Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Engineering immune-evasive allogeneic cellular immunotherapies

Abstract

Allogeneic cellular immunotherapies hold a great promise for cancer treatment owing to their potential cost-effectiveness, scalability and on-demand availability. However, immune rejection of adoptively transferred allogeneic T and natural killer (NK) cells is a substantial obstacle to achieving clinical responses that are comparable to responses obtained with current autologous chimeric antigen receptor T cell therapies. In this Perspective, we discuss strategies to confer cell-intrinsic, immune-evasive properties to allogeneic T cells and NK cells in order to prevent or delay their immune rejection, thereby widening the therapeutic window. We discuss how common viral and cancer immune escape mechanisms can serve as a blueprint for improving the persistence of off-the-shelf allogeneic cell therapies. The prospects of harnessing genome editing and synthetic biology to design cell-based precision immunotherapies extend beyond programming target specificities and require careful consideration of innate and adaptive responses in the recipient that may curtail the biodistribution, in vivo expansion and persistence of cellular therapeutics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanisms of T cell- and NK cell-mediated allorejection.
Fig. 2: Challenges in the clinical translation of allogeneic ACT.
Fig. 3: Engineered immune evasion strategies in allogeneic ACTs.

Similar content being viewed by others

References

  1. June, C. H. & Sadelain, M. Chimeric antigen receptor therapy. N. Engl. J. Med. 379, 64–73 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sadelain, M., Riviere, I. & Riddell, S. Therapeutic T cell engineering. Nature 545, 423–431 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Porter, D. L., Levine, B. L., Kalos, M., Bagg, A. & June, C. H. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N. Engl. J. Med. 365, 725–733 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Munshi, N. C. et al. Idecabtagene vicleucel in relapsed and refractory multiple myeloma. N. Engl. J. Med. 384, 705–716 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Raje, N. et al. Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma. N. Engl. J. Med. 380, 1726–1737 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Friedman, K. M. et al. Effective targeting of multiple B-cell maturation antigen-expressing hematological malignances by anti-B-cell maturation antigen chimeric antigen receptor T cells. Hum. Gene Ther. 29, 585–601 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Peng, J. J., Wang, L., Li, Z., Ku, C. L. & Ho, P. C. Metabolic challenges and interventions in CAR T cell therapy. Sci. Immunol. 8, eabq3016 (2023).

    Article  CAS  PubMed  Google Scholar 

  8. Labanieh, L. & Mackall, C. L. CAR immune cells: design principles, resistance and the next generation. Nature 614, 635–648 (2023).

    Article  CAS  PubMed  Google Scholar 

  9. Hamieh, M., Mansilla-Soto, J., Riviere, I. & Sadelain, M. Programming CAR T cell tumor recognition: tuned antigen sensing and logic gating. Cancer Discov. 13, 829–843 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Caldwell, K. J., Gottschalk, S. & Talleur, A. C. Allogeneic CAR cell therapy — more than a pipe dream. Front. Immunol. 11, 618427 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Roddie, C., O’Reilly, M., Dias Alves Pinto, J., Vispute, K. & Lowdell, M. Manufacturing chimeric antigen receptor T cells: issues and challenges. Cytotherapy 21, 327–340 (2019).

    Article  CAS  PubMed  Google Scholar 

  12. Zhu, H. & Kaufman, D. S. Engineered human pluripotent stem cell-derived natural killer cells: the next frontier for cancer immunotherapy. Blood Sci. 1, 4–11 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Saetersmoen, M. L., Hammer, Q., Valamehr, B., Kaufman, D. S. & Malmberg, K. J. Off-the-shelf cell therapy with induced pluripotent stem cell-derived natural killer cells. Semin. Immunopathol. 41, 59–68 (2019).

    Article  PubMed  Google Scholar 

  14. Bailey, S. R. & Maus, M. V. Gene editing for immune cell therapies. Nat. Biotechnol. 37, 1425–1434 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Themeli, M., Riviere, I. & Sadelain, M. New cell sources for T cell engineering and adoptive immunotherapy. Cell Stem Cell 16, 357–366 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zachary, A. A. & Leffell, M. S. HLA mismatching strategies for solid organ transplantation — a balancing act. Front. Immunol. 7, 575 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Schwartz, R. H. Historical overview of immunological tolerance. Cold Spring Harb. Perspect. Biol. 4, a006908 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Orr, M. T. & Lanier, L. L. Natural killer cell education and tolerance. Cell 142, 847–856 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Billingham, R. E., Brent, L. & Medawar, P. B. Actively acquired tolerance of foreign cells. Nature 172, 603–606 (1953).

    Article  CAS  PubMed  Google Scholar 

  20. Marino, J., Paster, J. & Benichou, G. Allorecognition by T lymphocytes and allograft rejection. Front. Immunol. 7, 582 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Schmitz, R. et al. B cells in transplant tolerance and rejection: friends or foes? Transpl. Int. 33, 30–40 (2020).

    Article  PubMed  Google Scholar 

  22. Benjamin, R. et al. Genome-edited, donor-derived allogeneic anti-CD19 chimeric antigen receptor T cells in paediatric and adult B-cell acute lymphoblastic leukaemia: results of two phase 1 studies. Lancet 396, 1885–1894 (2020).

    Article  CAS  PubMed  Google Scholar 

  23. Frigault, M. et al. Dose fractionation of CAR-T cells. A systematic review of clinical outcomes. J. Exp. Clin. Cancer Res. 42, 11 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gauthier, J. et al. Factors associated with outcomes after a second CD19-targeted CAR T-cell infusion for refractory B-cell malignancies. Blood 137, 323–335 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Torikai, H. et al. Toward eliminating HLA class I expression to generate universal cells from allogeneic donors. Blood 122, 1341–1349 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Riolobos, L. et al. HLA engineering of human pluripotent stem cells. Mol. Ther. 21, 1232–1241 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cui, D. et al. Generating hESCs with reduced immunogenicity by disrupting TAP1 or TAPBP. Biosci. Biotechnol. Biochem. 80, 1484–1491 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Mattapally, S. et al. Human leukocyte antigen class I and II knockout human induced pluripotent stem cell-derived cells: universal donor for cell therapy. J. Am. Heart Assoc. 7, e010239 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang, D., Quan, Y., Yan, Q., Morales, J. E. & Wetsel, R. A. Targeted disruption of the β2-microglobulin gene minimizes the immunogenicity of human embryonic stem cells. Stem Cell Transl. Med. 4, 1234–1245 (2015).

    Article  CAS  Google Scholar 

  30. Zhao, W. et al. Strategies for genetically engineering hypoimmunogenic universal pluripotent stem cells. iScience 23, 101162 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jo, S. et al. Endowing universal CAR T-cell with immune-evasive properties using TALEN-gene editing. Nat. Commun. 13, 3453 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lee, J. et al. Abrogation of HLA surface expression using CRISPR/Cas9 genome editing: a step toward universal T cell therapy. Sci. Rep. 10, 17753 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liu, X. et al. CRISPR-Cas9-mediated multiplex gene editing in CAR-T cells. Cell Res. 27, 154–157 (2017).

    Article  PubMed  Google Scholar 

  34. Wang, B. et al. Generation of hypoimmunogenic T cells from genetically engineered allogeneic human induced pluripotent stem cells. Nat. Biomed. Eng. 5, 429–440 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Bryan, D. C. et al. CRISPR-Cas9 disruption of PD-1 enhances activity of universal EGFRvIII CAR T cells in a preclinical model of human glioblastoma. J. Immunother. Cancer 7, 304 (2019).

    Article  Google Scholar 

  36. Kagoya, Y. et al. Genetic ablation of HLA class I, class II, and the T-cell receptor enables allogeneic T cells to be used for adoptive T-cell therapy. Cancer Immunol. Res. 8, 926–936 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Ren, J. et al. Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition. Clin. Cancer Res. 23, 2255–2266 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. Erokhina, S. A. et al. HLA-DR-expressing NK cells: effective killers suspected for antigen presentation. J. Leukoc. Biol. 109, 327–337 (2021).

    Article  CAS  PubMed  Google Scholar 

  39. Evans, R. L. et al. Peripheral human T cells sensitized in mixed leukocyte culture synthesize and express Ia-like antigens. J. Exp. Med. 148, 1440–1445 (1978).

    Article  CAS  PubMed  Google Scholar 

  40. Phillips, J. H., Le, A. M. & Lanier, L. L. Natural killer cells activated in a human mixed lymphocyte response culture identified by expression of Leu-11 and class II histocompatibility antigens. J. Exp. Med. 159, 993–1008 (1984).

    Article  CAS  PubMed  Google Scholar 

  41. Scharer, C. D. et al. Genome-wide CIITA-binding profile identifies sequence preferences that dictate function versus recruitment. Nucleic Acids Res. 43, 3128–3142 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Abrahimi, P. et al. Efficient gene disruption in cultured primary human endothelial cells by CRISPR/Cas9. Circ. Res. 117, 121–128 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Crivello, P. et al. Multiple knockout of classical HLA class II β-chains by CRISPR/Cas9 genome editing driven by a single guide RNA. J. Immunol. 202, 1895–1903 (2019).

    Article  CAS  PubMed  Google Scholar 

  44. Deuse, T. et al. Hypoimmunogenic derivatives of induced pluripotent stem cells evade immune rejection in fully immunocompetent allogeneic recipients. Nat. Biotechnol. 37, 252–258 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ljunggren, H. G. & Karre, K. In search of the ‘missing self’: MHC molecules and NK cell recognition. Immunol. Today 11, 237–244 (1990).

    Article  CAS  PubMed  Google Scholar 

  46. Ljunggren, H. G. & Karre, K. Host resistance directed selectively against H-2-deficient lymphoma variants. Analysis of the mechanism. J. Exp. Med. 162, 1745–1759 (1985).

    Article  CAS  PubMed  Google Scholar 

  47. Beziat, V. et al. Tracing dynamic expansion of human NK-cell subsets by high-resolution analysis of KIR repertoires and cellular differentiation. Eur. J. Immunol. 44, 2192–2196 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Andersson, S., Malmberg, J. A. & Malmberg, K. J. Tolerant and diverse natural killer cell repertoires in the absence of selection. Exp. Cell Res. 316, 1309–1315 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Andersson, S., Fauriat, C., Malmberg, J. A., Ljunggren, H. G. & Malmberg, K. J. KIR acquisition probabilities are independent of self-HLA class I ligands and increase with cellular KIR expression. Blood 114, 95–104 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Horowitz, A. et al. Genetic and environmental determinants of human NK cell diversity revealed by mass cytometry. Sci. Transl. Med. 5, 208ra145 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Braud, V. M. et al. HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature 391, 795–799 (1998).

    Article  CAS  PubMed  Google Scholar 

  52. Shiroishi, M. et al. Human inhibitory receptors Ig-like transcript 2 (ILT2) and ILT4 compete with CD8 for MHC class I binding and bind preferentially to HLA-G. Proc. Natl Acad. Sci. USA 100, 8856–8861 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Han, X. et al. Generation of hypoimmunogenic human pluripotent stem cells. Proc. Natl Acad. Sci. USA 116, 10441–10446 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Xu, H. et al. Targeted disruption of HLA genes via CRISPR-Cas9 generates iPSCs with enhanced immune compatibility. Cell Stem Cell 24, 566–578 (2019).

    Article  CAS  PubMed  Google Scholar 

  55. Pende, D. et al. Killer Ig-like receptors (KIRs): their role in NK cell modulation and developments leading to their clinical exploitation. Front. Immunol. 10, 1179 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Snary, D., Barnstable, C. J., Bodmer, W. F. & Crumpton, M. J. Molecular structure of human histocompatibility antigens: the HLA-C series. Eur. J. Immunol. 7, 580–585 (1977).

    Article  CAS  PubMed  Google Scholar 

  57. McCutcheon, J. A., Gumperz, J., Smith, K. D., Lutz, C. T. & Parham, P. Low HLA-C expression at cell surfaces correlates with increased turnover of heavy chain mRNA. J. Exp. Med. 181, 2085–2095 (1995).

    Article  CAS  PubMed  Google Scholar 

  58. Gornalusse, G. G. et al. HLA-E-expressing pluripotent stem cells escape allogeneic responses and lysis by NK cells. Nat. Biotechnol. 35, 765–772 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Shi, L. et al. Generation of hypoimmunogenic human pluripotent stem cells via expression of membrane-bound and secreted β2m-HLA-G fusion proteins. Stem Cell 38, 1423–1437 (2020).

    Article  CAS  Google Scholar 

  60. Guo, Y. et al. Mutant B2M‐HLA‐E and B2M‐HLA‐G fusion proteins protects universal chimeric antigen receptor‐modified T cells from allogeneic NK cell‐mediated lysis. Eur. J. Immunol. 51, 2513–2521 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gumá, M. et al. Imprint of human cytomegalovirus infection on the NK cell receptor repertoire. Blood 104, 3664–3671 (2004).

    Article  PubMed  Google Scholar 

  62. Béziat, V. et al. CMV drives clonal expansion of NKG2C+ NK cells expressing self‐specific KIRs in chronic hepatitis patients. Eur. J. Immunol. 42, 447–457 (2012).

    Article  PubMed  Google Scholar 

  63. Hammer, Q. et al. Peptide-specific recognition of human cytomegalovirus strains controls adaptive natural killer cells. Nat. Immunol. 19, 453–463 (2018).

    Article  CAS  PubMed  Google Scholar 

  64. Xu, X., Zhou, Y. & Wei, H. Roles of HLA-G in the maternal-fetal immune microenvironment. Front. Immunol. 11, 592010 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Arnaiz-Villena, A. et al. HLA-G: function, polymorphisms and pathology. Int. J. Immunogenet. 48, 172–192 (2021).

    Article  CAS  PubMed  Google Scholar 

  66. Meshitsuka, S. et al. CRISPR/Cas9 and AAV mediated insertion of β2 microglobulin-HLA-G fusion gene protects mesenchymal stromal cells from allogeneic rejection and potentiates the use for off-the-shelf cell therapy. Regen. Ther. 21, 442–452 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chua, C. Y. X. et al. Emerging immunomodulatory strategies for cell therapeutics. Trends Biotechnol. 41, 358–373 (2023).

    Article  CAS  PubMed  Google Scholar 

  68. Rossi, M. et al. Efficient shRNA-based knockdown of multiple target genes for cell therapy using a chimeric miRNA cluster platform. Mol. Ther. Nucleic Acids 34, 102038 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Figueiredo, C., Seltsam, A. & Blasczyk, R. Class-, gene-, and group-specific HLA silencing by lentiviral shRNA delivery. J. Mol. Med. 84, 425–437 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Figueiredo, C. et al. MHC universal cells survive in an allogeneic environment after incompatible transplantation. Biomed. Res. Int. 2013, 796046 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Börger, A. K. et al. Generation of HLA-universal iPSC-derived megakaryocytes and platelets for survival under refractoriness conditions. Mol. Med. 22, 274–285 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Wang, X. et al. Engineering tolerance toward allogeneic CAR-T cells by regulation of MHC surface expression with human herpes virus-8 proteins. Mol. Ther. 29, 718–733 (2021).

    Article  CAS  PubMed  Google Scholar 

  73. Perica, K., Mansilla-Soto. J., Kotchetkov, I. & Sadelain, M. Allogeneic CAR T cells with regulated NEF expression display immune evasion and optimized signaling. In 26th Annual Meeting of the American Society of Gene & Cell Therapy Vol. 31 (suppl. 1), abstract 221 (2023).

  74. Hansen, T. H. & Bouvier, M. MHC class I antigen presentation: learning from viral evasion strategies. Nat. Rev. Immunol. 9, 503–513 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. Oldenborg, P. A. et al. Role of CD47 as a marker of self on red blood cells. Science 288, 2051–2054 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Logtenberg, M. E. W., Scheeren, F. A. & Schumacher, T. N. The CD47-SIRPα immune checkpoint. Immunity 52, 742–752 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Willingham, S. B. et al. The CD47-signal regulatory protein alpha (SIRPα) interaction is a therapeutic target for human solid tumors. Proc. Natl Acad. Sci. USA 109, 6662–6667 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. van Duijn, A., Van der Burg, S. H. & Scheeren, F. A. CD47/SIRPα axis: bridging innate and adaptive immunity. J. Immunother. Cancer 10, e004589 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Zeidan, A. M. et al. Phase 1 study of anti-CD47 monoclonal antibody CC-90002 in patients with relapsed/refractory acute myeloid leukemia and high-risk myelodysplastic syndromes. Ann. Hematol. 101, 557–569 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hu, X. et al. Hypoimmune induced pluripotent stem cells survive long term in fully immunocompetent, allogeneic rhesus macaques. Nat. Biotechnol. 42, 413–423 (2024).

    Article  CAS  PubMed  Google Scholar 

  81. Hu, X. et al. Hypoimmune anti-CD19 chimeric antigen receptor T cells provide lasting tumor control in fully immunocompetent allogeneic humanized mice. Nat. Commun. 14, 2020 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Deuse, T. et al. The SIRPα-CD47 immune checkpoint in NK cells. J. Exp. Med. 218, e20200839 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Yoshihara, E. et al. Immune-evasive human islet-like organoids ameliorate diabetes. Nature 586, 606–611 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Rong, Z. et al. An effective approach to prevent immune rejection of human ESC-derived allografts. Cell Stem Cell 14, 121–130 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Chimienti, R. et al. Engineering of immune checkpoints B7-H3 and CD155 enhances immune compatibility of MHC-I−/− iPSCs for β cell replacement. Cell Rep. 40, 111423 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Davis, D. M. Assembly of the immunological synapse for T cells and NK cells. Trends Immunol. 23, 356–363 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Orange, J. S. Formation and function of the lytic NK-cell immunological synapse. Nat. Rev. Immunol. 8, 713–725 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wang, E. C. Y. et al. Suppression of costimulation by human cytomegalovirus promotes evasion of cellular immune defenses. Proc. Natl Acad. Sci. USA 115, 4998–5003 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Coscoy, L. & Ganem, D. A viral protein that selectively downregulates ICAM-1 and B7-2 and modulates T cell costimulation. J. Clin. Invest. 107, 1599–1606 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Sugden, S. M., Pham, T. N. Q. & Cohen É, A. HIV-1 Vpu downmodulates ICAM-1 expression, resulting in decreased killing of infected CD4+ T cells by NK cells. J. Virol. 91, e02442–e2516 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Billaud, M., Calender, A., Seigneurin, J. M. & Lenoir, G. M. LFA-1, LFA-3, and ICAM-1 expression in Burkitt’s lymphoma. Lancet 2, 1327–1328 (1987).

    Article  CAS  PubMed  Google Scholar 

  92. Schneider, M. et al. Alterations of the CD58 gene in classical Hodgkin lymphoma. Genes Chromosomes Cancer 54, 638–645 (2015).

    Article  CAS  PubMed  Google Scholar 

  93. Abdul Razak, F. R., Diepstra, A., Visser, L. & van den Berg, A. CD58 mutations are common in Hodgkin lymphoma cell lines and loss of CD58 expression in tumor cells occurs in Hodgkin lymphoma patients who relapse. Genes Immun. 17, 363–366 (2016).

    Article  CAS  PubMed  Google Scholar 

  94. Younes, S. et al. Detection of aberrant CD58 expression in a wide spectrum of lymphoma subtypes: implications for treatment resistance. Mod. Pathol. 36, 100256 (2023).

    Article  PubMed  Google Scholar 

  95. Cao, Y. et al. Mutations or copy number losses of CD58 and TP53 genes in diffuse large B cell lymphoma are independent unfavorable prognostic factors. Oncotarget 7, 83294–83307 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Challa-Malladi, M. et al. Combined genetic inactivation of β2-microglobulin and CD58 reveals frequent escape from immune recognition in diffuse large B cell lymphoma. Cancer Cell 20, 728–740 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hammer, Q. et al. Combined genetic ablation of CD54 and CD58 in CAR engineered cytotoxic lymphocytes effectively averts allogeneic immune cell rejection. Blood 140, 1165–1166 (2022).

    Article  Google Scholar 

  98. Hammer, Q. et al. Genetic ablation of adhesion ligands averts rejection of allogeneic immune cells. Preprint at bioRxiv https://doi.org/10.1101/2023.10.09.557143 (2023).

  99. Gattinoni, L. et al. Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells. J. Exp. Med. 202, 907–912 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Hoffmann, J. M. et al. Differences in expansion potential of naive chimeric antigen receptor T cells from healthy donors and untreated chronic lymphocytic leukemia patients. Front. Immunol. 8, 1956 (2017).

    Article  PubMed  Google Scholar 

  101. Turtle, C. J. et al. Immunotherapy of non-Hodgkin’s lymphoma with a defined ratio of CD8+ and CD4+ CD19-specific chimeric antigen receptor-modified T cells. Sci. Transl. Med. 8, 355ra116 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Fabrizio, V. A. et al. Optimal fludarabine lymphodepletion is associated with improved outcomes after CAR T-cell therapy. Blood Adv. 6, 1961–1968 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Qasim, W. et al. Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells. Sci. Transl. Med. 9, eaaj2013 (2017).

    Article  PubMed  Google Scholar 

  104. Lekakis, L. J. et al. ALPHA2 study: ALLO-501A allogeneic CAR T in LBCL, updated results continue to show encouraging safety and efficacy with consolidation dosing. Blood 138, 649–649 (2021).

    Article  Google Scholar 

  105. Sugita, M. et al. Allogeneic TCRαβ deficient CAR T-cells targeting CD123 in acute myeloid leukemia. Nat. Commun. 13, 2227 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Cai, T. et al. Targeting CD123 in blastic plasmacytoid dendritic cell neoplasm using allogeneic anti-CD123 CAR T cells. Nat. Commun. 13, 2228 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Srour, S. et al. A phase 1 multicenter study (TRAVERSE) evaluating the safety and efficacy of ALLO-316 following conditioning regimen in pts with advanced or metastatic clear cell renal cell carcinoma (ccRCC). Cancer Res. 83, abs. CT011 (2023).

    Article  Google Scholar 

  108. Mailankody, S. et al. Allogeneic BCMA-targeting CAR T cells in relapsed/refractory multiple myeloma: phase 1 UNIVERSAL trial interim results. Nat. Med. 29, 422–429 (2023).

    Article  CAS  PubMed  Google Scholar 

  109. Tees, M. et al. Safety and PK/PD of ALLO-647, an anti-CD52 antibody, with fludarabine (Flu)/cyclophosphamide (Cy) for lymphodepletion in the setting of allogeneic CAR-T cell therapy. J. Clin. Oncol. 39, 2527–2527 (2021).

    Article  Google Scholar 

  110. Locke, F. L. et al. Durables responses with anti-CD19 allogeneic CAR T ALLO-501/501A in phase 1 trials of relapsed/refractory large B-cell lymphoma (R/R LBCL). Hematol. Oncol. 41, 85–86 (2023).

    Article  Google Scholar 

  111. Usmani, S. Z. et al. Clinical efficacy of daratumumab monotherapy in patients with heavily pretreated relapsed or refractory multiple myeloma. Blood 128, 37–44 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Casneuf, T. et al. Effects of daratumumab on natural killer cells and impact on clinical outcomes in relapsed or refractory multiple myeloma. Blood Adv. 1, 2105–2114 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Clara, J. A. et al. High-affinity CD16 integration into a CRISPR/Cas9-edited CD38 locus augments CD38-directed antitumor activity of primary human natural killer cells. J. Immunother. Cancer 10, e003804 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Naeimi Kararoudi, M. et al. CD38 deletion of human primary NK cells eliminates daratumumab-induced fratricide and boosts their effector activity. Blood 136, 2416–2427 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Mbofung, R. M. et al. iPSC-derived CD38-null NK cells in combination with CD38-targeted antibody: a dual therapeutic strategy to enable ADCC and eliminate host immune cells in multiple myeloma. Blood 140, 7388–7389 (2022).

    Article  Google Scholar 

  116. Kaeuferle, T. et al. CRISPR-Cas9-mediated glucocorticoid resistance in virus-specific T cells for adoptive T cell therapy posttransplantation. Mol. Ther. 28, 1965–1973 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Amini, L. et al. CRISPR-Cas9-edited tacrolimus-resistant antiviral T cells for advanced adoptive immunotherapy in transplant recipients. Mol. Ther. 29, 32–46 (2021).

    Article  CAS  PubMed  Google Scholar 

  118. Lever, M., Maini, P. K., van der Merwe, P. A. & Dushek, O. Phenotypic models of T cell activation. Nat. Rev. Immunol. 14, 619–629 (2014).

    Article  CAS  PubMed  Google Scholar 

  119. Watts, T. H. TNF/TNFR family members in costimulation of T cell responses. Annu. Rev. Immunol. 23, 23–68 (2004).

    Article  Google Scholar 

  120. Mo, F. et al. Engineered off-the-shelf therapeutic T cells resist host immune rejection. Nat. Biotechnol. 39, 56–63 (2021).

    Article  CAS  PubMed  Google Scholar 

  121. Quach, D. H., Becerra-Dominguez, L., Rouce, R. H. & Rooney, C. M. A strategy to protect off-the-shelf cell therapy products using virus-specific T-cells engineered to eliminate alloreactive T-cells. J. Transl. Med. 17, 240 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Margalit, A., Fishman, S., Berko, D., Engberg, J. & Gross, G. Chimeric β2 microglobulin/CD3ζ polypeptides expressed in T cells convert MHC class I peptide ligands into T cell activation receptors: a potential tool for specific targeting of pathogenic CD8+ T cells. Int. Immunol. 15, 1379–1387 (2003).

    Article  CAS  PubMed  Google Scholar 

  123. Gorovits, B. & Koren, E. Immunogenicity of chimeric antigen receptor T-cell therapeutics. BioDrugs 33, 275–284 (2019).

    Article  PubMed  Google Scholar 

  124. Till, B. G. et al. Adoptive immunotherapy for indolent non-Hodgkin lymphoma and mantle cell lymphoma using genetically modified autologous CD20-specific T cells. Blood 112, 2261–2271 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Gladstone, D. E. & Bettinotti, M. P. HLA donor-specific antibodies in allogeneic hematopoietic stem cell transplantation: challenges and opportunities. Hematol. Am. Soc. Hematol. Educ. Progr. 2017, 645–650 (2017).

    Article  Google Scholar 

  126. Terasaki, P. I. Humoral theory of transplantation. Am. J. Transplant. 3, 665–673 (2003).

    Article  PubMed  Google Scholar 

  127. Süsal, C. et al. Donor-specific antibodies require preactivated immune system to harm renal transplant. EBioMedicine 9, 366–371 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Loupy, A. & Lefaucheur, C. Antibody-mediated rejection of solid-organ allografts. N. Engl. J. Med. 379, 1150–1160 (2018).

    Article  CAS  PubMed  Google Scholar 

  129. Hege, K. M. et al. Safety, tumor trafficking and immunogenicity of chimeric antigen receptor (CAR)-T cells specific for TAG-72 in colorectal cancer. J. Immunother. Cancer 5, 22 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Kershaw, M. H. et al. A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin. Cancer Res. 12, 6106–6115 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Myers, R. M. et al. Humanized CD19-targeted chimeric antigen receptor (CAR) T cells in CAR-naive and CAR-exposed children and young adults with relapsed or refractory acute lymphoblastic leukemia. J. Clin. Oncol. 39, 3044–3055 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Brudno, J. N. et al. Safety and feasibility of anti-CD19 CAR T cells with fully human binding domains in patients with B-cell lymphoma. Nat. Med. 26, 270–280 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Wagner, D. L. et al. Immunogenicity of CAR T cells in cancer therapy. Nat. Rev. Clin. Oncol. 18, 379–393 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Lamers, C. H. et al. Immune responses to transgene and retroviral vector in patients treated with ex vivo-engineered T cells. Blood 117, 72–82 (2011).

    Article  CAS  PubMed  Google Scholar 

  135. Jensen, M. C. et al. Antitransgene rejection responses contribute to attenuated persistence of adoptively transferred CD20/CD19-specific chimeric antigen receptor redirected T cells in humans. Biol. Blood Marrow Transpl. 16, 1245–1256 (2010).

    Article  CAS  Google Scholar 

  136. Bruhns, P. et al. Specificity and affinity of human Fcgamma receptors and their polymorphic variants for human IgG subclasses. Blood 113, 3716–3725 (2009).

    Article  CAS  PubMed  Google Scholar 

  137. Gravina, A. et al. Protection of cell therapeutics from antibody-mediated killing by CD64 overexpression. Nat. Biotechnol. 41, 717–727 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Holtrop, T., Budding, K., Brandsma, A. M. & Leusen, J. H. W. Targeting the high affinity receptor, FcγRI, in autoimmune disease, neuropathy, and cancer. Immunother. Adv. 2, ltac011 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Peraro, L. et al. Incorporation of bacterial immunoevasins to protect cell therapies from host antibody-mediated immune rejection. Mol. Ther. 29, 3398–3409 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. von Pawel-Rammingen, U., Johansson, B. P. & Björck, L. IdeS, a novel streptococcal cysteine proteinase with unique specificity for immunoglobulin G. EMBO J. 21, 1607–1615 (2002).

    Article  Google Scholar 

  141. Jordan, S. C., Lorant, T. & Choi, J. IgG endopeptidase in highly sensitized patients undergoing transplantation. N. Engl. J. Med. 377, 1693–1694 (2017).

    Article  PubMed  Google Scholar 

  142. Winstedt, L. et al. Complete removal of extracellular IgG antibodies in a randomized dose-escalation phase I study with the bacterial enzyme IdeS — a novel therapeutic opportunity. PLoS ONE 10, e0132011 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Byrne, G. W. et al. Transgenic pigs expressing human CD59 and decay-accelerating factor produce an intrinsic barrier to complement-mediated damage. Transplantation 63, 149–155 (1997).

    Article  CAS  PubMed  Google Scholar 

  144. Fischer, K. et al. Efficient production of multi-modified pigs for xenotransplantation by ‘combineering’, gene stacking and gene editing. Sci. Rep. 6, 29081 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Anand, R. P. et al. Design and testing of a humanized porcine donor for xenotransplantation. Nature 622, 393–401 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Gaykema, L. H. et al. Inhibition of complement activation by CD55 overexpression in human induced pluripotent stem cell derived kidney organoids. Front. Immunol. 13, 1058763 (2022).

    Article  CAS  PubMed  Google Scholar 

  147. Brudno, J. N. & Kochenderfer, J. N. Chimeric antigen receptor T-cell therapies for lymphoma. Nat. Rev. Clin. Oncol. 15, 31–46 (2018).

    Article  CAS  PubMed  Google Scholar 

  148. Stewart, A. G. & Henden, A. S. Infectious complications of CAR T-cell therapy: a clinical update. Ther. Adv. Infect. Dis. 8, 20499361211036773 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Beersma, M. F., Bijlmakers, M. J. & Ploegh, H. L. Human cytomegalovirus down-regulates HLA class I expression by reducing the stability of class I H chains. J. Immunol. 151, 4455–4464 (1993).

    Article  CAS  PubMed  Google Scholar 

  150. Cornel, A. M., Mimpen, I. L., Nierkens, S. & MHC Class, I. MHC class I downregulation in cancer: underlying mechanisms and potential targets for cancer immunotherapy. Cancers 12, 1760 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Schönrich, G. & Raftery, M. J. The PD-1/PD-L1 axis and virus infections: a delicate balance. Front. Cell. Infect. Microbiol. 9, 207 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Salomé, B. et al. NKG2A and HLA-E define an alternative immune checkpoint axis in bladder cancer. Cancer Cell 40, 1027–1043.e9 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Tomasec, P. et al. Surface expression of HLA-E, an inhibitor of natural killer cells, enhanced by human cytomegalovirus gpUL40. Science 287, 1031 (2000).

    Article  CAS  PubMed  Google Scholar 

  154. LaFleur, M. W. & Sharpe, A. H. CRISPR screens to identify regulators of tumor immunity. Annu. Rev. Cancer Biol. 6, 103–122 (2022).

    Article  PubMed  Google Scholar 

  155. Rooney, M. S., Shukla, S. A., Wu, C. J., Getz, G. & Hacohen, N. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 160, 48–61 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Zaretsky, J. M. et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N. Engl. J. Med. 375, 819–829 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Patel, S. J. et al. Identification of essential genes for cancer immunotherapy. Nature 548, 537–542 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Pan, D. et al. A major chromatin regulator determines resistance of tumor cells to T cell-mediated killing. Science 359, 770–775 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Kearney, C. J. et al. Tumor immune evasion arises through loss of TNF sensitivity. Sci. Immunol. 3, eaar3451 (2018).

    Article  PubMed  Google Scholar 

  160. Pech, M. F. et al. Systematic identification of cancer cell vulnerabilities to natural killer cell-mediated immune surveillance. eLife 8, e47362 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Burr, M. L. et al. An evolutionarily conserved function of polycomb silences the MHC class I antigen presentation pathway and enables immune evasion in cancer. Cancer Cell 36, 385–401.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Dubrot, J. et al. In vivo screens using a selective CRISPR antigen removal lentiviral vector system reveal immune dependencies in renal cell carcinoma. Immunity 54, 571–585.e6 (2021).

    Article  CAS  PubMed  Google Scholar 

  163. Frangieh, C. J. et al. Multimodal pooled Perturb-CITE-seq screens in patient models define mechanisms of cancer immune evasion. Nat. Genet. 53, 332–341 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Larson, R. C. et al. CAR T cell killing requires the IFNγR pathway in solid but not liquid tumours. Nature 604, 563–570 (2022).

    Article  CAS  PubMed  Google Scholar 

  165. Zhuang, X., Veltri, D. P. & Long, E. O. Genome-wide CRISPR screen reveals cancer cell resistance to NK cells induced by NK-derived IFN-γ. Front. Immunol. 10, 2879 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Dubrot, J. et al. In vivo CRISPR screens reveal the landscape of immune evasion pathways across cancer. Nat. Immunol. 23, 1495–1506 (2022).

    Article  CAS  PubMed  Google Scholar 

  167. Chiba, M. et al. Genome-wide CRISPR screens identify CD48 defining susceptibility to NK cytotoxicity in peripheral T-cell lymphomas. Blood 140, 1951–1963 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Wisnovsky, S. et al. Genome-wide CRISPR screens reveal a specific ligand for the glycan-binding immune checkpoint receptor Siglec-7. Proc. Natl Acad. Sci. USA 118, e2015024118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Dufva, O. et al. Single-cell functional genomics reveals determinants of sensitivity and resistance to natural killer cells in blood cancers. Immunity 56, 2816–2835.e13 (2023).

    Article  CAS  PubMed  Google Scholar 

  170. Goodman, D. B. et al. Pooled screening of CAR T cells identifies diverse immune signaling domains for next-generation immunotherapies. Sci. Transl. Med. 14, eabm1463 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Gordon, K. S. et al. Screening for CD19-specific chimaeric antigen receptors with enhanced signalling via a barcoded library of intracellular domains. Nat. Biomed. Eng. 6, 855–866 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Castellanos-Rueda, R. et al. speedingCARs: accelerating the engineering of CAR T cells by signaling domain shuffling and single-cell sequencing. Nat. Commun. 13, 6555 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Awasthi, R. et al. Tisagenlecleucel cellular kinetics, dose, and immunogenicity in relation to clinical factors in relapsed/refractory DLBCL. Blood Adv. 4, 560–572 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Melenhorst, J. J. et al. Decade-long leukaemia remissions with persistence of CD4+ CAR T cells. Nature 602, 503–509 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Bachy, E. et al. A real-world comparison of tisagenlecleucel and axicabtagene ciloleucel CAR T cells in relapsed or refractory diffuse large B cell lymphoma. Nat. Med. 28, 2145–2154 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Zimring, J. C. et al. Current problems and future directions of transfusion-induced alloimmunization: summary of an NHLBI working group. Transfusion 51, 435–441 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Saris, A. & Pavenski, K. Human leukocyte antigen alloimmunization and alloimmune platelet refractoriness. Transfus. Med. Rev. 34, 250–257 (2020).

    Article  PubMed  Google Scholar 

  178. Ciurea, S. O. et al. Complement-binding donor-specific anti-HLA antibodies and risk of primary graft failure in hematopoietic stem cell transplantation. Biol. Blood Marrow Transpl. 21, 1392–1398 (2015).

    Article  CAS  Google Scholar 

  179. Vargas, J. E. et al. Retroviral vectors and transposons for stable gene therapy: advances, current challenges and perspectives. J. Transl. Med. 14, 288 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Levine, B. L. et al. Unanswered questions following reports of secondary malignancies after CAR-T cell therapy. Nat. Med. 30, 338–341 (2024).

    Article  CAS  PubMed  Google Scholar 

  181. Odak, A. et al. Novel extragenic genomic safe harbors for precise therapeutic T-cell engineering. Blood 141, 2698–2712 (2023).

    CAS  PubMed  Google Scholar 

  182. Rossignoli, F., Hoffman, D., Atif, E. & Shah, K. Developing and characterizing a two-layered safety switch for cell therapies. Cancer Biol. Ther. 24, 2232146 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Chen, D. S. & Mellman, I. Oncology meets immunology: the cancer-immunity cycle. Immunity 39, 1–10 (2013).

    Article  PubMed  Google Scholar 

  184. Berry, R., Watson, G. M., Jonjic, S., Degli-Esposti, M. A. & Rossjohn, J. Modulation of innate and adaptive immunity by cytomegaloviruses. Nat. Rev. Immunol. 20, 113–127 (2020).

    Article  CAS  PubMed  Google Scholar 

  185. Momayyezi, P., Bilev, E., Ljunggren, H. G. & Hammer, Q. Viral escape from NK-cell-mediated immunosurveillance: a lesson for cancer immunotherapy? Eur. J. Immunol. 53, e2350465 (2023).

    Article  PubMed  Google Scholar 

  186. Sotillo, E. et al. Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy. Cancer Discov. 5, 1282–1295 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Gardner, R. et al. Acquisition of a CD19-negative myeloid phenotype allows immune escape of MLL-rearranged B-ALL from CD19 CAR-T-cell therapy. Blood 127, 2406–2410 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Hamieh, M. et al. CAR T cell trogocytosis and cooperative killing regulate tumour antigen escape. Nature 568, 112–116 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Jones, T. R. et al. Multiple independent loci within the human cytomegalovirus unique short region down-regulate expression of major histocompatibility complex class I heavy chains. J. Virol. 69, 4830–4841 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Hengel, H. et al. A viral ER-resident glycoprotein inactivates the MHC-encoded peptide transporter. Immunity 6, 623–632 (1997).

    Article  CAS  PubMed  Google Scholar 

  191. Ahn, K. et al. Human cytomegalovirus inhibits antigen presentation by a sequential multistep process. Proc. Natl Acad. Sci. USA 93, 10990–10995 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Wiertz, E. J. et al. The human cytomegalovirus US11 gene product dislocates MHC class I heavy chains from the endoplasmic reticulum to the cytosol. Cell 84, 769–779 (1996).

    Article  CAS  PubMed  Google Scholar 

  193. Jones, T. R. & Sun, L. Human cytomegalovirus US2 destabilizes major histocompatibility complex class I heavy chains. J. Virol. 71, 2970–2979 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Früh, K. et al. A viral inhibitor of peptide transporters for antigen presentation. Nature 375, 415–418 (1995).

    Article  PubMed  Google Scholar 

  195. Hill, A. et al. Herpes simplex virus turns off the TAP to evade host immunity. Nature 375, 411–415 (1995).

    Article  CAS  PubMed  Google Scholar 

  196. Schwartz, O., Maréchal, V., Le Gall, S., Lemonnier, F. & Heard, J. M. Endocytosis of major histocompatibility complex class I molecules is induced by the HIV-1 Nef protein. Nat. Med. 2, 338–342 (1996).

    Article  CAS  PubMed  Google Scholar 

  197. Greenberg, M. E., Iafrate, A. J. & Skowronski, J. The SH3 domain-binding surface and an acidic motif in HIV-1 Nef regulate trafficking of class I MHC complexes. EMBO J. 17, 2777–2789 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Burgert, H. G. & Kvist, S. An adenovirus type 2 glycoprotein blocks cell surface expression of human histocompatibility class I antigens. Cell 41, 987–997 (1985).

    Article  CAS  PubMed  Google Scholar 

  199. Leach, D. R., Krummel, M. F. & Allison, J. P. Enhancement of antitumor immunity by CTLA-4 blockade. Science 271, 1734–1736 (1996).

    Article  CAS  PubMed  Google Scholar 

  200. Dong, H. et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat. Med. 8, 793–800 (2002).

    Article  CAS  PubMed  Google Scholar 

  201. Keir, M. E., Butte, M. J., Freeman, G. J. & Sharpe, A. H. PD-1 and its ligands in tolerance and immunity. Annu. Rev. Immunol. 26, 677–704 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Lee, N. et al. HLA-E is a major ligand for the natural killer inhibitory receptor CD94/NKG2A. Proc. Natl Acad. Sci. USA 95, 5199–5204 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. André, P. et al. Anti-NKG2A mAb is a checkpoint inhibitor that promotes anti-tumor immunity by unleashing both T and NK cells. Cell 175, 1731–1743.e13 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Sharma, P. et al. Immune checkpoint therapy-current perspectives and future directions. Cell 186, 1652–1669 (2023).

    Article  CAS  PubMed  Google Scholar 

  205. van Hall, T. et al. Monalizumab: inhibiting the novel immune checkpoint NKG2A. J. Immunother. Cancer 7, 263 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Feng, M. et al. Phagocytosis checkpoints as new targets for cancer immunotherapy. Nat. Rev. Cancer 19, 568–586 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Moretta, L. & Moretta, A. Unravelling natural killer cell function: triggering and inhibitory human NK receptors. EMBO J. 23, 255–259 (2004).

    Article  CAS  PubMed  Google Scholar 

  208. Yokoyama, W. M. & Plougastel, B. F. M. Immune functions encoded by the natural killer gene complex. Nat. Rev. Immunol. 3, 304–316 (2003).

    Article  CAS  PubMed  Google Scholar 

  209. Parham, P. MHC class I molecules and KIRs in human history, health and survival. Nat. Rev. Immunol. 5, 201–214 (2005).

    Article  CAS  PubMed  Google Scholar 

  210. Khan, M., Arooj, S. & Wang, H. NK cell-based immune checkpoint inhibition. Front. Immunol. 11, 167 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Bryceson, Y. T., March, M. E., Ljunggren, H.-G. & Long, E. O. Synergy among receptors on resting NK cells for the activation of natural cytotoxicity and cytokine secretion. Blood 107, 159–166 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Subedi, N., Verhagen, L. P., Bosman, E. M., van Roessel, I. & Tel, J. Understanding natural killer cell biology from a single cell perspective. Cell. Immunol. 373, 104497 (2022).

    Article  CAS  PubMed  Google Scholar 

  213. Abel, A. M., Yang, C., Thakar, M. S. & Malarkannan, S. Natural killer cells: development, maturation, and clinical utilization. Front. Immunol. 9, 1869 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Holling, T. M., van der Stoep, N., Quinten, E. & van den Elsen, P. J. Activated human T cells accomplish MHC class II expression through T cell-specific occupation of class II transactivator promoter III. J. Immunol. 168, 763–770 (2002).

    Article  CAS  PubMed  Google Scholar 

  215. Nyberg, W. A. et al. An evolved AAV variant enables efficient genetic engineering of murine T cells. Cell 186, 446–460.e19 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Walsh, N. C. et al. Humanized mouse models of clinical disease. Annu. Rev. Pathol. 12, 187–215 (2017).

    Article  CAS  PubMed  Google Scholar 

  217. Guil-Luna, S., Sedlik, C. & Piaggio, E. Humanized mouse models to evaluate cancer immunotherapeutics. Annu. Rev. Cancer Biol. 5, 119–136 (2021).

    Article  Google Scholar 

  218. Aryee, K. E. et al. Enhanced development of functional human NK cells in NOD-scid-IL2rgnull mice expressing human IL15. FASEB J. 36, e22476 (2022).

    Article  CAS  PubMed  Google Scholar 

  219. Coughlan, A. M. et al. Myeloid engraftment in humanized mice: impact of granulocyte-colony stimulating factor treatment and transgenic mouse strain. Stem Cell Dev. 25, 530–541 (2016).

    Article  CAS  Google Scholar 

  220. Brehm, M. A. et al. Lack of acute xenogeneic graft-versus-host disease, but retention of T-cell function following engraftment of human peripheral blood mononuclear cells in NSG mice deficient in MHC class I and II expression. FASEB J. 33, 3137–3151 (2019).

    Article  CAS  PubMed  Google Scholar 

  221. Traggiai, E. et al. Development of a human adaptive immune system in cord blood cell-transplanted mice. Science 304, 104–107 (2004).

    Article  CAS  PubMed  Google Scholar 

  222. Kooreman, N. G. et al. Alloimmune responses of humanized mice to human pluripotent stem cell therapeutics. Cell Rep. 20, 1978–1990 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Jin, C. H. et al. Modeling anti-CD19 CAR T cell therapy in humanized mice with human immunity and autologous leukemia. EBioMedicine 39, 173–181 (2019).

    Article  PubMed  Google Scholar 

  224. Yu, H. et al. A novel humanized mouse model with significant improvement of class-switched, antigen-specific antibody production. Blood 129, 959–969 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement number 8382909 (to Q.H.). This work was supported by the Swedish Research Council, the Swedish Children’s Cancer Society (PR2020-1059), the Swedish Cancer Society (21-1793Pj), Sweden’s Innovation Agency and the Karolinska Institutet. The work was further supported by the Research Council of Norway (275469, 237579), Center of Excellence: Precision Immunotherapy Alliance (332727), the Norwegian Cancer Society (190386, 223310), the South-Eastern Norway Regional Health Authority (2024-053), EU H2020-MSCA Research and Innovation programme (801133), Knut and Alice Wallenberg Foundation, Swedish Foundation for Strategic Research, the US National Cancer Institute (P01 CA111412, P009500901, all to K.-J.M.) and NCI Cancer Center Support Grant number P30 CA008748 (to M.S.). The authors thank P. Ljungman for the helpful discussions. The language model GPT-4 was used to check the text for correct grammar.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Karl-Johan Malmberg.

Ethics declarations

Competing interests

K.-J.M. is a consultant at Fate Therapeutics. K.-J.M. has research support from Oncopeptides. K.-J.M. and Q.H. are consultants at Vycellix. All relationships have been approved by Oslo University Hospital, University of Oslo and Karolinska Institute. M.S. receives research support (for unrelated studies) from Fate Therapeutics and Takeda.

Peer review

Peer review information

Nature Reviews Immunology thanks Stephen Gotschalk; Rainer Blasczyk, who co-reviewed with Anna Christina Dragon; and Marcela Maus for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martin, K.E., Hammer, Q., Perica, K. et al. Engineering immune-evasive allogeneic cellular immunotherapies. Nat Rev Immunol (2024). https://doi.org/10.1038/s41577-024-01022-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41577-024-01022-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing