Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

New insights into the ontogeny, diversity, maturation and survival of long-lived plasma cells

Abstract

Plasma cells are unique immune effectors, capable of producing large amounts of high-affinity antibodies that protect against pathogenic infections. Although most plasma cells have short lifespans, certain conditions or vaccinations can give rise to long-lived plasma cells (LLPCs) that provide individuals with lifelong protection against pathogen exposure. The nature of these LLPCs is poorly understood; however, recent studies have shed new light on the ontogeny, diversity, maturation and survival of these unique cells. Whereas LLPCs had been thought to arise preferentially from germinal centres, novel genetic tools have revealed that they can originate from various stages throughout the humoral response. Furthermore, new single-cell analyses have shown that mouse and human plasma cells are heterogeneous and may undergo further maturation in situ in the bone marrow niche. Finally, plasma cells were previously considered to be sessile cells maintained in fixed survival niches, but new data show that plasma cell subsets can differentially migrate and organize into clusters that may be associated with survival niches. These descriptive findings provide new insights into how cell-intrinsic programmes and extrinsic factors may regulate the longevity of plasma cells in various contexts, which suggest new research avenues for their functional validation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Plasma cell timestamping approaches.
Fig. 2: Heterogeneity of LLPC ontogeny during an immune response.

Similar content being viewed by others

References

  1. Jing, Z. et al. Fine-tuning spatial–temporal dynamics and surface receptor expression support plasma cell-intrinsic longevity. eLife 12, RP89712 (2023).

    Google Scholar 

  2. Koike, T. et al. Progressive differentiation toward the long-lived plasma cell compartment in the bone marrow. J. Exp. Med. 220, e20221717 (2023).

    Article  CAS  PubMed  Google Scholar 

  3. Liu, X., Yao, J., Zhao, Y., Wang, J. & Qi, H. Heterogeneous plasma cells and long-lived subsets in response to immunization, autoantigen and microbiota. Nat. Immunol. 23, 1564–1576 (2022).

    Article  CAS  PubMed  Google Scholar 

  4. Robinson, M. J. et al. Intrinsically determined turnover underlies broad heterogeneity in plasma-cell lifespan. Immunity 56, 1596–1612.e4 (2023).

    Article  CAS  PubMed  Google Scholar 

  5. Amanna, I. J., Carlson, N. E. & Slifka, M. K. Duration of humoral immunity to common viral and vaccine antigens. N. Engl. J. Med. 357, 1903–1915 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Robinson, M. J., Webster, R. H. & Tarlinton, D. M. How intrinsic and extrinsic regulators of plasma cell survival might intersect for durable humoral immunity. Immunol. Rev. 296, 87–103 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Slifka, M. K., Antia, R., Whitmire, J. K. & Ahmed, R. Humoral immunity due to long-lived plasma cells. Immunity 8, 363–372 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Manz, R. A., Thiel, A. & Radbruch, A. Lifetime of plasma cells in the bone marrow. Nature 388, 133–134 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Bortnick, A. et al. Long-lived bone marrow plasma cells are induced early in response to T cell-independent or T cell-dependent antigens. J. Immunol. 188, 5389–5396 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Robinson, M. J. et al. Long-lived plasma cells accumulate in the bone marrow at a constant rate from early in an immune response. Sci. Immunol. 7, eabm8389 (2022).

    Article  PubMed  Google Scholar 

  11. Xu, A. Q., Barbosa, R. R. & Calado, D. P. Genetic timestamping of plasma cells in vivo reveals tissue-specific homeostatic population turnover. eLife 9, e59850 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Phan, T. G., Grigorova, I., Okada, T. & Cyster, J. G. Subcapsular encounter and complement-dependent transport of immune complexes by lymph node B cells. Nat. Immunol. 8, 992–1000 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Carrasco, Y. R. & Batista, F. D. B cells acquire particulate antigen in a macrophage-rich area at the boundary between the follicle and the subcapsular sinus of the lymph node. Immunity 27, 160–171 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Okada, T. & Cyster, J. G. B cell migration and interactions in the early phase of antibody responses. Curr. Opin. Immunol. 18, 278–285 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Akkaya, M. et al. Second signals rescue B cells from activation-induced mitochondrial dysfunction and death. Nat. Immunol. 19, 871–884 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Halliley, J. L. et al. Long-lived plasma cells are contained within the CD19CD38hiCD138+ subset in human bone marrow. Immunity 43, 132–145 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Elsner, R. A. & Shlomchik, M. J. Germinal center and extrafollicular B cell responses in vaccination, immunity, and autoimmunity. Immunity 53, 1136–1150 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Smith, K. G., Light, A., Nossal, G. J. & Tarlinton, D. M. The extent of affinity maturation differs between the memory and antibody-forming cell compartments in the primary immune response. EMBO J. 16, 2996–3006 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Phan, T. G. et al. High affinity germinal center B cells are actively selected into the plasma cell compartment. J. Exp. Med. 203, 2419–2424 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Weisel, F. J., Zuccarino-Catania, G. V., Chikina, M. & Shlomchik, M. J. A temporal switch in the germinal center determines differential output of memory B and plasma cells. Immunity 44, 116–130 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fidler, J. M. In vivo immune response to TNP hapten coupled to thymus-independent carrier lipopolysaccharide. Cell. Immunol. 16, 223–236 (1975).

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  22. Taillardet, M. et al. The thymus-independent immunity conferred by a pneumococcal polysaccharide is mediated by long-lived plasma cells. Blood 114, 4432–4440 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Jing, Z., McCarron, M. J., Dustin, M. L. & Fooksman, D. R. Germinal center expansion but not plasmablast differentiation is proportional to peptide-MHCII density via CD40-CD40L signaling strength. Cell Rep. 39, 110763 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee, J. H. et al. Long-primed germinal centres with enduring affinity maturation and clonal migration. Nature 609, 998–1004 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kim, W. et al. Germinal centre-driven maturation of B cell response to mRNA vaccination. Nature 604, 141–145 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hagglof, T. et al. Continuous germinal center invasion contributes to the diversity of the immune response. Cell 186, 147–161.e15 (2023).

    Article  CAS  PubMed  Google Scholar 

  27. de Carvalho, R. V. H. et al. Clonal replacement sustains long-lived germinal centers primed by respiratory viruses. Cell 186, 131–146.e13 (2023).

    Article  PubMed  Google Scholar 

  28. Schaefer-Babajew, D. et al. Antibody feedback regulates immune memory after SARS-CoV-2 mRNA vaccination. Nature 613, 735–742 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Gaudette, B. T. et al. Resting innate-like B cells leverage sustained Notch2/mTORC1 signaling to achieve rapid and mitosis-independent plasma cell differentiation. J. Clin. Invest. 131, e151975 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Smith, F. L. et al. B-1 plasma cells require non-cognate CD4 T cell help to generate a unique repertoire of natural IgM. J. Exp. Med. 220, e20220195 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Baumgarth, N. B-1 cell heterogeneity and the regulation of natural and antigen-induced IgM production. Front. Immunol. 7, 324 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Foote, J. B., Mahmoud, T. I., Vale, A. M. & Kearney, J. F. Long-term maintenance of polysaccharide-specific antibodies by IgM-secreting cells. J. Immunol. 188, 57–67 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Reynolds, A. E., Kuraoka, M. & Kelsoe, G. Natural IgM is produced by CD5 plasma cells that occupy a distinct survival niche in bone marrow. J. Immunol. 194, 231–242 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Vergani, S. et al. A self-sustaining layer of early-life-origin B cells drives steady-state IgA responses in the adult gut. Immunity 55, 1829–1842.e6 (2022).

    Article  CAS  PubMed  Google Scholar 

  35. Bernasconi, N. L., Traggiai, E. & Lanzavecchia, A. Maintenance of serological memory by polyclonal activation of human memory B cells. Science 298, 2199–2202 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Ahuja, A., Anderson, S. M., Khalil, A. & Shlomchik, M. J. Maintenance of the plasma cell pool is independent of memory B cells. Proc. Natl Acad. Sci. USA 105, 4802–4807 (2008).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. DiLillo, D. J. et al. Maintenance of long-lived plasma cells and serological memory despite mature and memory B cell depletion during CD20 immunotherapy in mice. J. Immunol. 180, 361–371 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Hammarlund, E. et al. Plasma cell survival in the absence of B cell memory. Nat. Commun. 8, 1781 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  39. Langley, W. A. et al. Persistence of virus-specific antibody after depletion of memory B cells. J. Virol. 96, e0002622 (2022).

    Article  PubMed  Google Scholar 

  40. Pescovitz, M. D. et al. Effect of rituximab on human in vivo antibody immune responses. J. Allergy Clin. Immunol. 128, 1295–1302.e5 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jergovic, M. et al. Infection-induced type I interferons critically modulate the homeostasis and function of CD8+ naive T cells. Nat. Commun. 12, 5303 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zuccarino-Catania, G. V. et al. CD80 and PD-L2 define functionally distinct memory B cell subsets that are independent of antibody isotype. Nat. Immunol. 15, 631–637 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pape, K. A., Taylor, J. J., Maul, R. W., Gearhart, P. J. & Jenkins, M. K. Different B cell populations mediate early and late memory during an endogenous immune response. Science 331, 1203–1207 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Weisel, N. M. et al. Surface phenotypes of naive and memory B cells in mouse and human tissues. Nat. Immunol. 23, 135–145 (2022).

    Article  CAS  PubMed  Google Scholar 

  45. Johnson, J. L. et al. The transcription factor T-bet resolves memory B cell subsets with distinct tissue distributions and antibody specificities in mice and humans. Immunity 52, 842–855.e6 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Stone, S. L. et al. T-bet transcription factor promotes antibody-secreting cell differentiation by limiting the inflammatory effects of IFN-γ on B cells. Immunity 50, 1172–1187.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nellore, A. et al. A transcriptionally distinct subset of influenza-specific effector memory B cells predicts long-lived antibody responses to vaccination in humans. Immunity 56, 847–863.e8 (2023).

    Article  CAS  PubMed  Google Scholar 

  48. Myles, A., Sanz, I. & Cancro, M. P. T-bet+ B cells: a common denominator in protective and autoreactive antibody responses? Curr. Opin. Immunol. 57, 40–45 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. O’Connor, B. P., Cascalho, M. & Noelle, R. J. Short-lived and long-lived bone marrow plasma cells are derived from a novel precursor population. J. Exp. Med. 195, 737–745 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Chernova, I. et al. Lasting antibody responses are mediated by a combination of newly formed and established bone marrow plasma cells drawn from clonally distinct precursors. J. Immunol. 193, 4971–4979 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Nutt, S. L., Taubenheim, N., Hasbold, J., Corcoran, L. M. & Hodgkin, P. D. The genetic network controlling plasma cell differentiation. Semin. Immunol. 23, 341–349 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Lam, W. Y. et al. Metabolic and transcriptional modules independently diversify plasma cell lifespan and function. Cell Rep. 24, 2479–2492.e6 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Underhill, G. H., George, D., Bremer, E. G. & Kansas, G. S. Gene expression profiling reveals a highly specialized genetic program of plasma cells. Blood 101, 4013–4021 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Tarte, K., Zhan, F., De Vos, J., Klein, B. & Shaughnessy, J. Jr. Gene expression profiling of plasma cells and plasmablasts: toward a better understanding of the late stages of B-cell differentiation. Blood 102, 592–600 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Joyner, C. J. et al. Generation of human long-lived plasma cells by developmentally regulated epigenetic imprinting. Life Sci. Alliance 5, e202101285 (2022).

    Article  CAS  PubMed  Google Scholar 

  56. Duan, M. et al. Understanding heterogeneity of human bone marrow plasma cell maturation and survival pathways by single-cell analyses. Cell Rep. 42, 112682 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Higgins, B. W. et al. Isotype-specific plasma cells express divergent transcriptional programs. Proc. Natl Acad. Sci. USA 119, e2121260119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Brynjolfsson, S. F., Mohaddes, M., Karrholm, J. & Wick, M. J. Long-lived plasma cells in human bone marrow can be either CD19+ or CD19. Blood Adv. 1, 835–838 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Akhmetzyanova, I. et al. Dynamic CD138 surface expression regulates switch between myeloma growth and dissemination. Leukemia 34, 245–256 (2020).

    Article  CAS  PubMed  Google Scholar 

  60. Hamaidi, I. et al. Sirt2 inhibition enhances metabolic fitness and effector functions of tumor-reactive T cells. Cell Metab. 32, 420–436.e12 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chevrier, S. et al. CD93 is required for maintenance of antibody secretion and persistence of plasma cells in the bone marrow niche. Proc. Natl Acad. Sci. USA 106, 3895–3900 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  62. Nie, Y. et al. The role of CXCR4 in maintaining peripheral B cell compartments and humoral immunity. J. Exp. Med. 200, 1145–1156 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Slocombe, T. et al. Plasma cell homeostasis: the effects of chronic antigen stimulation and inflammation. J. Immunol. 191, 3128–3138 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Benson, M. J. et al. Cutting edge: the dependence of plasma cells and independence of memory B cells on BAFF and APRIL. J. Immunol. 180, 3655–3659 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Cassese, G. et al. Plasma cell survival is mediated by synergistic effects of cytokines and adhesion-dependent signals. J. Immunol. 171, 1684–1690 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Tangye, S. G. Staying alive: regulation of plasma cell survival. Trends Immunol. 32, 595–602 (2011).

    Article  CAS  PubMed  Google Scholar 

  67. Belnoue, E. et al. Homing and adhesion patterns determine the cellular composition of the bone marrow plasma cell niche. J. Immunol. 188, 1283–1291 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. Wilmore, J. R. & Allman, D. Here, there, and anywhere? Arguments for and against the physical plasma cell survival niche. J. Immunol. 199, 839–845 (2017).

    Article  CAS  PubMed  Google Scholar 

  69. Benet, Z., Jing, Z. & Fooksman, D. R. Plasma cell dynamics in the bone marrow niche. Cell Rep. 34, 108733 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Fooksman, D. R. et al. Development and migration of plasma cells in the mouse lymph node. Immunity 33, 118–127 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hauser, A. E. et al. Chemotactic responsiveness toward ligands for CXCR3 and CXCR4 is regulated on plasma blasts during the time course of a memory immune response. J. Immunol. 169, 1277–1282 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. Aaron, T. S. & Fooksman, D. R. Dynamic organization of the bone marrow plasma cell niche. FEBS J. 289, 4228–4239 (2022).

    Article  CAS  PubMed  Google Scholar 

  73. Wilmore, J. R. et al. IgA plasma cells are long-lived residents of gut and bone marrow that express isotype- and tissue-specific gene expression patterns. Front. Immunol. 12, 791095 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Holt, P. G., Sedgwick, J. D., O’Leary, C., Krska, K. & Leivers, S. Long-lived IgE- and IgG-secreting cells in rodents manifesting persistent antibody responses. Cell. Immunol. 89, 281–289 (1984).

    Article  CAS  PubMed  Google Scholar 

  75. Xiong, S., Jia, Y. & Liu, C. IgE-expressing long-lived plasma cells in persistent sensitization. Front. Pediatr. 10, 979012 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Pangrazzi, L. et al. “Inflamm-aging” influences immune cell survival factors in human bone marrow. Eur. J. Immunol. 47, 481–492 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ho, Y. H. et al. Remodeling of bone marrow hematopoietic stem cell niches promotes myeloid cell expansion during premature or physiological aging. Cell Stem Cell 25, 407–418.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gatto, D. et al. Regulation of memory antibody levels: the role of persisting antigen versus plasma cell life span. J. Immunol. 178, 67–76 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Wilmore, J. R. et al. Commensal microbes induce serum IgA responses that protect against polymicrobial sepsis. Cell Host Microbe 23, 302–311.e3 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Tarlinton, D. M., Ding, Z., Tellier, J. & Nutt, S. L. Making sense of plasma cell heterogeneity. Curr. Opin. Immunol. 81, 102297 (2023).

    Article  CAS  PubMed  Google Scholar 

  81. Aaron, T. et al. TNF-α limits serological memory by disrupting the bone marrow niche. J. Immunol. 210, 595–608 (2023).

    Article  CAS  PubMed  Google Scholar 

  82. Mina, M. J. et al. Measles virus infection diminishes preexisting antibodies that offer protection from other pathogens. Science 366, 599–606 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  83. Odendahl, M. et al. Generation of migratory antigen-specific plasma blasts and mobilization of resident plasma cells in a secondary immune response. Blood 105, 1614–1621 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Radbruch, A. et al. Competence and competition: the challenge of becoming a long-lived plasma cell. Nat. Rev. Immunol. 6, 741–750 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Gonzalez-Garcia, I., Ocana, E., Jimenez-Gomez, G., Campos-Caro, A. & Brieva, J. A. Immunization-induced perturbation of human blood plasma cell pool: progressive maturation, IL-6 responsiveness, and high PRDI-BF1/BLIMP1 expression are critical distinctions between antigen-specific and nonspecific plasma cells. J. Immunol. 176, 4042–4050 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Suematsu, S. et al. IgG1 plasmacytosis in interleukin 6 transgenic mice. Proc. Natl Acad. Sci. USA 86, 7547–7551 (1989).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  87. Markine-Goriaynoff, D., Nguyen, T. D., Bigaignon, G., Van Snick, J. & Coutelier, J. P. Distinct requirements for IL-6 in polyclonal and specific Ig production induced by microorganisms. Int. Immunol. 13, 1185–1192 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Minges Wols, H. A., Underhill, G. H., Kansas, G. S. & Witte, P. L. The role of bone marrow-derived stromal cells in the maintenance of plasma cell longevity. J. Immunol. 169, 4213–4221 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. O’Connor, B. P. et al. BCMA is essential for the survival of long-lived bone marrow plasma cells. J. Exp. Med. 199, 91–98 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Mattioli, C. A. & Tomasi, T. B. Jr. The life span of IgA plasma cells from the mouse intestine. J. Exp. Med. 138, 452–460 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lemke, A. et al. Long-lived plasma cells are generated in mucosal immune responses and contribute to the bone marrow plasma cell pool in mice. Mucosal Immunol. 9, 83–97 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported (in part) by the Intramural Research Program of the US National Institutes of Health (to Z.J.), R01HL141491 (to D.R.F) and the Irma T. Hirschl/Monique Weill-Caulier Trusts Research Award (to D.R.F.).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article. All authors researched data for the article. All authors contributed substantially to discussion of the content. All authors wrote the article. D.R.F. reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to David R. Fooksman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Immunology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fooksman, D.R., Jing, Z. & Park, R. New insights into the ontogeny, diversity, maturation and survival of long-lived plasma cells. Nat Rev Immunol (2024). https://doi.org/10.1038/s41577-024-00991-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41577-024-00991-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing