Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Insights from a 30-year journey: function, regulation and therapeutic modulation of PD1

Abstract

PD1 was originally discovered in 1992 as a molecule associated with activation-induced cell death in T cells. Over the past 30 years, it was found that PD1 has a critical role in avoiding overactivation-induced cell death and autoimmunity, whereas its inhibition unleashes anticancer immunity. Here, we outline the journey from the discovery of PD1 to its role as a breakthrough target in cancer immunotherapy. We describe its regulation and function and examine how a mechanistic understanding of PD1 signalling suggests a central function in setting the T cell activation threshold, thereby controlling T cell proliferation, differentiation, exhaustion and metabolic status. This threshold theory, in combination with new insights into T cell metabolism and a better understanding of immune cell modulation by the microbiota, can provide guidance for the development of efficient combination therapies. Moreover, we discuss the mechanisms underlying immune-related adverse events after PD1-targeted therapy and their possible treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanisms of PD1 regulation.
Fig. 2: Regulation of the T cell activation threshold through PD1 or CTLA4 blockade.
Fig. 3: Mitochondrial metabolism controls fate in T cell differentiation.

Similar content being viewed by others

References

  1. Burnet, F. M. The concept of immunological surveillance. Prog. Exp. Tumor Res. 13, 1–27 (1970).

    Article  CAS  PubMed  Google Scholar 

  2. Ishida, Y., Agata, Y., Shibahara, K. & Honjo, T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J. 11, 3887–3895 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Walunas, T. L. et al. CTLA-4 can function as a negative regulator of T cell activation. Immunity 1, 405–413 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Waterhouse, P. et al. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science 270, 985–988 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Tivol, E. A. et al. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 3, 541–547 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Nishimura, H., Minato, N., Nakano, T. & Honjo, T. Immunological studies on PD-1 deficient mice: implication of PD-1 as a negative regulator for B cell responses. Int. Immunol. 10, 1563–1572 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Nishimura, H., Nose, M., Hiai, H., Minato, N. & Honjo, T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 11, 141–151 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Nishimura, H. et al. Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science 291, 319–322 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Okazaki, T. et al. Autoantibodies against cardiac troponin I are responsible for dilated cardiomyopathy in PD-1-deficient mice. Nat. Med. 9, 1477–1483 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Leach, D. R., Krummel, M. F. & Allison, J. P. Enhancement of antitumor immunity by CTLA-4 blockade. Science 271, 1734–1736 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Iwai, Y. et al. Involvement of PDL1 on tumor cells in the escape from host immune system and tumor immunotherapy by PDL1 blockade. Proc. Natl Acad. Sci. USA 99, 12293–12297 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Brahmer, J. R. et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J. Clin. Oncol. 28, 3167–3175 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Topalian, S. L. et al. Safety, activity, and immune correlates of anti-PD1 antibody in cancer. N. Engl. J. Med. 366, 2443–2454 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Weber, J. S. et al. Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 16, 375–384 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Brahmer, J. et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N. Engl. J. Med. 373, 123–135 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Borghaei, H. et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N. Engl. J. Med. 373, 1627–1639 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dong, H., Zhu, G., Tamada, K. & Chen, L. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat. Med. 5, 1365–1369 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Freeman, G. J. et al. Engagement of the PD1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med. 192, 1027–1034 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Latchman, Y. et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat. Immunol. 2, 261–268 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Dong, H. et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat. Med. 8, 793–800 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Ishida, M. et al. Differential expression of PD-L1 and PD-L2, ligands for an inhibitory receptor PD-1, in the cells of lymphohematopoietic tissues. Immunol. Lett. 84, 57–62 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Liang, S. C. et al. Regulation of PD-1, PD-L1, and PD-L2 expression during normal and autoimmune responses. Eur. J. Immunol. 33, 2706–2716 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Loke, P. & Allison, J. P. PD-L1 and PD-L2 are differentially regulated by Th1 and Th2 cells. Proc. Natl Acad. Sci. USA 100, 5336–5341 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Iwai, Y., Terawaki, S., Ikegawa, M., Okazaki, T. & Honjo, T. PD-1 inhibits antiviral immunity at the effector phase in the liver. J. Exp. Med. 198, 39–50 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhong, X., Tumang, J. R., Gao, W., Bai, C. & Rothstein, T. L. PD-L2 expression extends beyond dendritic cells/macrophages to B1 cells enriched for V(H)11/V(H)12 and phosphatidylcholine binding. Eur. J. Immunol. 37, 2405–2410 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Miao, Y. R. et al. Neutralization of PD-L2 is essential for overcoming immune checkpoint blockade resistance in ovarian cancer. Clin. Cancer Res. 27, 4435–4448 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Oestreich, K. J., Yoon, H., Ahmed, R. & Boss, J. M. NFATc1 regulates PD-1 expression upon T cell activation. J. Immunol. 181, 4832–4839 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Wang, G., Tajima, M., Honjo, T. & Ohta, A. STAT5 interferes with PD-1 transcriptional activation and affects CD8+T-cell sensitivity to PD-1-dependent immunoregulation. Int. Immunol. 33, 563–572 (2021).

    Article  CAS  PubMed  Google Scholar 

  29. Carter, L. et al. PD-1:PD-L inhibitory pathway affects both CD4+ and CD8+ T cells and is overcome by IL-2. Eur. J. Immunol. 32, 634–643 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. McLane, L. M. et al. Role of nuclear localization in the regulation and function of T-bet and Eomes in exhausted CD8 T cells. Cell Rep. 35, 109120 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Joshi, N. S. et al. Inflammation directs memory precursor and short-lived effector CD8+ T cell fates via the graded expression of T-bet transcription factor. Immunity 27, 281–295 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Intlekofer, A. M. et al. Effector and memory CD8+ T cell fate coupled by T-bet and eomesodermin. Nat. Immunol. 6, 1236–1244 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Banerjee, A. et al. Cutting edge: the transcription factor eomesodermin enables CD8+ T cells to compete for the memory cell niche. J. Immunol. 185, 4988–4992 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Paley, M. A. et al. Progenitor and terminal subsets of CD8+ T cells cooperate to contain chronic viral infection. Science 338, 1220–1225 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Beltra, J. C. et al. Developmental relationships of four exhausted CD8+ T cell subsets reveals underlying transcriptional and epigenetic landscape control mechanisms. Immunity 52, 825–841 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Roemer, M. G. et al. PD-L1 and PD-L2 genetic alterations define classical Hodgkin lymphoma and predict outcome. J. Clin. Oncol. 34, 2690–2697 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. George, J. et al. Genomic amplification of CD274 (PD-L1) in small-cell lung cancer. Clin. Cancer Res. 23, 1220–1226 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. Twa, D. D. et al. Genomic rearrangements involving programmed death ligands are recurrent in primary mediastinal large B-cell lymphoma. Blood 123, 2062–2065 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Ribas, A. & Hu-Lieskovan, S. What does PD-L1 positive or negative mean. J. Exp. Med. 213, 2835–2840 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gao, J. et al. Loss of IFN-γ pathway genes in tumor cells as a mechanism of resistance to anti-CTLA-4 therapy. Cell 167, 397–404 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shin, D. S. et al. Primary resistance to PD-1 blockade mediated by JAK1/2 mutations. Cancer Discov. 7, 188–201 (2017).

    Article  CAS  PubMed  Google Scholar 

  42. Zaretsky, J. M. et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N. Engl. J. Med. 375, 819–829 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Manguso, R. T. et al. In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. Nature 547, 413–418 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Patel, S. J. et al. Identification of essential genes for cancer immunotherapy. Nature 548, 537–542 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pan, D. et al. A major chromatin regulator determines resistance of tumor cells to T cell-mediated killing. Science 359, 770–775 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yi, M., Niu, M., Xu, L., Luo, S. & Wu, K. Regulation of PD-L1 expression in the tumor microenvironment. J. Hematol. Oncol. 14, 10 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yi, M. et al. The role of cancer-derived microRNAs in cancer immune escape. J. Hematol. Oncol. 13, 25 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kataoka, K. et al. Aberrant PD-L1 expression through 3ʹ-UTR disruption in multiple cancers. Nature 534, 402–406 (2016).

    Article  CAS  PubMed  Google Scholar 

  49. Yamaguchi, H., Hsu, J. M., Yang, W. H. & Hung, M. C. Mechanisms regulating PD-L1 expression in cancers and associated opportunities for novel small-molecule therapeutics. Nat. Rev. Clin. Oncol. 19, 287–305 (2022).

    Article  CAS  PubMed  Google Scholar 

  50. Okazaki, T., Maeda, A., Nishimura, H., Kurosaki, T. & Honjo, T. PD-1 immunoreceptor inhibits B cell receptor-mediated signaling by recruiting src homology 2-domain-containing tyrosine phosphatase 2 to phosphotyrosine. Proc. Natl Acad. Sci. USA 98, 13866–13871 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chemnitz, J. M., Parry, R. V., Nichols, K. E., June, C. H. & Riley, J. L. SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. J. Immunol. 173, 945–954 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Yokosuka, T. et al. Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2. J. Exp. Med. 209, 1201–1217 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Patsoukis, N. et al. Interaction of SHP-2 SH2 domains with PD-1 ITSM induces PD-1 dimerization and SHP-2 activation. Commun. Biol. 3, 128 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hui, E. et al. T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition. Science 355, 1428–1433 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Butte, M. J., Pena-Cruz, V., Kim, M. J., Freeman, G. J. & Sharpe, A. H. Interaction of human PD-L1 and B7-1. Mol. Immunol. 45, 3567–3572 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. van der Merwe, P. A., Bodian, D. L., Daenke, S., Linsley, P. & Davis, S. J. CD80 (B7-1) binds both CD28 and CTLA-4 with a low affinity and very fast kinetics. J. Exp. Med. 185, 393–403 (1997).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Chaudhri, A. et al. PD-L1 binds to B7-1 only in cis on the same cell surface. Cancer Immunol. Res. 6, 921–929 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sugiura, D. et al. Restriction of PD-1 function by cis-PD-L1/CD80 interactions is required for optimal T cell responses. Science 364, 558–566 (2019).

    Article  CAS  PubMed  Google Scholar 

  59. Zhao, Y. et al. PD-L1:CD80 cis-heterodimer triggers the co-stimulatory receptor CD28 while repressing the inhibitory PD-1 and CTLA-4 pathways. Immunity 51, 1059–1073 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Garrett-Thomson, S. C. et al. Mechanistic dissection of the PD-L1:B7-1 co-inhibitory immune complex. PLoS ONE 15, e0233578 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sugiura, D. et al. PD-1 agonism by anti-CD80 inhibits T cell activation and alleviates autoimmunity. Nat. Immunol. 23, 399–410 (2022).

    Article  CAS  PubMed  Google Scholar 

  62. Zha, H. et al. Non-canonical PD-1 signaling in cancer and its potential implications in clinic. J. Immunother. Cancer https://doi.org/10.1136/jitc-2020-001230 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Zhao, Y. et al. Antigen-presenting cell-intrinsic PD-1 neutralizes PD-L1 in cis to attenuate PD-1 signaling in T cells. Cell Rep. 24, 379–390 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kornepati, A. V. R., Vadlamudi, R. K. & Curiel, T. J. Programmed death ligand 1 signals in cancer cells. Nat. Rev. Cancer 22, 174–189 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gutzmer, R. et al. Atezolizumab, vemurafenib, and cobimetinib as first-line treatment for unresectable advanced BRAF(V600) mutation-positive melanoma (IMspire150): primary analysis of the randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 395, 1835–1844 (2020).

    Article  CAS  PubMed  Google Scholar 

  66. Pokorny, R. et al. Real-world experience with elective discontinuation of PD-1 inhibitors at 1 year in patients with metastatic melanoma. J. Immunother. Cancer https://doi.org/10.1136/jitc-2020-001781 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Valentin, J. et al. Real-world survival in patients with metastatic melanoma after discontinuation of anti-PD-1 immunotherapy for objective response or adverse effects: a retrospective study. J. Oncol. 2021, 5524685 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Hellmann, M. D. et al. Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden. N. Engl. J. Med. 378, 2093–2104 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Marabelle, A. et al. Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet Oncol. 21, 1353–1365 (2020).

    Article  CAS  PubMed  Google Scholar 

  70. Martincorena, I. & Campbell, P. J. Somatic mutation in cancer and normal cells. Science 349, 1483–1489 (2015).

    Article  CAS  PubMed  Google Scholar 

  71. Yost, K. E. et al. Clonal replacement of tumor-specific T cells following PD-1 blockade. Nat. Med. 25, 1251–1259 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Liu, B. et al. Temporal single-cell tracing reveals clonal revival and expansion of precursor exhausted T cells during anti-PD-1 therapy in lung cancer. Nat. Cancer 3, 108–121 (2022).

    Article  CAS  PubMed  Google Scholar 

  73. Sewell, A. K. Why must T cells be cross-reactive. Nat. Rev. Immunol. 12, 669–677 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Man, K. & Kallies, A. Synchronizing transcriptional control of T cell metabolism and function. Nat. Rev. Immunol. 15, 574–584 (2015).

    Article  CAS  PubMed  Google Scholar 

  75. Barber, D. L. et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439, 682–687 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Blackburn, S. D., Shin, H., Freeman, G. J. & Wherry, E. J. Selective expansion of a subset of exhausted CD8 T cells by αPD-L1 blockade. Proc. Natl Acad. Sci. USA 105, 15016–15021 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Im, S. J. et al. Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. Nature 537, 417–421 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Pauken, K. E. et al. Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science 354, 1160–1165 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Blank, C. U. et al. Defining ‘T cell exhaustion’. Nat. Rev. Immunol. 19, 665–674 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Franco, F., Jaccard, A., Romero, P., Yu, Y. R. & Ho, P. C. Metabolic and epigenetic regulation of T-cell exhaustion. Nat. Metab. 2, 1001–1012 (2020).

    Article  CAS  PubMed  Google Scholar 

  81. Wherry, E. J. et al. Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat. Immunol. 4, 225–234 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Sarkar, S. et al. Strength of stimulus and clonal competition impact the rate of memory CD8 T cell differentiation. J. Immunol. 179, 6704–6714 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Pauken, K. E. et al. The PD-1 pathway regulates development and function of memory CD8+ T cells following respiratory viral infection. Cell Rep. 31, 107827 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Johnnidis, J. B. et al. Inhibitory signaling sustains a distinct early memory CD8+ T cell precursor that is resistant to DNA damage. Sci. Immunol. https://doi.org/10.1126/sciimmunol.abe3702 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Kalia, V. et al. Metabolic regulation by PD-1 signaling promotes long-lived quiescent CD8 T cell memory in mice. Sci. Transl Med. 13, eaba6006 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ahn, E. et al. Role of PD-1 during effector CD8 T cell differentiation. Proc. Natl Acad. Sci. USA 115, 4749–4754 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Allie, S. R., Zhang, W., Fuse, S. & Usherwood, E. J. Programmed death 1 regulates development of central memory CD8 T cells after acute viral infection. J. Immunol. 186, 6280–6286 (2011).

    Article  CAS  PubMed  Google Scholar 

  88. Enamorado, M. et al. Enhanced anti-tumour immunity requires the interplay between resident and circulating memory CD8+ T cells. Nat. Commun. 8, 16073 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Edwards, J. et al. CD103+ tumor-resident CD8+ T cells are associated with improved survival in immunotherapy-naive melanoma patients and expand significantly during anti-PD-1 treatment. Clin. Cancer Res. 24, 3036–3045 (2018).

    Article  CAS  PubMed  Google Scholar 

  90. Caushi, J. X. et al. Transcriptional programs of neoantigen-specific TIL in anti-PD-1-treated lung cancers. Nature 596, 126–132 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Han, J. et al. Resident and circulating memory T cells persist for years in melanoma patients with durable responses to immunotherapy. Nat. Cancer 2, 300–311 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kim, M. J. et al. Deletion of PD-1 destabilizes the lineage identity and metabolic fitness of tumor-infiltrating regulatory T cells. Nat. Immunol. 24, 148–161 (2023).

    Article  CAS  PubMed  Google Scholar 

  93. Zhang, B., Chikuma, S., Hori, S., Fagarasan, S. & Honjo, T. Nonoverlapping roles of PD-1 and FoxP3 in maintaining immune tolerance in a novel autoimmune pancreatitis mouse model. Proc. Natl Acad. Sci. USA 113, 8490–8495 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kamada, T. et al. PD-1+ regulatory T cells amplified by PD-1 blockade promote hyperprogression of cancer. Proc. Natl Acad. Sci. USA 116, 9999–10008 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Tan, C. L. et al. PD-1 restraint of regulatory T cell suppressive activity is critical for immune tolerance. J. Exp. Med. https://doi.org/10.1084/jem.20182232 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Perry, J. A. et al. PD-L1–PD-1 interactions limit effector regulatory T cell populations at homeostasis and during infection. Nat. Immunol. 23, 743–756 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wakiyama, H. et al. Treg-dominant tumor microenvironment is responsible for hyperprogressive disease after PD-1 blockade therapy. Cancer Immunol. Res. 10, 1386–1397 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kumagai, S. et al. The PD-1 expression balance between effector and regulatory T cells predicts the clinical efficacy of PD-1 blockade therapies. Nat. Immunol. 21, 1346–1358 (2020).

    Article  CAS  PubMed  Google Scholar 

  99. Vahl, J. C. et al. Continuous T cell receptor signals maintain a functional regulatory T cell pool. Immunity 41, 722–736 (2014).

    Article  CAS  PubMed  Google Scholar 

  100. Levine, A. G., Arvey, A., Jin, W. & Rudensky, A. Y. Continuous requirement for the TCR in regulatory T cell function. Nat. Immunol. 15, 1070–1078 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wing, K. et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science 322, 271–275 (2008).

    Article  CAS  PubMed  Google Scholar 

  102. Simpson, T. R. et al. Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti-CTLA-4 therapy against melanoma. J. Exp. Med. 210, 1695–1710 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Romano, E. et al. Ipilimumab-dependent cell-mediated cytotoxicity of regulatory T cells ex vivo by nonclassical monocytes in melanoma patients. Proc. Natl Acad. Sci. USA 112, 6140–6145 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Helou, D. G. et al. PD-1 pathway regulates ILC2 metabolism and PD-1 agonist treatment ameliorates airway hyperreactivity. Nat. Commun. 11, 3998 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Taylor, S. et al. PD-1 regulates KLRG1+ group 2 innate lymphoid cells. J. Exp. Med. 214, 1663–1678 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Oldenhove, G. et al. PD-1 is involved in the dysregulation of type 2 innate lymphoid cells in a murine model of obesity. Cell Rep. 25, 2053–2060 (2018).

    Article  CAS  PubMed  Google Scholar 

  107. Moral, J. A. et al. ILC2s amplify PD-1 blockade by activating tissue-specific cancer immunity. Nature 579, 130–135 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Jacquelot, N. et al. Blockade of the co-inhibitory molecule PD-1 unleashes ILC2-dependent antitumor immunity in melanoma. Nat. Immunol. 22, 851–864 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Goc, J. et al. Dysregulation of ILC3s unleashes progression and immunotherapy resistance in colon cancer. Cell https://doi.org/10.1016/j.cell.2021.07.029 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Gordon, S. R. et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature 545, 495–499 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Yao, S. et al. PD-1 on dendritic cells impedes innate immunity against bacterial infection. Blood 113, 5811–5818 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Strauss, L. et al. Targeted deletion of PD-1 in myeloid cells induces antitumor immunity. Sci. Immunol. https://doi.org/10.1126/sciimmunol.aay1863 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Kawamoto, S. et al. The inhibitory receptor PD-1 regulates IgA selection and bacterial composition in the gut. Science 336, 485–489 (2012).

    Article  CAS  PubMed  Google Scholar 

  114. Maruya, M., Kawamoto, S., Kato, L. M. & Fagarasan, S. Impaired selection of IgA and intestinal dysbiosis associated with PD-1-deficiency. Gut Microbes 4, 165–171 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Kato, L. M., Kawamoto, S., Maruya, M. & Fagarasan, S. Gut TFH and IgA: key players for regulation of bacterial communities and immune homeostasis. Immunol. Cell Biol. 92, 49–56 (2014).

    Article  CAS  PubMed  Google Scholar 

  116. Akrami, M. et al. Circulation of gut-preactivated naïve CD8+ T cells enhances antitumor immunity in B cell-defective mice. Proc. Natl Acad. Sci. USA 117, 23674–23683 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Wang, N. et al. Selective IgA deficiency in autoimmune diseases. Mol. Med. 17, 1383–1396 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Aytekin, C., Tuygun, N., Gokce, S., Dogu, F. & Ikinciogullari, A. Selective IgA deficiency: clinical and laboratory features of 118 children in Turkey. J. Clin. Immunol. 32, 961–966 (2012).

    Article  CAS  PubMed  Google Scholar 

  119. Dunn, G. P., Bruce, A. T., Ikeda, H., Old, L. J. & Schreiber, R. D. Cancer immunoediting: from immunosurveillance to tumor escape. Nat. Immunol. 3, 991–998 (2002).

    Article  CAS  PubMed  Google Scholar 

  120. Beatty, G. L. & Gladney, W. L. Immune escape mechanisms as a guide for cancer immunotherapy. Clin. Cancer Res. 21, 687–692 (2015).

    Article  CAS  PubMed  Google Scholar 

  121. Kim, J. M. & Chen, D. S. Immune escape to PD-L1/PD-1 blockade: seven steps to success (or failure). Ann. Oncol. 27, 1492–1504 (2016).

    Article  CAS  PubMed  Google Scholar 

  122. Rotte, A. Combination of CTLA-4 and PD-1 blockers for treatment of cancer. J. Exp. Clin. Cancer Res. 38, 255 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Tawbi, H. A. et al. Relatlimab and nivolumab versus nivolumab in untreated advanced melanoma. N. Engl. J. Med. 386, 24–34 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Florou, V. & Garrido-Laguna, I. Clinical development of anti-TIGIT antibodies for immunotherapy of cancer. Curr. Oncol. Rep. https://doi.org/10.1007/s11912-022-01281-5 (2022).

    Article  PubMed  Google Scholar 

  125. Tian, T. & Li, Z. Targeting Tim-3 in cancer with resistance to PD-1/PD-L1 blockade. Front. Oncol. 11, 731175 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Kong, K. F. et al. Protein kinase C-eta controls CTLA-4-mediated regulatory T cell function. Nat. Immunol. 15, 465–472 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Khoja, L., Day, D., Wei-Wu Chen, T., Siu, L. L. & Hansen, A. R. Tumour- and class-specific patterns of immune-related adverse events of immune checkpoint inhibitors: a systematic review. Ann. Oncol. 28, 2377–2385 (2017).

    Article  CAS  PubMed  Google Scholar 

  128. Robert, L. et al. CTLA4 blockade broadens the peripheral T-cell receptor repertoire. Clin. Cancer Res. 20, 2424–2432 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Gangaev, A. et al. Differential effects of PD-1 and CTLA-4 blockade on the melanoma-reactive CD8 T cell response. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2102849118 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Kuhns, M. S., Epshteyn, V., Sobel, R. A. & Allison, J. P. Cytotoxic T lymphocyte antigen-4 (CTLA-4) regulates the size, reactivity, and function of a primed pool of CD4+ T cells. Proc. Natl Acad. Sci. USA 97, 12711–12716 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Cha, E. et al. Improved survival with T cell clonotype stability after anti-CTLA-4 treatment in cancer patients. Sci. Transl Med. 6, 238ra270 (2014).

    Article  Google Scholar 

  132. Qin, S. et al. Novel immune checkpoint targets: moving beyond PD-1 and CTLA-4. Mol. Cancer 18, 155 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Maruhashi, T. et al. LAG-3 inhibits the activation of CD4+ T cells that recognize stable pMHCII through its conformation-dependent recognition of pMHCII. Nat. Immunol. 19, 1415–1426 (2018).

    Article  CAS  PubMed  Google Scholar 

  134. Komander, D. & Rape, M. The ubiquitin code. Annu. Rev. Biochem. 81, 203–229 (2012).

    Article  CAS  PubMed  Google Scholar 

  135. Zhou, X. & Sun, S. C. Targeting ubiquitin signaling for cancer immunotherapy. Signal. Transduct. Target. Ther. 6, 16 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Huang, H. et al. K33-linked polyubiquitination of T cell receptor-zeta regulates proteolysis-independent T cell signaling. Immunity 33, 60–70 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Loeser, S. et al. Spontaneous tumor rejection by cbl-b-deficient CD8+ T cells. J. Exp. Med. 204, 879–891 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Paolino, M. et al. Essential role of E3 ubiquitin ligase activity in Cbl-b-regulated T cell functions. J. Immunol. 186, 2138–2147 (2011).

    Article  CAS  PubMed  Google Scholar 

  139. Peer, S., Baier, G. & Gruber, T. Cblb-deficient T cells are less susceptible to PD-L1-mediated inhibition. Oncotarget 8, 41841–41853 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Castro-Sanchez, P., Teagle, A. R., Prade, S. & Zamoyska, R. Modulation of TCR signaling by tyrosine phosphatases: from autoimmunity to immunotherapy. Front. Cell Dev. Biol. 8, 608747 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Cubas, R. et al. Autoimmunity linked protein phosphatase PTPN22 as a target for cancer immunotherapy. J. Immunother. Cancer https://doi.org/10.1136/jitc-2020-001439 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Ho, W. J. et al. Systemic inhibition of PTPN22 augments anticancer immunity. J. Clin. Invest. https://doi.org/10.1172/JCI146950 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Wu, J. et al. Identification of substrates of human protein-tyrosine phosphatase PTPN22. J. Biol. Chem. 281, 11002–11010 (2006).

    Article  CAS  PubMed  Google Scholar 

  144. Bottini, N. & Peterson, E. J. Tyrosine phosphatase PTPN22: multifunctional regulator of immune signaling, development, and disease. Annu. Rev. Immunol. 32, 83–119 (2014).

    Article  CAS  PubMed  Google Scholar 

  145. Salmond, R. J., Brownlie, R. J., Morrison, V. L. & Zamoyska, R. The tyrosine phosphatase PTPN22 discriminates weak self peptides from strong agonist TCR signals. Nat. Immunol. 15, 875–883 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. D’Oro, U., Sakaguchi, K., Appella, E. & Ashwell, J. D. Mutational analysis of Lck in CD45-negative T cells: dominant role of tyrosine 394 phosphorylation in kinase activity. Mol. Cell Biol. 16, 4996–5003 (1996).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Nakajima, Y., Chamoto, K., Oura, T. & Honjo, T. Critical role of the CD44lowCD62Llow CD8+ T cell subset in restoring antitumor immunity in aged mice. Proc. Natl Acad. Sci. USA 118, e2103730118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Chapman, N. M., Boothby, M. R. & Chi, H. Metabolic coordination of T cell quiescence and activation. Nat. Rev. Immunol. 20, 55–70 (2020).

    Article  CAS  PubMed  Google Scholar 

  149. Kumar, A. & Chamoto, K. Immune metabolism in PD-1 blockade-based cancer immunotherapy. Int. Immunol. 33, 17–26 (2021).

    Article  CAS  PubMed  Google Scholar 

  150. Pearce, E. L. et al. Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 460, 103–107 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Patsoukis, N. et al. PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nat. Commun. 6, 6692 (2015).

    Article  CAS  PubMed  Google Scholar 

  152. Chowdhury, P. S., Chamoto, K., Kumar, A. & Honjo, T. PPAR-induced fatty acid oxidation in T cells increases the number of tumor-reactive CD8+ T cells and facilitates anti-PD-1 therapy. Cancer Immunol. Res. 6, 1375–1387 (2018).

    Article  CAS  PubMed  Google Scholar 

  153. Jang, J. Y., Blum, A., Liu, J. & Finkel, T. The role of mitochondria in aging. J. Clin. Invest. 128, 3662–3670 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Yu, Y. R. et al. Disturbed mitochondrial dynamics in CD8+ TILs reinforce T cell exhaustion. Nat. Immunol. 21, 1540–1551 (2020).

    Article  CAS  PubMed  Google Scholar 

  155. Vardhana, S. A. et al. Impaired mitochondrial oxidative phosphorylation limits the self-renewal of T cells exposed to persistent antigen. Nat. Immunol. 21, 1022–1033 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Scharping, N. E. et al. The tumor microenvironment represses T cell mitochondrial biogenesis to drive intratumoral T cell metabolic insufficiency and dysfunction. Immunity 45, 701–703 (2016).

    Article  CAS  PubMed  Google Scholar 

  157. Tanaka, K. et al. Combination bezafibrate and nivolumab treatment of patients with advanced non-small cell lung cancer. Sci. Transl Med. 14, eabq0021 (2022).

    Article  CAS  PubMed  Google Scholar 

  158. Al-Habsi, M. et al. Spermidine activates mitochondrial trifunctional protein and improves antitumor immunity in mice. Science 378, eabj3510 (2022).

    Article  CAS  PubMed  Google Scholar 

  159. Gopalakrishnan, V. et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 359, 97–103 (2018).

    Article  CAS  PubMed  Google Scholar 

  160. Routy, B. et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359, 91–97 (2018).

    Article  CAS  PubMed  Google Scholar 

  161. Tanoue, T. et al. A defined commensal consortium elicits CD8 T cells and anti-cancer immunity. Nature 565, 600–605 (2019).

    Article  CAS  PubMed  Google Scholar 

  162. Sivan, A. et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350, 1084–1089 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Belkaid, Y. & Hand, T. W. Role of the microbiota in immunity and inflammation. Cell 157, 121–141 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Zheng, D., Liwinski, T. & Elinav, E. Interaction between microbiota and immunity in health and disease. Cell Res. 30, 492–506 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Clarke, T. B. Microbial programming of systemic innate immunity and resistance to infection. PLoS Pathog. 10, e1004506 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Hatae, R. et al. Combination of host immune metabolic biomarkers for the PD-1 blockade cancer immunotherapy. JCI Insight https://doi.org/10.1172/jci.insight.133501 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Balachandran, V. P. et al. Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer. Nature 551, 512–516 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Fluckiger, A. et al. Cross-reactivity between tumor MHC class I-restricted antigens and an enterococcal bacteriophage. Science 369, 936–942 (2020).

    Article  CAS  PubMed  Google Scholar 

  169. Nagpal, R. & Yadav, H. Bacterial translocation from the gut to the distant organs: an overview. Ann. Nutr. Metab. 71, 11–16 (2017).

    Article  CAS  PubMed  Google Scholar 

  170. Clarke, T. B. et al. Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nat. Med. 16, 228–231 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Davar, D. et al. Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients. Science 371, 595–602 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Andrews, M. C. et al. Gut microbiota signatures are associated with toxicity to combined CTLA-4 and PD-1 blockade. Nat. Med. 27, 1432–1441 (2021).

    Article  CAS  PubMed  Google Scholar 

  173. Paluch, C., Santos, A. M., Anzilotti, C., Cornall, R. J. & Davis, S. J. Immune checkpoints as therapeutic targets in autoimmunity. Front. Immunol. 9, 2306 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Curnock, A. P. et al. Cell-targeted PD-1 agonists that mimic PD-L1 are potent T cell inhibitors. JCI Insight https://doi.org/10.1172/jci.insight.152468 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Suzuki, K. et al. Anti-PD-1 antibodies recognizing the membrane-proximal region are PD-1 agonists that can down-regulate inflammatory diseases. Sci. Immunol. 8, eadd4947 (2023).

    Article  CAS  PubMed  Google Scholar 

  176. Wang, M. et al. Carnitine palmitoyltransferase system: a new target for anti-inflammatory and anticancer therapy. Front. Pharmacol. 12, 760581 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Batista-Gonzalez, A., Vidal, R., Criollo, A. & Carreno, L. J. New insights on the role of lipid metabolism in the metabolic reprogramming of macrophages. Front. Immunol. 10, 2993 (2019).

    Article  CAS  PubMed  Google Scholar 

  178. Ishida, Y. PD-1: its discovery, involvement in cancer immunotherapy, and beyond. Cells https://doi.org/10.3390/cells9061376 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Agata, Y. et al. Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int. Immunol. 8, 765–772 (1996).

    Article  CAS  PubMed  Google Scholar 

  180. Iwai, Y., Terawaki, S. & Honjo, T. PD-1 blockade inhibits hematogenous spread of poorly immunogenic tumor cells by enhanced recruitment of effector T cells. Int. Immunol. 17, 133–144 (2005).

    Article  CAS  PubMed  Google Scholar 

  181. Lonberg, N. et al. Antigen-specific human antibodies from mice comprising four distinct genetic modifications. Nature 368, 856–859 (1994).

    Article  CAS  PubMed  Google Scholar 

  182. Robert, C. et al. Nivolumab in previously untreated melanoma without BRAF mutation. N. Engl. J. Med. 372, 320–330 (2015).

    Article  CAS  PubMed  Google Scholar 

  183. Iwai, Y., Hamanishi, J., Chamoto, K. & Honjo, T. Cancer immunotherapies targeting the PD-1 signaling pathway. J. Biomed. Sci. 24, 26 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  184. June, C. H., Warshauer, J. T. & Bluestone, J. A. Is autoimmunity the Achilles’ heel of cancer immunotherapy? Nat. Med. 23, 540–547 (2017).

    Article  CAS  PubMed  Google Scholar 

  185. Okazaki, T., Chikuma, S., Iwai, Y., Fagarasan, S. & Honjo, T. A rheostat for immune responses: the unique properties of PD-1 and their advantages for clinical application. Nat. Immunol. 14, 1212–1218 (2013).

    Article  CAS  PubMed  Google Scholar 

  186. Postow, M. A., Sidlow, R. & Hellmann, M. D. Immune-related adverse events associated with immune checkpoint blockade. N. Engl. J. Med. 378, 158–168 (2018).

    Article  CAS  PubMed  Google Scholar 

  187. Okazaki, T. et al. Hydronephrosis associated with antiurothelial and antinuclear autoantibodies in BALB/c-Fcgr2b-/-Pdcd1-/- mice. J. Exp. Med. 202, 1643–1648 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Martins, F. et al. Adverse effects of immune-checkpoint inhibitors: epidemiology, management and surveillance. Nat. Rev. Clin. Oncol. 16, 563–580 (2019).

    Article  CAS  PubMed  Google Scholar 

  189. Michot, J. M. et al. Immune-related adverse events with immune checkpoint blockade: a comprehensive review. Eur. J. Cancer 54, 139–148 (2016).

    Article  CAS  PubMed  Google Scholar 

  190. Axelrod, M. L. et al. T cells specific for alpha-myosin drive immunotherapy-related myocarditis. Nature 611, 818–826 (2022).

    Article  CAS  Google Scholar 

  191. Miyajima, M. et al. Metabolic shift induced by systemic activation of T cells in PD-1-deficient mice perturbs brain monoamines and emotional behavior. Nat. Immunol. 18, 1342–1352 (2017).

    Article  CAS  PubMed  Google Scholar 

  192. Fan, K. Q. et al. Stress-induced metabolic disorder in peripheral CD4+ T cells leads to anxiety-like behavior. Cell 179, 864–879 (2019).

    Article  CAS  PubMed  Google Scholar 

  193. Wang, Y. C. et al. Targeting monoamine oxidase A-regulated tumor-associated macrophage polarization for cancer immunotherapy. Nat. Commun. 12, 3530 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Voudouri, D. et al. Anti-PD1/PDL1 induced psoriasis. Curr. Probl. Cancer 41, 407–412 (2017).

    Article  PubMed  Google Scholar 

  195. Toi, Y. et al. Association of immune-related adverse events with clinical benefit in patients with advanced non-small-cell lung cancer treated with nivolumab. Oncologist 23, 1358–1365 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Maher, V. E. et al. Analysis of the association between adverse events and outcome in patients receiving a programmed death protein 1 or programmed death ligand 1 antibody. J. Clin. Oncol. 37, 2730–2737 (2019).

    Article  CAS  PubMed  Google Scholar 

  197. Eggermont, A. M. M. et al. Association between immune-related adverse events and recurrence-free survival among patients with stage III melanoma randomized to receive pembrolizumab or placebo: a secondary analysis of a randomized clinical trial. JAMA Oncol. 6, 519–527 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Weber, J. S. et al. Safety profile of nivolumab monotherapy: a pooled analysis of patients with advanced melanoma. J. Clin. Oncol. 35, 785–792 (2017).

    Article  CAS  PubMed  Google Scholar 

  199. Arbour, K. C. et al. Impact of baseline steroids on efficacy of programmed cell death-1 and programmed death-ligand 1 blockade in patients with non-small-cell lung cancer. J. Clin. Oncol. 36, 2872–2878 (2018).

    Article  CAS  PubMed  Google Scholar 

  200. Tokunaga, A. et al. Selective inhibition of low-affinity memory CD8+ T cells by corticosteroids. J. Exp. Med. 216, 2701–2713 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Conroy, M. & Naidoo, J. Immune-related adverse events and the balancing act of immunotherapy. Nat. Commun. 13, 392 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Kang, J. H., Bluestone, J. A. & Young, A. Predicting and preventing immune checkpoint inhibitor toxicity: targeting cytokines. Trends Immunol. 42, 293–311 (2021).

    Article  CAS  PubMed  Google Scholar 

  203. Chi, Z., Lu, Y., Yang, Y., Li, B. & Lu, P. Transcriptional and epigenetic regulation of PD-1 expression. Cell Mol. Life Sci. 78, 3239–3246 (2021).

    Article  CAS  PubMed  Google Scholar 

  204. Bally, A. P., Austin, J. W. & Boss, J. M. Genetic and epigenetic regulation of PD-1 expression. J. Immunol. 196, 2431–2437 (2016).

    Article  CAS  PubMed  Google Scholar 

  205. Agnellini, P. et al. Impaired NFAT nuclear translocation results in split exhaustion of virus-specific CD8+ T cell functions during chronic viral infection. Proc. Natl Acad. Sci. USA 104, 4565–4570 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Staron, M. M. et al. The transcription factor FoxO1 sustains expression of the inhibitory receptor PD-1 and survival of antiviral CD8+ T cells during chronic infection. Immunity 41, 802–814 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Xiao, G., Deng, A., Liu, H., Ge, G. & Liu, X. Activator protein 1 suppresses antitumor T-cell function via the induction of programmed death 1. Proc. Natl Acad. Sci. USA 109, 15419–15424 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Lu, P. et al. Blimp-1 represses CD8 T cell expression of PD-1 using a feed-forward transcriptional circuit during acute viral infection. J. Exp. Med. 211, 515–527 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Shin, H. et al. A role for the transcriptional repressor Blimp-1 in CD8+ T cell exhaustion during chronic viral infection. Immunity 31, 309–320 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Kao, C. et al. Transcription factor T-bet represses expression of the inhibitory receptor PD-1 and sustains virus-specific CD8+ T cell responses during chronic infection. Nat. Immunol. 12, 663–671 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Terawaki, S. et al. IFN-α directly promotes programmed cell death-1 transcription and limits the duration of T cell-mediated immunity. J. Immunol. 186, 2772–2779 (2011).

    Article  CAS  PubMed  Google Scholar 

  212. Austin, J. W., Lu, P., Majumder, P., Ahmed, R. & Boss, J. M. STAT3, STAT4, NFATc1, and CTCF regulate PD-1 through multiple novel regulatory regions in murine T cells. J. Immunol. 192, 4876–4886 (2014).

    Article  CAS  PubMed  Google Scholar 

  213. Youngblood, B. et al. Chronic virus infection enforces demethylation of the locus that encodes PD-1 in antigen-specific CD8+ T cells. Immunity 35, 400–412 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Youngblood, B. et al. Cutting edge: prolonged exposure to HIV reinforces a poised epigenetic program for PD-1 expression in virus-specific CD8 T cells. J. Immunol. 191, 540–544 (2013).

    Article  CAS  PubMed  Google Scholar 

  215. Creyghton, M. P. et al. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc. Natl Acad. Sci. USA 107, 21931–21936 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Philip, M. & Schietinger, A. CD8+ T cell differentiation and dysfunction in cancer. Nat. Rev. Immunol. 22, 209–223 (2022).

    Article  CAS  PubMed  Google Scholar 

  217. Xu, W. et al. The transcription factor Tox2 drives T follicular helper cell development via regulating chromatin accessibility. Immunity 51, 826–839 (2019).

    Article  CAS  PubMed  Google Scholar 

  218. Seo, H. et al. TOX and TOX2 transcription factors cooperate with NR4A transcription factors to impose CD8+ T cell exhaustion. Proc. Natl Acad. Sci. USA 116, 12410–12415 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Scott, A. C. et al. TOX is a critical regulator of tumour-specific T cell differentiation. Nature 571, 270–274 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Khan, O. et al. TOX transcriptionally and epigenetically programs CD8+ T cell exhaustion. Nature 571, 211–218 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Alfei, F. et al. TOX reinforces the phenotype and longevity of exhausted T cells in chronic viral infection. Nature 571, 265–269 (2019).

    Article  CAS  PubMed  Google Scholar 

  222. O’Flaherty, E. & Kaye, J. TOX defines a conserved subfamily of HMG-box proteins. BMC Genomics 4, 13 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Wang, X. et al. TOX promotes the exhaustion of antitumor CD8+ T cells by preventing PD1 degradation in hepatocellular carcinoma. J. Hepatol. 71, 731–741 (2019).

    Article  CAS  PubMed  Google Scholar 

  224. Okada, M. et al. Blockage of core fucosylation reduces cell-surface expression of PD-1 and promotes anti-tumor immune responses of T cells. Cell Rep. 20, 1017–1028 (2017).

    Article  CAS  PubMed  Google Scholar 

  225. Meng, X. et al. FBXO38 mediates PD-1 ubiquitination and regulates anti-tumour immunity of T cells. Nature 564, 130–135 (2018).

    Article  CAS  PubMed  Google Scholar 

  226. Zhang, N. et al. Loss of core fucosylation enhances the anticancer activity of cytotoxic T lymphocytes by increasing PD-1 degradation. Eur. J. Immunol. 50, 1820–1833 (2020).

    Article  CAS  PubMed  Google Scholar 

  227. Szabo, P. A., Miron, M. & Farber, D. L. Location, location, location: tissue resident memory T cells in mice and humans. Sci. Immunol. https://doi.org/10.1126/sciimmunol.aas9673 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  228. Behr, F. M. et al. Tissue-resident memory CD8+ T cells shape local and systemic secondary T cell responses. Nat. Immunol. 21, 1070–1081 (2020).

    Article  CAS  PubMed  Google Scholar 

  229. Okła, K., Farber, D. L. & Zou, W. Tissue-resident memory T cells in tumor immunity and immunotherapy. J. Exp. Med. https://doi.org/10.1084/jem.20201605 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  230. Clarke, J. et al. Single-cell transcriptomic analysis of tissue-resident memory T cells in human lung cancer. J. Exp. Med. 216, 2128–2149 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Mami-Chouaib, F. et al. Resident memory T cells, critical components in tumor immunology. J. Immunother. Cancer 6, 87 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S. Fagarasan, F. Matsuda and N. Minato for their long support and collaboration. This work was supported by the Japan Agency for Medical Research and Development under Grant Number 20cm0106302 (T.H.), 22zf0127004s0202 and 22ama221305 (K.C.); JSPS KAKENHI grant under Grant Number JP21H03087 (K.C.), JP21H02785 (T.Y.) and JP19K16881 (M.T.); Tang Prize Foundation (T.H.); Yanai Fund (T.H.); Meiji Holdings Co., Ltd (T.H.); Meiji Seika Pharma Co., Ltd (T.H.); and Bristol-Myers Squibb Company (T.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tasuku Honjo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Immunology thanks Gordon Freeman, Enfu Hui and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chamoto, K., Yaguchi, T., Tajima, M. et al. Insights from a 30-year journey: function, regulation and therapeutic modulation of PD1. Nat Rev Immunol 23, 682–695 (2023). https://doi.org/10.1038/s41577-023-00867-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-023-00867-9

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer