Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Membrane organization by tetraspanins and galectins shapes lymphocyte function

Abstract

Immune receptors are not randomly distributed at the plasma membrane of lymphocytes but are segregated into specialized domains that function as platforms to initiate signalling, as exemplified by the B cell or T cell receptor complex and the immunological synapse. ‘Membrane-organizing proteins’ and, in particular, tetraspanins and galectins, are crucial for controlling the spatiotemporal organization of immune receptors and other signalling proteins. Deficiencies in specific tetraspanins and galectins result in impaired immune synapse formation, lymphocyte proliferation, antibody production and migration, which can lead to impaired immunity, tumour development and autoimmunity. In contrast to conventional ligand–receptor interactions, membrane organizers interact in cis (on the same cell) and modulate receptor clustering, receptor dynamics and intracellular signalling. New findings have uncovered their complex and dynamic nature, revealing shared binding partners and collaborative activity in determining the composition of membrane domains. Therefore, immune receptors should not be envisaged as independent entities and instead should be studied in the context of their spatial organization in the lymphocyte membrane. We advocate for a novel approach to study lymphocyte function by globally analysing the role of membrane organizers in the assembly of different membrane complexes and discuss opportunities to develop therapeutic approaches that act via the modulation of membrane organization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Tetraspanins and galectins control membrane organization via different mechanisms.
Fig. 2: Membrane organization by tetraspanins and galectins in B lymphocytes.
Fig. 3: Membrane organization by tetraspanins and galectins in T lymphocytes.

Similar content being viewed by others

References

  1. Garcia-Parajo, M. F., Cambi, A., Torreno-Pina, J. A., Thompson, N. & Jacobson, K. Nanoclustering as a dominant feature of plasma membrane organization. J. Cell Sci. 127, 4995–5005 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Termini, C. M. & Gillette, J. M. Tetraspanins function as regulators of cellular signaling. Front. Cell Dev. Biol. 5, 34 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Yang, J. & Reth, M. Oligomeric organization of the B-cell antigen receptor on resting cells. Nature 467, 465–469 (2010). This paper shows that most of the BCRs on resting B cells form autoinhibited oligomers, which forms the basis of the dissociation–activation model for BCR activation.

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Hu, Y. S., Cang, H. & Lillemeier, B. F. Superresolution imaging reveals nanometer- and micrometer-scale spatial distributions of T-cell receptors in lymph nodes. Proc. Natl Acad. Sci. USA 113, 7201–7206 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nabi, I. R., Shankar, J. & Dennis, J. W. The galectin lattice at a glance. J. Cell Sci. 128, 2213–2219 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. van Deventer, S., Arp, A. B. & van Spriel, A. B. Dynamic plasma membrane organization: a complex symphony. Trends Cell Biol. 31, 119–129 (2021).

    Article  PubMed  Google Scholar 

  7. Eggeling, C. et al. Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457, 1159–1162 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Fernandes, R. A. et al. A cell topography-based mechanism for ligand discrimination by the T cell receptor. Proc. Natl Acad. Sci. USA 116, 14002–14010 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cai, E. et al. Visualizing dynamic microvillar search and stabilization during ligand detection by T cells. Science 356, eaal3118 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Saltukoglu, D. et al. Plasma membrane topography governs the 3D dynamic localization of IgM B cell antigen receptor clusters. EMBO J. 42, e112030 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Singer, S. J. & Nicolson, G. L. The fluid mosaic model of the structure of cell membranes. Science 175, 720–731 (1972). A landmark paper that describes the cell membrane as a liquid structure that restricts the lateral diffusion of membrane components.

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Johannes, L., Jacob, R. & Leffler, H. Galectins at a glance. J. Cell Sci. 131, jcs208884 (2018).

    Article  PubMed  Google Scholar 

  13. Liu, F. T. & Stowell, S. R. The role of galectins in immunity and infection. Nat. Rev. Immunol. 23, 479–494 (2023).

    Article  CAS  PubMed  Google Scholar 

  14. Sacchettini, J. C., Baum, L. G. & Brewer, C. F. Multivalent protein–carbohydrate interactions. A new paradigm for supermolecular assembly and signal transduction. Biochemistry 40, 3009–3015 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Chen, I. J., Chen, H. L. & Demetriou, M. Lateral compartmentalization of T cell receptor versus CD45 by galectin-N-glycan binding and microfilaments coordinate basal and activation signaling. J. Biol. Chem. 282, 35361–35372 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Mendez-Huergo, S. P., Blidner, A. G. & Rabinovich, G. A. Galectins: emerging regulatory checkpoints linking tumor immunity and angiogenesis. Curr. Opin. Immunol. 45, 8–15 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Zuidscherwoude, M. et al. The tetraspanin web revisited by super-resolution microscopy. Sci. Rep. 5, 12201 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. van Zelm, M. C. et al. CD81 gene defect in humans disrupts CD19 complex formation and leads to antibody deficiency. J. Clin. Invest. 120, 1265–1274 (2010). This paper reports on human CD81 deficiency, which results in impaired antibody responses.

    Article  PubMed  PubMed Central  Google Scholar 

  19. de Winde, C. M. et al. Tetraspanin CD37 protects against the development of B cell lymphoma. J. Clin. Invest. 126, 653–666 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Mollinedo, F., Fontan, G., Barasoain, I. & Lazo, P. A. Recurrent infectious diseases in human CD53 deficiency. Clin. Diagn. Lab. Immunol. 4, 229–231 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hemler, M. E. Tetraspanin proteins promote multiple cancer stages. Nat. Rev. Cancer 14, 49–60 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Volkmann, C. et al. Molecular requirements of the B-cell antigen receptor for sensing monovalent antigens. EMBO J. 35, 2371–2381 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Maity, P. C. et al. B cell antigen receptors of the IgM and IgD classes are clustered in different protein islands that are altered during B cell activation. Sci. Signal. 8, ra93 (2015).

    Article  PubMed  Google Scholar 

  24. Gold, M. R. & Reth, M. G. Antigen receptor function in the context of the nanoscale organization of the B cell membrane. Annu. Rev. Immunol. 37, 97–123 (2019).

    Article  CAS  PubMed  Google Scholar 

  25. Susa, K. J., Rawson, S., Kruse, A. C. & Blacklow, S. C. Cryo-EM structure of the B cell co-receptor CD19 bound to the tetraspanin CD81. Science 371, 300–305 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Espeli, M., Mancini, S. J., Breton, C., Poirier, F. & Schiff, C. Impaired B-cell development at the pre-BII-cell stage in galectin-1-deficient mice due to inefficient pre-BII/stromal cell interactions. Blood 113, 5878–5886 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Bonzi, J. et al. Pre-B cell receptor binding to galectin-1 modifies galectin-1/carbohydrate affinity to modulate specific galectin-1/glycan lattice interactions. Nat. Commun. 6, 6194 (2015).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  28. Elola, M. T., Chiesa, M. E., Alberti, A. F., Mordoh, J. & Fink, N. E. Galectin-1 receptors in different cell types. J. Biomed. Sci. 12, 13–29 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Obino, D. et al. Galectin-8 favors the presentation of surface-tethered antigens by stabilizing the B cell immune synapse. Cell Rep. 25, 3110–3122.e6 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cao, A. et al. Galectin-9 binds IgM-BCR to regulate B cell signaling. Nat. Commun. 9, 3288 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  31. Smith, L. K., Fawaz, K. & Treanor, B. Galectin-9 regulates the threshold of B cell activation and autoimmunity. eLife 10, e64557 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bradbury, L. E., Kansas, G. S., Levy, S., Evans, R. L. & Tedder, T. F. The CD19/CD21 signal transducing complex of human B lymphocytes includes the target of antiproliferative antibody-1 and Leu-13 molecules. J. Immunol. 149, 2841–2850 (1992).

    Article  CAS  PubMed  Google Scholar 

  33. Matsumoto, A. K. et al. Functional dissection of the CD21/CD19/TAPA-1/Leu-13 complex of B lymphocytes. J. Exp. Med. 178, 1407–1417 (1993).

    Article  CAS  PubMed  Google Scholar 

  34. Mattila, P. K. et al. The actin and tetraspanin networks organize receptor nanoclusters to regulate B cell receptor-mediated signaling. Immunity 38, 461–474 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. van Zelm, M. C. et al. An antibody-deficiency syndrome due to mutations in the CD19 gene. N. Engl. J. Med. 354, 1901–1912 (2006).

    Article  PubMed  Google Scholar 

  36. Miyazaki, T., Muller, U. & Campbell, K. S. Normal development but differentially altered proliferative responses of lymphocytes in mice lacking CD81. EMBO J. 16, 4217–4225 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tsitsikov, E. N., Gutierrez-Ramos, J. C. & Geha, R. S. Impaired CD19 expression and signaling, enhanced antibody response to type II T independent antigen and reduction of B-1 cells in CD81-deficient mice. Proc. Natl Acad. Sci. USA 94, 10844–10849 (1997).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Susa, K. J., Seegar, T. C., Blacklow, S. C. & Kruse, A. C. A dynamic interaction between CD19 and the tetraspanin CD81 controls B cell co-receptor trafficking. eLife 9, e52337 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lau, K. S. et al. Complex N-glycan number and degree of branching cooperate to regulate cell proliferation and differentiation. Cell 129, 123–134 (2007). This paper describes how metabolism regulates galectin membrane lattices by means of dictating N-linked glycan number and branching.

    Article  CAS  PubMed  Google Scholar 

  40. Horvath, G. et al. CD19 is linked to the integrin-associated tetraspans CD9, CD81, and CD82. J. Biol. Chem. 273, 30537–30543 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. de Winde, C. M. et al. Multispectral imaging reveals the tissue distribution of tetraspanins in human lymphoid organs. Histochem. Cell Biol. 144, 133–146 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Zuidscherwoude, M. et al. Tetraspanin microdomains control localized protein kinase C signaling in B cells. Sci. Signal. 10, eaag2755 (2017). This study demonstrates that tetraspanins can act as signalling hotspots in lymphocytes using advanced live-cell imaging.

    Article  PubMed  Google Scholar 

  43. Szodoray, P. et al. Integration of T helper and BCR signals governs enhanced plasma cell differentiation of memory B cells by regulation of CD45 phosphatase activity. Cell Rep. 36, 109525 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Clark, M. C. et al. Galectin-3 binds to CD45 on diffuse large B-cell lymphoma cells to regulate susceptibility to cell death. Blood 120, 4635–4644 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Giovannone, N., Smith, L. K., Treanor, B. & Dimitroff, C. J. Galectin–glycan interactions as regulators of B cell immunity. Front. Immunol. 9, 2839 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Giovannone, N. et al. Galectin-9 suppresses B cell receptor signaling and is regulated by I-branching of N-glycans. Nat. Commun. 9, 3287 (2018). Together with Cao et al. (2018), this paper describes how Gal-9 mediates receptor clustering reorganization at the plasma membrane of B cells to regulate BCR activity.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. de Oliveira, F. L. et al. Lack of galectin-3 modifies differentially Notch ligands in bone marrow and spleen stromal cells interfering with B cell differentiation. Sci. Rep. 8, 3495 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  48. Oliveira, F. L. et al. Galectin-3 regulates peritoneal B1-cell differentiation into plasma cells. Glycobiology 19, 1248–1258 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Oliveira, F. L. et al. Kinetics of mobilization and differentiation of lymphohematopoietic cells during experimental murine schistosomiasis in galectin-3−/− mice. J. Leukoc. Biol. 82, 300–310 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Brand, C. et al. The involvement of the spleen during chronic phase of Schistosoma mansoni infection in galectin-3−/− mice. Histol. Histopathol. 27, 1109–1120 (2012).

    CAS  PubMed  Google Scholar 

  51. Ungerer, C. et al. Galectin-9 is a suppressor of T and B cells and predicts the immune modulatory potential of mesenchymal stromal cell preparations. Stem Cell Dev. 23, 755–766 (2014).

    Article  CAS  Google Scholar 

  52. Tsai, C. M. et al. Phosphoproteomic analyses reveal that galectin-1 augments the dynamics of B-cell receptor signaling. J. Proteom. 103, 241–253 (2014).

    Article  CAS  Google Scholar 

  53. Xu-Monette, Z. Y. et al. Assessment of CD37 B-cell antigen and cell of origin significantly improves risk prediction in diffuse large B-cell lymphoma. Blood 128, 3083–3100 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yoshimura, T. et al. CD37 expression in follicular lymphoma. Ann. Hematol. 101, 1067–1075 (2022).

    Article  CAS  PubMed  Google Scholar 

  55. Luo, W., Weisel, F. & Shlomchik, M. J. B cell receptor and CD40 signaling are rewired for synergistic induction of the c-Myc transcription factor in germinal center B cells. Immunity 48, 313–326.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Luo, W. et al. IL-21R signal reprogramming cooperates with CD40 and BCR signals to select and differentiate germinal center B cells. Sci. Immunol. 8, eadd1823 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. van Spriel, A. B. et al. The tetraspanin protein CD37 regulates IgA responses and anti-fungal immunity. PLoS Pathog. 5, e1000338 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  58. van Spriel, A. B. et al. The tetraspanin CD37 orchestrates the α4β1 integrin–Akt signaling axis and supports long-lived plasma cell survival. Sci. Signal. 5, ra82 (2012).

    PubMed  Google Scholar 

  59. Sanyal, M., Fernandez, R. & Levy, S. Enhanced B cell activation in the absence of CD81. Int. Immunol. 21, 1225–1237 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Maecker, H. T., Do, M. S. & Levy, S. CD81 on B cells promotes interleukin 4 secretion and antibody production during T helper type 2 immune responses. Proc. Natl Acad. Sci. USA 95, 2458–2462 (1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  61. Engel, P. et al. Abnormal B lymphocyte development, activation, and differentiation in mice that lack or overexpress the CD19 signal transduction molecule. Immunity 3, 39–50 (1995).

    Article  CAS  PubMed  Google Scholar 

  62. Rickert, R. C., Rajewsky, K. & Roes, J. Impairment of T-cell-dependent B-cell responses and B-1 cell development in CD19-deficient mice. Nature 376, 352–355 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  63. Demaria, M. C. et al. Tetraspanin CD53 promotes lymphocyte recirculation by stabilizing L-selectin surface expression. iScience 23, 101104 (2020). This study shows that the tetraspanin CD53 interacts with L-selectin that is essential for lymphocyte homing in vivo.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zou, F. et al. Expression and function of tetraspanins and their interacting partners in B cells. Front. Immunol. 9, 1606 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  65. van Spriel, A. B. Tetraspanins in the humoral immune response. Biochem. Soc. Trans. 39, 512–517 (2011).

    Article  PubMed  Google Scholar 

  66. Beccaria, C. G. et al. Galectin-3 deficiency drives lupus-like disease by promoting spontaneous germinal centers formation via IFN-γ. Nat. Commun. 9, 1628 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  67. Sharma, S. et al. T cell immunoglobulin and mucin protein-3 (Tim-3)/galectin-9 interaction regulates influenza A virus-specific humoral and CD8 T-cell responses. Proc. Natl Acad. Sci. USA 108, 19001–19006 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  68. Tsai, C. M. et al. Galectin-1 promotes immunoglobulin production during plasma cell differentiation. J. Immunol. 181, 4570–4579 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Rabinovich, G. A. & Croci, D. O. Regulatory circuits mediated by lectin–glycan interactions in autoimmunity and cancer. Immunity 36, 322–335 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. Tsai, C. M. et al. Galectin-1 and galectin-8 have redundant roles in promoting plasma cell formation. J. Immunol. 187, 1643–1652 (2011).

    Article  CAS  PubMed  Google Scholar 

  71. Stowell, S. R. et al. Galectin-1, -2, and -3 exhibit differential recognition of sialylated glycans and blood group antigens. J. Biol. Chem. 283, 10109–10123 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Berditchevski, F. Complexes of tetraspanins with integrins: more than meets the eye. J. Cell Sci. 114, 4143–4151 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Jiang, X., Zhang, J. & Huang, Y. Tetraspanins in cell migration. Cell Adh. Migr. 9, 406–415 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Cooper, D., Iqbal, A. J., Gittens, B. R., Cervone, C. & Perretti, M. The effect of galectins on leukocyte trafficking in inflammation: sweet or sour? Ann. N. Y. Acad. Sci. 1253, 181–192 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  75. Rodrigues, J. G. et al. Glycosylation in cancer: selected roles in tumour progression, immune modulation and metastasis. Cell. Immunol. 333, 46–57 (2018).

    Article  CAS  PubMed  Google Scholar 

  76. Yoon, S. O., Lee, I. Y., Zhang, X., Zapata, M. C. & Choi, Y. S. CD9 may contribute to the survival of human germinal center B cells by facilitating the interaction with follicular dendritic cells. FEBS Open. Bio 4, 370–376 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Feigelson, S. W., Grabovsky, V., Shamri, R., Levy, S. & Alon, R. The CD81 tetraspanin facilitates instantaneous leukocyte VLA-4 adhesion strengthening to vascular cell adhesion molecule 1 (VCAM-1) under shear flow. J. Biol. Chem. 278, 51203–51212 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Reyes, R. et al. Different states of integrin LFA-1 aggregation are controlled through its association with tetraspanin CD9. Biochim. Biophys. Acta 1853, 2464–2480 (2015).

    Article  CAS  PubMed  Google Scholar 

  79. Gilsanz, A. et al. ALCAM/CD166 adhesive function is regulated by the tetraspanin CD9. Cell. Mol. Life Sci. 70, 475–493 (2013).

    Article  CAS  PubMed  Google Scholar 

  80. Yoshida, N. et al. CXCR4 expression on activated B cells is downregulated by CD63 and IL-21. J. Immunol. 186, 2800–2808 (2011).

    Article  CAS  PubMed  Google Scholar 

  81. Moiseeva, E. P., Williams, B., Goodall, A. H. & Samani, N. J. Galectin-1 interacts with beta-1 subunit of integrin. Biochem. Biophys. Res. Commun. 310, 1010–1016 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Iqbal, A. J. et al. Galectin-9 mediates neutrophil capture and adhesion in a CD44 and β2 integrin-dependent manner. FASEB J. 36, e22065 (2022).

    Article  CAS  PubMed  Google Scholar 

  83. Yang, E. H. et al. Galectin-3 alters the lateral mobility and clustering of β1-integrin receptors. PLoS ONE 12, e0184378 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Paz, H. et al. Treatment of B-cell precursor acute lymphoblastic leukemia with the galectin-1 inhibitor PTX008. J. Exp. Clin. Cancer Res. 37, 67 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Chakraborty, A. et al. Galectin-9 bridges human B cells to vascular endothelium while programming regulatory pathways. J. Autoimmun. 117, 102575 (2021).

    Article  CAS  PubMed  Google Scholar 

  86. Chakraborty, A., Mohammed, N. B. B., Bernasconi, A. E. & Dimitroff, C. J. Analysis of galectin-binding receptors on B cells. Methods Mol. Biol. 2442, 565–580 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Demetriou, M., Granovsky, M., Quaggin, S. & Dennis, J. W. Negative regulation of T-cell activation and autoimmunity by Mgat5 N-glycosylation. Nature 409, 733–739 (2001). This paper describes an important role for N-linked glycans in T cell activation, directly linking dysregulation of glycosylation to autoimmune diseases.

    Article  ADS  CAS  PubMed  Google Scholar 

  88. Jung, Y., Wen, L., Altman, A. & Ley, K. CD45 pre-exclusion from the tips of T cell microvilli prior to antigen recognition. Nat. Commun. 12, 3872 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  89. Demotte, N. et al. Restoring the association of the T cell receptor with CD8 reverses anergy in human tumor-infiltrating lymphocytes. Immunity 28, 414–424 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Demotte, N. et al. A galectin-3 ligand corrects the impaired function of human CD4 and CD8 tumor-infiltrating lymphocytes and favors tumor rejection in mice. Cancer Res. 70, 7476–7488 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. Chung, C. D., Patel, V. P., Moran, M., Lewis, L. A. & Miceli, M. C. Galectin-1 induces partial TCR ζ-chain phosphorylation and antagonizes processive TCR signal transduction. J. Immunol. 165, 3722–3729 (2000).

    Article  CAS  PubMed  Google Scholar 

  92. Walzel, H. et al. Effects of N-glycan processing inhibitors on signaling events and induction of apoptosis in galectin-1-stimulated Jurkat T lymphocytes. Glycobiology 16, 1262–1271 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Paclik, D. et al. Galectin-4 controls intestinal inflammation by selective regulation of peripheral and mucosal T cell apoptosis and cell cycle. PLoS ONE 3, e2629 (2008).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  94. Okoye, I. et al. Galectin-9 expression defines exhausted T cells and impaired cytotoxic NK cells in patients with virus-associated solid tumors. J. Immunother. Cancer 8, e001849 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Yang, R. et al. Galectin-9 interacts with PD-1 and TIM-3 to regulate T cell death and is a target for cancer immunotherapy. Nat. Commun. 12, 832 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  96. Merani, S., Chen, W. & Elahi, S. The bitter side of sweet: the role of galectin-9 in immunopathogenesis of viral infections. Rev. Med. Virol. 25, 175–186 (2015).

    Article  CAS  PubMed  Google Scholar 

  97. Yasinska, I. M. et al. Ligand–receptor interactions of galectin-9 and VISTA suppress human T lymphocyte cytotoxic activity. Front. Immunol. 11, 580557 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Imai, T., Kakizaki, M., Nishimura, M. & Yoshie, O. Molecular analyses of the association of CD4 with two members of the transmembrane 4 superfamily, CD81 and CD82. J. Immunol. 155, 1229–1239 (1995).

    Article  CAS  PubMed  Google Scholar 

  99. Todd, S. C., Lipps, S. G., Crisa, L., Salomon, D. R. & Tsoukas, C. D. CD81 expressed on human thymocytes mediates integrin activation and interleukin 2-dependent proliferation. J. Exp. Med. 184, 2055–2060 (1996).

    Article  CAS  PubMed  Google Scholar 

  100. Lebel-Binay, S., Lagaudriere, C., Fradelizi, D. & Conjeaud, H. CD82, member of the tetra-span-transmembrane protein family, is a costimulatory protein for T cell activation. J. Immunol. 155, 101–110 (1995).

    Article  CAS  PubMed  Google Scholar 

  101. van Spriel, A. B. et al. A regulatory role for CD37 in T cell proliferation. J. Immunol. 172, 2953–2961 (2004).

    Article  PubMed  Google Scholar 

  102. Dunlock, V. E. et al. Tetraspanin CD53 controls T cell immunity through regulation of CD45RO stability, mobility, and function. Cell Rep. 39, 111006 (2022).

    Article  CAS  PubMed  Google Scholar 

  103. Pace, K. E., Lee, C., Stewart, P. L. & Baum, L. G. Restricted receptor segregation into membrane microdomains occurs on human T cells during apoptosis induced by galectin-1. J. Immunol. 163, 3801–3811 (1999).

    Article  CAS  PubMed  Google Scholar 

  104. Stillman, B. N. et al. Galectin-3 and galectin-1 bind distinct cell surface glycoprotein receptors to induce T cell death. J. Immunol. 176, 778–789 (2006). This paper highlights how different galectins exert complementary and distinct roles in controlling lymphocyte function.

    Article  CAS  PubMed  Google Scholar 

  105. Vicente, M. M. et al. Mannosylated glycans impair normal T-cell development by reprogramming commitment and repertoire diversity. Cell. Mol. Immunol. 20, 955–968 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Mortales, C. L., Lee, S. U. & Demetriou, M. N-glycan branching is required for development of mature B cells. J. Immunol. 205, 630–636 (2020).

    Article  CAS  PubMed  Google Scholar 

  107. Dustin, M. L. & Choudhuri, K. Signaling and polarized communication across the T cell immunological synapse. Annu. Rev. Cell Dev. Biol. 32, 303–325 (2016).

    Article  CAS  PubMed  Google Scholar 

  108. Fooksman, D. R. et al. Functional anatomy of T cell activation and synapse formation. Annu. Rev. Immunol. 28, 79–105 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Rocha-Perugini, V., Sanchez-Madrid, F. & Martinez Del Hoyo, G. Function and dynamics of tetraspanins during antigen recognition and immunological synapse formation. Front. Immunol. 6, 653 (2015).

    PubMed  Google Scholar 

  110. Rocha-Perugini, V. et al. CD81 controls sustained T cell activation signaling and defines the maturation stages of cognate immunological synapses. Mol. Cell. Biol. 33, 3644–3658 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Mittelbrunn, M., Yanez-Mo, M., Sancho, D., Ursa, A. & Sanchez-Madrid, F. Cutting edge: dynamic redistribution of tetraspanin CD81 at the central zone of the immune synapse in both T lymphocytes and APC. J. Immunol. 169, 6691–6695 (2002).

    Article  CAS  PubMed  Google Scholar 

  112. Shibagaki, N., Hanada, K., Yamashita, H., Shimada, S. & Hamada, H. Overexpression of CD82 on human T cells enhances LFA-1/ICAM-1-mediated cell–cell adhesion: functional association between CD82 and LFA-1 in T cell activation. Eur. J. Immunol. 29, 4081–4091 (1999).

    Article  CAS  PubMed  Google Scholar 

  113. Rocha-Perugini, V. et al. Tetraspanins CD9 and CD151 at the immune synapse support T-cell integrin signaling. Eur. J. Immunol. 44, 1967–1975 (2014). Together with Rocha-Perugini et al. (2015), Rocha-Perugini et al. (2013), Mittelbrunn et al. (2002) and Shibagaki et al. (1999), this paper describes an important role for tetraspanins in immunological synapse formation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Levy, S., Todd, S. C. & Maecker, H. T. CD81 (TAPA-1): a molecule involved in signal transduction and cell adhesion in the immune system. Annu. Rev. Immunol. 16, 89–109 (1998).

    Article  CAS  PubMed  Google Scholar 

  115. Dahms, N. M. & Hart, G. W. Lymphocyte function-associated antigen 1 (LFA-1) contains sulfated N-linked oligosaccharides. J. Immunol. 134, 3978–3986 (1985).

    Article  CAS  PubMed  Google Scholar 

  116. Petit, A. E. et al. A major secretory defect of tumour-infiltrating T lymphocytes due to galectin impairing LFA-1-mediated synapse completion. Nat. Commun. 7, 12242 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  117. Chen, H. Y. et al. Galectin-3 negatively regulates TCR-mediated CD4+ T-cell activation at the immunological synapse. Proc. Natl Acad. Sci. USA 106, 14496–14501 (2009). This paper highlights the role of Gal-3 at the immunological synapse in vivo.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  118. Mattila, P. K., Batista, F. D. & Treanor, B. Dynamics of the actin cytoskeleton mediates receptor cross talk: an emerging concept in tuning receptor signaling. J. Cell Biol. 212, 267–280 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Crotta, S. et al. Cytoskeleton rearrangement induced by tetraspanin engagement modulates the activation of T and NK cells. Eur. J. Immunol. 36, 919–929 (2006).

    Article  CAS  PubMed  Google Scholar 

  120. Delaguillaumie, A. et al. Tetraspanin CD82 controls the association of cholesterol-dependent microdomains with the actin cytoskeleton in T lymphocytes: relevance to co-stimulation. J. Cell Sci. 117, 5269–5282 (2004).

    Article  CAS  PubMed  Google Scholar 

  121. Sala-Valdes, M. et al. EWI-2 and EWI-F link the tetraspanin web to the actin cytoskeleton through their direct association with ezrin-radixin-moesin proteins. J. Biol. Chem. 281, 19665–19675 (2006).

    Article  CAS  PubMed  Google Scholar 

  122. Colbert, J. D., Cruz, F. M., Baer, C. E. & Rock, K. L. Tetraspanin-5-mediated MHC class I clustering is required for optimal CD8 T cell activation. Proc. Natl Acad. Sci. USA 119, e2122188119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Yamamoto, H. et al. Induction of cell adhesion by galectin-8 and its target molecules in Jurkat T-cells. J. Biochem. 143, 311–324 (2008).

    Article  CAS  PubMed  Google Scholar 

  124. Rabinovich, G. A. et al. Specific inhibition of T-cell adhesion to extracellular matrix and proinflammatory cytokine secretion by human recombinant galectin-1. Immunology 97, 100–106 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Mansour, A. A. et al. Galectin-9 supports primary T cell transendothelial migration in a glycan and integrin dependent manner. Biomed. Pharmacother. 151, 113171 (2022).

    Article  CAS  PubMed  Google Scholar 

  126. Vicuna, L. et al. Galectin-8 binds to LFA-1, blocks its interaction with ICAM-1 and is counteracted by anti-Gal-8 autoantibodies isolated from lupus patients. Biol. Res. 46, 275–280 (2013).

    Article  PubMed  Google Scholar 

  127. Carcamo, C. et al. Galectin-8 binds specific β1 integrins and induces polarized spreading highlighted by asymmetric lamellipodia in Jurkat T cells. Exp. Cell Res. 312, 374–386 (2006).

    Article  CAS  PubMed  Google Scholar 

  128. Zhang, X. A., Bontrager, A. L. & Hemler, M. E. Transmembrane-4 superfamily proteins associate with activated protein kinase C (PKC) and link PKC to specific β1 integrins. J. Biol. Chem. 276, 25005–25013 (2001).

    Article  CAS  PubMed  Google Scholar 

  129. Zelman-Toister, E. et al. CD151 regulates T-cell migration in health and inflammatory bowel disease. Inflamm. Bowel Dis. 22, 257–267 (2016).

    Article  PubMed  Google Scholar 

  130. Kolesnikova, T. V. et al. EWI-2 modulates lymphocyte integrin α4β1 functions. Blood 103, 3013–3019 (2004).

    Article  CAS  PubMed  Google Scholar 

  131. Yeung, L. et al. Leukocyte tetraspanin CD53 restrains α3 integrin mobilization and facilitates cytoskeletal remodeling and transmigration in mice. J. Immunol. 205, 521–532 (2020).

    Article  CAS  PubMed  Google Scholar 

  132. Perillo, N. L., Pace, K. E., Seilhamer, J. J. & Baum, L. G. Apoptosis of T cells mediated by galectin-1. Nature 378, 736–739 (1995). This is one of the first publications to describe a role for galectin in inducing T cell death, posing a new mechanism to regulate immune responses.

    Article  ADS  CAS  PubMed  Google Scholar 

  133. Perillo, N. L., Uittenbogaart, C. H., Nguyen, J. T. & Baum, L. G. Galectin-1, an endogenous lectin produced by thymic epithelial cells, induces apoptosis of human thymocytes. J. Exp. Med. 185, 1851–1858 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Amano, M., Galvan, M., He, J. & Baum, L. G. The ST6Gal I sialyltransferase selectively modifies N-glycans on CD45 to negatively regulate galectin-1-induced CD45 clustering, phosphatase modulation, and T cell death. J. Biol. Chem. 278, 7469–7475 (2003).

    Article  CAS  PubMed  Google Scholar 

  135. Hernandez, J. D. et al. Galectin-1 binds different CD43 glycoforms to cluster CD43 and regulate T cell death. J. Immunol. 177, 5328–5336 (2006).

    Article  CAS  PubMed  Google Scholar 

  136. Earl, L. A., Bi, S. & Baum, L. G. N- and O-glycans modulate galectin-1 binding, CD45 signaling, and T cell death. J. Biol. Chem. 285, 2232–2244 (2010).

    Article  CAS  PubMed  Google Scholar 

  137. Xue, J. et al. Regulation of galectin-3-induced apoptosis of Jurkat cells by both O-glycans and N-glycans on CD45. FEBS Lett. 587, 3986–3994 (2013).

    Article  CAS  PubMed  Google Scholar 

  138. Xue, H. et al. The N-terminal tail coordinates with carbohydrate recognition domain to mediate galectin-3 induced apoptosis in T cells. Oncotarget 8, 49824–49838 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Zhu, C. et al. The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat. Immunol. 6, 1245–1252 (2005). Together with Yang et al. (2021), this paper highlights a role for Gal-9 as a novel regulator of T cell immunity and postulates galectins as novel immunotherapy targets.

    Article  CAS  PubMed  Google Scholar 

  140. Oomizu, S. et al. Galectin-9 suppresses Th17 cell development in an IL-2-dependent but Tim-3-independent manner. Clin. Immunol. 143, 51–58 (2012).

    Article  CAS  PubMed  Google Scholar 

  141. Sturm, A. et al. Human galectin-2: novel inducer of T cell apoptosis with distinct profile of caspase activation. J. Immunol. 173, 3825–3837 (2004).

    Article  CAS  PubMed  Google Scholar 

  142. Loser, K. et al. Galectin-2 suppresses contact allergy by inducing apoptosis in activated CD8+ T cells. J. Immunol. 182, 5419–5429 (2009).

    Article  CAS  PubMed  Google Scholar 

  143. Fukumori, T. et al. CD29 and CD7 mediate galectin-3-induced type II T-cell apoptosis. Cancer Res. 63, 8302–8311 (2003).

    CAS  PubMed  Google Scholar 

  144. Levy, S. & Shoham, T. The tetraspanin web modulates immune-signalling complexes. Nat. Rev. Immunol. 5, 136–148 (2005).

    Article  CAS  PubMed  Google Scholar 

  145. Jones, E. L., Demaria, M. C. & Wright, M. D. Tetraspanins in cellular immunity. Biochem. Soc. Trans. 39, 506–511 (2011).

    Article  CAS  PubMed  Google Scholar 

  146. Tarrant, J. M. et al. The absence of Tssc6, a member of the tetraspanin superfamily, does not affect lymphoid development but enhances in vitro T-cell proliferative responses. Mol. Cell. Biol. 22, 5006–5018 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Wright, M. D. et al. Characterization of mice lacking the tetraspanin superfamily member CD151. Mol. Cell. Biol. 24, 5978–5988 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Gartlan, K. H. et al. A complementary role for the tetraspanins CD37 and Tssc6 in cellular immunity. J. Immunol. 185, 3158–3166 (2010).

    Article  CAS  PubMed  Google Scholar 

  149. Tomlinson, M. G. et al. Characterization of mouse CD53: epitope mapping, cellular distribution and induction by T cell receptor engagement during repertoire selection. Eur. J. Immunol. 25, 2201–2205 (1995).

    Article  CAS  PubMed  Google Scholar 

  150. Maecker, H. T. Human CD81 directly enhances Th1 and Th2 cell activation, but preferentially induces proliferation of Th2 cells upon long-term stimulation. BMC Immunol. 4, 1 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Deng, J., Dekruyff, R. H., Freeman, G. J., Umetsu, D. T. & Levy, S. Critical role of CD81 in cognate T–B cell interactions leading to Th2 responses. Int. Immunol. 14, 513–523 (2002).

    Article  CAS  PubMed  Google Scholar 

  152. Luo, Z. et al. Galectin-7 promotes proliferation and Th1/2 cells polarization toward Th1 in activated CD4+ T cells by inhibiting The TGFβ/Smad3 pathway. Mol. Immunol. 101, 80–85 (2018).

    Article  CAS  PubMed  Google Scholar 

  153. Sampson, J. F., Suryawanshi, A., Chen, W. S., Rabinovich, G. A. & Panjwani, N. Galectin-8 promotes regulatory T-cell differentiation by modulating IL-2 and TGFβ signaling. Immunol. Cell Biol. 94, 213–219 (2016).

    Article  CAS  PubMed  Google Scholar 

  154. Rossi, N. E. et al. Differential antibody binding to the surface αβTCR.CD3 complex of CD4+ and CD8+ T lymphocytes is conserved in mammals and associated with differential glycosylation. Int. Immunol. 20, 1247–1258 (2008).

    Article  CAS  PubMed  Google Scholar 

  155. Toscano, M. A. et al. Galectin-1 suppresses autoimmune retinal disease by promoting concomitant Th2- and T regulatory-mediated anti-inflammatory responses. J. Immunol. 176, 6323–6332 (2006).

    Article  CAS  PubMed  Google Scholar 

  156. Morgan, R. et al. N-acetylglucosaminyltransferase V (Mgat5)-mediated N-glycosylation negatively regulates Th1 cytokine production by T cells. J. Immunol. 173, 7200–7208 (2004).

    Article  CAS  PubMed  Google Scholar 

  157. Grigorian, A. et al. N-acetylglucosamine inhibits T-helper 1 (Th1)/T-helper 17 (Th17) cell responses and treats experimental autoimmune encephalomyelitis. J. Biol. Chem. 286, 40133–40141 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Seki, M. et al. Galectin-9 suppresses the generation of Th17, promotes the induction of regulatory T cells, and regulates experimental autoimmune arthritis. Clin. Immunol. 127, 78–88 (2008).

    Article  CAS  PubMed  Google Scholar 

  159. Cedeno-Laurent, F., Opperman, M., Barthel, S. R., Kuchroo, V. K. & Dimitroff, C. J. Galectin-1 triggers an immunoregulatory signature in Th cells functionally defined by IL-10 expression. J. Immunol. 188, 3127–3137 (2012).

    Article  CAS  PubMed  Google Scholar 

  160. Fermino, M. L. et al. Galectin-3 negatively regulates the frequency and function of CD4+CD25+Foxp3+ regulatory T cells and influences the course of Leishmania major infection. Eur. J. Immunol. 43, 1806–1817 (2013).

    Article  CAS  PubMed  Google Scholar 

  161. Wu, C. et al. Galectin-9–CD44 interaction enhances stability and function of adaptive regulatory T cells. Immunity 41, 270–282 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Araujo, L., Khim, P., Mkhikian, H., Mortales, C. L. & Demetriou, M. Glycolysis and glutaminolysis cooperatively control T cell function by limiting metabolite supply to N-glycosylation. eLife 6, e21330 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Nguyen, J. T. et al. CD45 modulates galectin-1-induced T cell death: regulation by expression of core 2 O-glycans. J. Immunol. 167, 5697–5707 (2001).

    Article  CAS  PubMed  Google Scholar 

  164. Mkhikian, H. et al. Genetics and the environment converge to dysregulate N-glycosylation in multiple sclerosis. Nat. Commun. 2, 334 (2011).

    Article  ADS  PubMed  Google Scholar 

  165. Li, C. F. et al. Hypomorphic MGAT5 polymorphisms promote multiple sclerosis cooperatively with MGAT1 and interleukin-2 and 7 receptor variants. J. Neuroimmunol. 256, 71–76 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Mkhikian, H. et al. Age-associated impairment of T cell immunity is linked to sex-dimorphic elevation of N-glycan branching. Nat. Aging 2, 231–242 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Marino, K. V., Cagnoni, A. J., Croci, D. O. & Rabinovich, G. A. Targeting galectin-driven regulatory circuits in cancer and fibrosis. Nat. Rev. Drug Discov. 22, 295–316 (2023).

    Article  CAS  PubMed  Google Scholar 

  168. Dahmane, S. et al. Nanoscale organization of tetraspanins during HIV-1 budding by correlative dSTORM/AFM. Nanoscale 11, 6036–6044 (2019).

    Article  CAS  PubMed  Google Scholar 

  169. Yoshida, T. et al. A CD63 mutant inhibits T-cell tropic human immunodeficiency virus type 1 entry by disrupting CXCR4 trafficking to the plasma membrane. Traffic 9, 540–558 (2008).

    Article  CAS  PubMed  Google Scholar 

  170. Gordon-Alonso, M. et al. Tetraspanins CD9 and CD81 modulate HIV-1-induced membrane fusion. J. Immunol. 177, 5129–5137 (2006).

    Article  CAS  PubMed  Google Scholar 

  171. St-Pierre, C., Ouellet, M., Tremblay, M. J. & Sato, S. Galectin-1 and HIV-1 infection. Methods Enzymol. 480, 267–294 (2010).

    Article  CAS  PubMed  Google Scholar 

  172. St-Pierre, C. et al. Galectin-1-specific inhibitors as a new class of compounds to treat HIV-1 infection. Antimicrob. Agents Chemother. 56, 154–162 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Rosa, D. et al. Activation of naive B lymphocytes via CD81, a pathogenetic mechanism for hepatitis C virus-associated B lymphocyte disorders. Proc. Natl Acad. Sci. USA 102, 18544–18549 (2005).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  174. Flint, M. et al. Characterization of hepatitis C virus E2 glycoprotein interaction with a putative cellular receptor, CD81. J. Virol. 73, 6235–6244 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Meuleman, P. et al. Anti-CD81 antibodies can prevent a hepatitis C virus infection in vivo. Hepatology 48, 1761–1768 (2008).

    Article  CAS  PubMed  Google Scholar 

  176. Elahi, S., Niki, T., Hirashima, M. & Horton, H. Galectin-9 binding to Tim-3 renders activated human CD4+ T cells less susceptible to HIV-1 infection. Blood 119, 4192–4204 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Wang, F. et al. Tim-3 ligand galectin-9 reduces IL-17 level and accelerates Klebsiella pneumoniae infection. Cell. Immunol. 269, 22–28 (2011).

    Article  CAS  PubMed  Google Scholar 

  178. Peeters, R. et al. Fatty acid metabolism in aggressive B-cell lymphoma is inhibited by tetraspanin CD37. Nat. Commun. 13, 5371 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  179. Abroun, S. et al. Galectin-1 supports the survival of CD45RA primary myeloma cells in vitro. Br. J. Haematol. 142, 754–765 (2008).

    Article  CAS  PubMed  Google Scholar 

  180. Arnaud, M. P. et al. CD9, a key actor in the dissemination of lymphoblastic leukemia, modulating CXCR4-mediated migration via RAC1 signaling. Blood 126, 1802–1812 (2015).

    Article  CAS  PubMed  Google Scholar 

  181. Vences-Catalan, F. et al. CD81 is a novel immunotherapeutic target for B cell lymphoma. J. Exp. Med. 216, 1497–1508 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Oostindie, S. C. et al. DuoHexaBody-CD37®, a novel biparatopic CD37 antibody with enhanced Fc-mediated hexamerization as a potential therapy for B-cell malignancies. Blood Cancer J. 10, 30 (2020). Together with Vences-Catalan et al. (2019), this paper shows that targeting the tetraspanins CD81 and CD37 has therapeutic potential in B cell malignancies.

    Article  PubMed  PubMed Central  Google Scholar 

  183. Bum-Erdene, K. et al. Novel selective galectin-3 antagonists are cytotoxic to acute lymphoblastic leukemia. J. Med. Chem. 65, 5975–5989 (2022).

    Article  CAS  PubMed  Google Scholar 

  184. Neumann, E. et al. Tetraspanin CD82 affects migration, attachment and invasion of rheumatoid arthritis synovial fibroblasts. Ann. Rheum. Dis. 77, 1619–1626 (2018).

    Article  CAS  PubMed  Google Scholar 

  185. Xue, S. et al. Elevated galectin-3 is associated with aging, multiple sclerosis, and oxidized phosphatidylcholine-induced neurodegeneration. J. Neurosci. 43, 4725–4737 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Xu, W. D., Huang, Q. & Huang, A. F. Emerging role of galectin family in inflammatory autoimmune diseases. Autoimmun. Rev. 20, 102847 (2021).

    Article  CAS  PubMed  Google Scholar 

  187. Toscano, M. A. et al. Differential glycosylation of TH1, TH2 and TH-17 effector cells selectively regulates susceptibility to cell death. Nat. Immunol. 8, 825–834 (2007). This paper reports the dynamic inter-relation between the galectin network, T cell differentiation and T cell death.

    Article  CAS  PubMed  Google Scholar 

  188. Toscano, M. A., Martinez Allo, V. C., Cutine, A. M., Rabinovich, G. A. & Marino, K. V. Untangling galectin-driven regulatory circuits in autoimmune inflammation. Trends Mol. Med. 24, 348–363 (2018).

    Article  CAS  PubMed  Google Scholar 

  189. Joeh, E. et al. Mapping glycan-mediated galectin-3 interactions by live cell proximity labeling. Proc. Natl Acad. Sci. USA 117, 27329–27338 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  190. Yang, J. et al. Sequential genome-wide CRISPR-Cas9 screens identify genes regulating cell-surface expression of tetraspanins. Cell Rep. 42, 112065 (2023).

    Article  CAS  PubMed  Google Scholar 

  191. Zafra, F. & Piniella, D. Proximity labeling methods for proteomic analysis of membrane proteins. J. Proteom. 264, 104620 (2022).

    Article  CAS  Google Scholar 

  192. Dharan, R. et al. Transmembrane proteins tetraspanin 4 and CD9 sense membrane curvature. Proc. Natl Acad. Sci. USA 119, e2208993119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Roy, N. H. & Burkhardt, J. K. The actin cytoskeleton: a mechanical intermediate for signal integration at the immunological synapse. Front. Cell Dev. Biol. 6, 116 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Levental, I. & Lyman, E. Regulation of membrane protein structure and function by their lipid nano-environment. Nat. Rev. Mol. Cell Biol. 24, 107–122 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Yeung, L., Hickey, M. J. & Wright, M. D. The many and varied roles of tetraspanins in immune cell recruitment and migration. Front. Immunol. 9, 1644 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Yanez-Mo, M., Barreiro, O., Gordon-Alonso, M., Sala-Valdes, M. & Sanchez-Madrid, F. Tetraspanin-enriched microdomains: a functional unit in cell plasma membranes. Trends Cell Biol. 19, 434–446 (2009).

    Article  CAS  PubMed  Google Scholar 

  197. Seigneuret, M. Complete predicted three-dimensional structure of the facilitator transmembrane protein and hepatitis C virus receptor CD81: conserved and variable structural domains in the tetraspanin superfamily. Biophys. J. 90, 212–227 (2006).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  198. Zimmerman, B. et al. Crystal structure of a full-length human tetraspanin reveals a cholesterol-binding pocket. Cell 167, 1041–1051.e11 (2016). This paper solves the crystal structure of a full-length tetraspanin (CD81) that contains a binding pocket for cholesterol, which may modulate tetraspanin activity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Yang, Y. et al. Open conformation of tetraspanins shapes interaction partner networks on cell membranes. EMBO J. 39, e105246 (2020). This paper reports the crystal structure of the tetraspanin CD53 in an open conformation poised for partner protein interaction.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Yang, R. Y., Rabinovich, G. A. & Liu, F. T. Galectins: structure, function and therapeutic potential. Expert. Rev. Mol. Med. 10, e17 (2008).

    Article  PubMed  Google Scholar 

  201. Liu, F. T., Patterson, R. J. & Wang, J. L. Intracellular functions of galectins. Biochim. Biophys. Acta 1572, 263–273 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors dedicate this review to S. Levy (Stanford University School of Medicine) who made seminal contributions to the field of tetraspanins in the immune system. The authors thank P. Friedl and C. Figdor (Radboud University Medical Center) for useful discussions and careful review of the manuscript. The authors acknowledge funding support from the Netherlands Organization for Scientific Research: the Institute of Chemical Immunology (project ICI 000-23 to F.S. and A.B.v.S.), ZonMW (project 09120012010023) to A.B.v.S., the Dutch Cancer Society (project 11618 to L.Q.C. and A.B.v.S., and 12949 and 14726 to A.B.v.S.), and the European Research Council: Consolidator Grant (project 724281) and Proof-of-Concept (project 101112687) to A.B.v.S.

Author information

Authors and Affiliations

Authors

Contributions

L.Q.C., V.M.D. and A.B.v.S. conceptualized the manuscript. F.S. designed the figures. All authors wrote the article and discussed the content. All authors reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Annemiek B. van Spriel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Immunology thanks Michael Reth, Charles Dimitroff and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

β-Galactoside modifications

Modifications introduced by the enzyme β-galactoside, which cleaves the disaccharide lactose to produce galactose and glucose.

Fluid mosaic model

A model proposed by Singer and Nicolson in 1972 describing the plasma membrane as a dynamic structure in which membrane proteins are clustered into non-random domains.

Galectin lattices

Multivalent complexes of soluble galectins with glycoproteins on the plasma membrane. Galectin lattices may contain different members of the galectin family, but individual galectins can also form distinct lattices.

Glycocalyx

A specialized dense coating composed of a mixture of glycoproteins, glycosaminoglycans and proteoglycans that covers the cell surface.

Immune synapses

Stable interfaces that form the site of the molecular interactions between a lymphocyte and an antigen-presenting cell. The formation of an immune synapse is important for the induction of lymphocyte activation and polarization.

Integrin inside-out signalling

Signalling induced by the binding of signalling molecules or components of the cytoskeleton to the intracellular domain of integrins. This can induce conformational changes in the extracellular portion of the integrin and activate the ligand-binding function.

Lipid rafts

Cholesterol and sphingolipid-enriched membrane domains that favour the presence of specific proteins.

Membrane domains

Ordered regions of the plasma membrane formed by the lateral segregation of its constituents that differs from the surrounding area in its molecular organization and composition.

Membrane organizers

Proteins that affect the spatiotemporal organization of other membrane proteins and/or signalling proteins, independent of other factors.

N-acetyllactosamines

(LacNAcs). Disaccharide synthesized from linking N-acetylglucosamine and galactose. LacNAcs are present on many glycoproteins and function as a carbohydrate-binding site.

N-linked glycans

Attachments of an oligosaccharide to a protein at asparagine residues by an N-glycosidic bond.

O-linked glycans

Attachments of an oligosaccharide to the oxygen atom of serine or threonine residues in a protein.

Supramolecular activation cluster

(SMAC). A focalized region of receptor–ligand interaction and signalling machinery in T cells interacting with antigen-presenting cells. Proteins segregate into distinct regions, a central area (cSMAC) enriched in the T cell receptor and associated proteins, a peripheral area (pSMAC) containing LFA1 and talin, and a distal region (dSMAC) enriched in CD45 and F-actin.

Tetraspanin nanodomains

Specialized membrane regions composed of tetraspanins and associated membrane and signalling proteins.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Querol Cano, L., Dunlock, VM.E., Schwerdtfeger, F. et al. Membrane organization by tetraspanins and galectins shapes lymphocyte function. Nat Rev Immunol 24, 193–212 (2024). https://doi.org/10.1038/s41577-023-00935-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-023-00935-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing