).

    Google Scholar 

  126. Van Putten, E. et al. Scattering lens resolves sub-100 nm structures with visible light. Phys. Rev. Lett. 106, 193905 (2011).

    Google Scholar 

  127. Jang, M. et al. Wavefront shaping with disorder-engineered metasurfaces. Nat. Photonics 12, 84–90 (2018).

    CAS  Google Scholar 

  128. Feng, S., Kane, C., Lee, P. A. & Stone, A. D. Correlations and fluctuations of coherent wave transmission through disordered media. Phys. Rev. Lett. 61, 834 (1988).

    CAS  Google Scholar 

  129. Judkewitz, B., Horstmeyer, R., Vellekoop, I. M., Papadopoulos, I. N. & Yang, C. Translation correlations in anisotropically scattering media. Nat. Phys. 11, 684–689 (2015).

    CAS  Google Scholar 

  130. Osnabrugge, G., Horstmeyer, R., Papadopoulos, I. N., Judkewitz, B. & Vellekoop, I. M. Generalized optical memory effect. Optica 4, 886–892 (2017). This paper provided an analytical framework for generalized optical memory effects, including ‘tilt’ and ‘shift’ functions and their interactions.

    Google Scholar 

  131. Wilts, B. D. et al. Evolutionary-optimized photonic network structure in white beetle wing scales. Adv. Mater. 30, 1702057 (2018).

    Google Scholar 

  132. Moyroud, E. et al. Disorder in convergent floral nanostructures enhances signalling to bees. Nature 550, 469–474 (2017). This paper demonstrated the critical role of disordered photonic structures in biology.

    CAS  Google Scholar 

  133. Chung, K. et al. Flexible, angle-independent, structural color reflectors inspired by Morpho butterfly wings. Adv. Mater. 24, 2375–2379 (2012).

    CAS  Google Scholar 

  134. Narasimhan, V. et al. Multifunctional biophotonic nanostructures inspired by the longtail glasswing butterfly for medical devices. Nat. Nanotechnol. 13, 512–519 (2018).

    CAS  Google Scholar 

  135. Sellers, S. R., Man, W., Sahba, S. & Florescu, M. Local self-uniformity in photonic networks. Nat. Commun. 8, 14439 (2017).

    CAS  Google Scholar 

  136. Liu, C., Gao, W., Yang, B. & Zhang, S. Disorder-induced topological state transition in photonic metamaterials. Phys. Rev. Lett. 119, 183901 (2017). This work reported disorder-induced topological transitions in photonic metamaterials using an empirical parameter.

    Google Scholar 

  137. Stützer, S. et al. Photonic topological Anderson insulators. Nature 560, 461–465 (2018).

    Google Scholar 

  138. Yang, B. et al. Topological states in amorphous magnetic photonic lattices. Phys. Rev. B 99, 045307 (2019).

    Google Scholar 

  139. Matlack, K. H., Serra-Garcia, M., Palermo, A., Huber, S. D. & Daraio, C. Designing perturbative metamaterials from discrete models. Nat. Mater. 17, 323–328 (2018).

    CAS  Google Scholar 

  140. Kitaev, A. Anyons in an exactly solved model and beyond. Ann. Phys. 321, 2–111 (2006).

    CAS  Google Scholar 

  141. Agarwala, A. & Shenoy, V. B. Topological insulators in amorphous systems. Phys. Rev. Lett. 118, 236402 (2017).

    Google Scholar 

  142. Mitchell, N. P., Nash, L. M., Hexner, D., Turner, A. M. & Irvine, W. T. Amorphous topological insulators constructed from random point sets. Nat. Phys. 14, 380–385 (2018).

    CAS  Google Scholar 

  143. Titum, P., Lindner, N. H., Rechtsman, M. C. & Refael, G. Disorder-induced Floquet topological insulators. Phys. Rev. Lett. 114, 056801 (2015).

    Google Scholar 

  144. Li, J., Chu, R.-L., Jain, J. & Shen, S.-Q. Topological Anderson insulator. Phys. Rev. Lett. 102, 136806 (2009).

    Google Scholar 

  145. Groth, C., Wimmer, M., Akhmerov, A., Tworzydło, J. & Beenakker, C. Theory of the topological Anderson insulator. Phys. Rev. Lett. 103, 196805 (2009).

    CAS  Google Scholar 

  146. Maguid, E. et al. Disorder-induced optical transition from spin Hall to random Rashba effect. Science 358, 1411–1415 (2017). This work reported spin-optical transport phenomena arising from a disordered geometric phase in subwavelength optical structures.

    CAS  Google Scholar 

  147. Mueller, J. B., Rubin, N. A., Devlin, R. C., Groever, B. & Capasso, F. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys. Rev. Lett. 118, 113901 (2017).

    Google Scholar 

  148. Wang, B. et al. Photonic topological spin Hall effect mediated by vortex pairs. Phys. Rev. Lett. 123, 266101 (2019).

    CAS  Google Scholar 

  149. Lustig, E. et al. Photonic topological insulator in synthetic dimensions. Nature 567, 356–360 (2019).

    CAS  Google Scholar 

  150. Zhang, J. et al. Observation of a discrete time crystal. Nature 543, 217–220 (2017).

    CAS  Google Scholar 

  151. Shirazi, S. F. S. et al. A review on powder-based additive manufacturing for tissue engineering: selective laser sintering and inkjet 3D printing. Sci. Technol. Adv. Mater. 16, 033502 (2015).

    Google Scholar 

  152. Sapienza, R. et al. Long-tail statistics of the purcell factor in disordered media driven by near-field interactions. Phys. Rev. Lett. 106, 163902 (2011).

    CAS  Google Scholar 

  153. García, P. D., Sapienza, R. & López, C. Photonic glasses: a step beyond white paint. Adv. Mater. 22, 12–19 (2010).

    Google Scholar 

  154. Liu, D., Tan, Y., Khoram, E. & Yu, Z. Training deep neural networks for the inverse design of nanophotonic structures. ACS Photonics 5, 1365–1369 (2018).

    CAS  Google Scholar 

  155. Ma, W., Cheng, F. & Liu, Y. Deep-learning-enabled on-demand design of chiral metamaterials. ACS Nano 12, 6326–6334 (2018).

    CAS  Google Scholar 

  156. Yu, S., Piao, X. & Park, N. Machine learning identifies scale-free properties in disordered materials. Nat. Commun. 11, 4842 (2020).

    CAS  Google Scholar 

  157. Cubuk, E. D. et al. Identifying structural flow defects in disordered solids using machine-learning methods. Phys. Rev. Lett. 114, 108001 (2015).

    CAS  Google Scholar 

  158. Shen, Y. et al. Deep learning with coherent nanophotonic circuits. Nat. Photonics 11, 441–446 (2017).

    CAS  Google Scholar 

  159. Levi, L., Krivolapov, Y., Fishman, S. & Segev, M. Hyper-transport of light and stochastic acceleration by evolving disorder. Nat. Phys. 8, 912–917 (2012).

    CAS  Google Scholar 

  160. Bravyi, S., DiVincenzo, D. P. & Loss, D. Schrieffer–Wolff transformation for quantum many-body systems. Ann. Phys. 326, 2793–2826 (2011).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank M. Klatt, J. Kim, T. Middlemas and C. Maher for their helpful suggestions on the manuscript. S. Yu and N. Park acknowledge financial support from the National Research Foundation of Korea (NRF) through the Global Frontier Program (2014M3A6B3063708). S. Yu was also supported by the Basic Science Research Program (2016R1A6A3A04009723). C.-W.Q. acknowledges financial support from the National Research Foundation, Prime Minister’s Office, Singapore under its Competitive Research Program (CRP award NRF-CRP15-2015-03). S. Torquato was supported by the Princeton University Innovation Fund for New Ideas in the Natural Sciences.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the final manuscript.

Corresponding authors

Correspondence to Salvatore Torquato or Namkyoo Park.

Ethics declarations

Competing interests

The authors have no conflicts of interest to declare.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, S., Qiu, CW., Chong, Y. et al. Engineered disorder in photonics. Nat Rev Mater 6, 226–243 (2021). https://doi.org/10.1038/s41578-020-00263-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-020-00263-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing