Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Determining the effector response to cell death

Abstract

Cell death occurs when a pathogen invades a host organism or the organism is subjected to sterile injury. Thus, cell death is often closely associated with the induction of an immune response. Furthermore, cell death can occur as a consequence of the immune response and precedes the tissue renewal and repair responses that are initiated by innate immune cells during resolution of an immune response. Beyond immunity, cell death is required for development, morphogenesis and homeostasis. How can such a ubiquitous event as cell death trigger such a wide range of context-specific effector responses? Dying cells are sensed by innate immune cells using specialized receptors and phagocytosed through a process termed efferocytosis. Here, we outline a general principle whereby signals within the dead cell as well as the environment are integrated by specific efferocytes to define the appropriate effector response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic representation of the proposed code of cell death.
Fig. 2: The role of the efferocyte in determining the response to cell death.
Fig. 3: The role of the dying cell in determining the response to cell death.
Fig. 4: The role of the environment in determining the response to cell death.

Similar content being viewed by others

References

  1. Lowin, B., Peitsch, M. C. & Tschopp, J. Perforin and granzymes: crucial effector molecules in cytolytic T lymphocyte and natural killer cell-mediated cytotoxicity. Curr. Top. Microbiol. Immunol. 198, 1–24 (1995).

    CAS  PubMed  Google Scholar 

  2. Gordon, S. The macrophage: past, present and future. Eur. J. Immunol. 37, S9–S17 (2007).

    CAS  PubMed  Google Scholar 

  3. Ahmed, R. & Gray, D. Immunological memory and protective immunity: understanding their relation. Science 272, 54–60 (1996).

    CAS  PubMed  Google Scholar 

  4. Swain, S. L. et al. From naive to memory T cells. Immunol. Rev. 150, 143–167 (1996).

    CAS  PubMed  Google Scholar 

  5. Martinez, J. Prix fixe: efferocytosis as a four-course meal. Curr. Top. Microbiol. Immunol. 403, 1–36 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Bratosin, D. et al. Cellular and molecular mechanisms of senescent erythrocyte phagocytosis by macrophages. A review. Biochimie 80, 173–195 (1998).

    CAS  PubMed  Google Scholar 

  7. Voss, A. K. & Strasser, A. The essentials of developmental apoptosis. F1000Res https://doi.org/10.12688/f1000research.21571.1 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hopkinson-Woolley, J., Hughes, D., Gordon, S. & Martin, P. Macrophage recruitment during limb development and wound healing in the embryonic and foetal mouse. J. Cell Sci. 107, 1159–1167 (1994).

    PubMed  Google Scholar 

  9. Theofilopoulos, A. N. & Dixon, F. J. Murine models of systemic lupus erythematosus. Adv. Immunol. 37, 269–390 (1985).

    CAS  PubMed  Google Scholar 

  10. Andrews, B. S. et al. Spontaneous murine lupus-like syndromes. Clinical and immunopathological manifestations in several strains. J. Exp. Med. 148, 1198–1215 (1978).

    CAS  PubMed  Google Scholar 

  11. Roths, J. B., Murphy, E. D. & Eicher, E. M. A new mutation, gld, that produces lymphoproliferation and autoimmunity in C3H/HeJ mice. J. Exp. Med. 159, 1–20 (1984).

    CAS  PubMed  Google Scholar 

  12. Fisher, G. H. et al. Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell 81, 935–946 (1995).

    CAS  PubMed  Google Scholar 

  13. Chun, H. J. et al. Pleiotropic defects in lymphocyte activation caused by caspase-8 mutations lead to human immunodeficiency. Nature 419, 395–399 (2002).

    CAS  PubMed  Google Scholar 

  14. Wang, J. et al. Inherited human caspase 10 mutations underlie defective lymphocyte and dendritic cell apoptosis in autoimmune lymphoproliferative syndrome type II. Cell 98, 47–58 (1999).

    CAS  PubMed  Google Scholar 

  15. Rieux-Laucat, F. et al. Mutations in Fas associated with human lymphoproliferative syndrome and autoimmunity. Science 268, 1347–1349 (1995).

    CAS  PubMed  Google Scholar 

  16. Bouillet, P. et al. Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. Science 286, 1735–1738 (1999).

    CAS  PubMed  Google Scholar 

  17. Cox, G., Crossley, J. & Xing, Z. Macrophage engulfment of apoptotic neutrophils contributes to the resolution of acute pulmonary inflammation in vivo. Am. J. Respir. Cell Mol. Biol. 12, 232–237 (1995).

    CAS  PubMed  Google Scholar 

  18. Bosurgi, L. et al. Macrophage function in tissue repair and remodeling requires IL-4 or IL-13 with apoptotic cells. Science 356, 1072–1076 (2017). This study is the first to show that the integration of IL-4/IL-13 cytokine receptor signalling with sensing of apoptotic neutrophils is required for the induction of tissue repair responses in macrophages.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Torchinsky, M. B., Garaude, J., Martin, A. P. & Blander, J. M. Innate immune recognition of infected apoptotic cells directs TH17 cell differentiation. Nature 458, 78–82 (2009). This paper shows that the recognition of infected apoptotic cells leads to the induction of TH17 cell responses, whereas the response to apoptotic cells without microbial signals induces the differentiation of Treg cells.

    CAS  PubMed  Google Scholar 

  20. Brereton, C. F. & Blander, J. M. The unexpected link between infection-induced apoptosis and a TH17 immune response. J. Leukoc. Biol. 89, 565–576 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Mebius, R. E. & Kraal, G. Structure and function of the spleen. Nat. Rev. Immunol. 5, 606–616 (2005).

    CAS  PubMed  Google Scholar 

  22. de Back, D. Z., Kostova, E. B., van Kraaij, M., van den Berg, T. K. & van Bruggen, R. Of macrophages and red blood cells; a complex love story. Front. Physiol. 5, 9 (2014).

    PubMed  PubMed Central  Google Scholar 

  23. Yamaguchi, Y. & Miura, M. Programmed cell death in neurodevelopment. Dev. Cell 32, 478–490 (2015).

    CAS  PubMed  Google Scholar 

  24. Kuan, C. Y. et al. The Jnk1 and Jnk2 protein kinases are required for regional specific apoptosis during early brain development. Neuron 22, 667–676 (1999).

    CAS  PubMed  Google Scholar 

  25. De Zio, D., Giunta, L., Corvaro, M., Ferraro, E. & Cecconi, F. Expanding roles of programmed cell death in mammalian neurodevelopment. Semin. Cell Dev. Biol. 16, 281–294 (2005).

    PubMed  Google Scholar 

  26. Yoshida, H. et al. Apaf1 is required for mitochondrial pathways of apoptosis and brain development. Cell 94, 739–750 (1998).

    CAS  PubMed  Google Scholar 

  27. Cecconi, F., Alvarez-Bolado, G., Meyer, B. I., Roth, K. A. & Gruss, P. Apaf1 (CED-4 homolog) regulates programmed cell death in mammalian development. Cell 94, 727–737 (1998).

    CAS  PubMed  Google Scholar 

  28. Brinkmann, V. et al. Neutrophil extracellular traps kill bacteria. Science 303, 1532–1535 (2004). This is the first study describing the formation of neutrophil extracellular traps, an effector function of NETosis.

    CAS  PubMed  Google Scholar 

  29. Fink, S. L. & Cookson, B. T. Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages. Cell. Microbiol. 8, 1812–1825 (2006).

    CAS  PubMed  Google Scholar 

  30. Fadeel, B. Programmed cell clearance. Cell. Mol. Life Sci. 60, 2575–2585 (2003).

    CAS  PubMed  Google Scholar 

  31. Franc, N. C. Phagocytosis of apoptotic cells in mammals, Caenorhabditis elegans and Drosophila melanogaster: molecular mechanisms and physiological consequences. Front. Biosci. 7, d1298–d1313 (2002).

    CAS  PubMed  Google Scholar 

  32. Arandjelovic, S. & Ravichandran, K. S. Phagocytosis of apoptotic cells in homeostasis. Nat. Immunol. 16, 907–917 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Blander, J. M. The many ways tissue phagocytes respond to dying cells. Immunol. Rev. 277, 158–173 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Rogers, C. et al. Gasdermin pores permeabilize mitochondria to augment caspase-3 activation during apoptosis and inflammasome activation. Nat. Commun. 10, 1689 (2019).

    PubMed  PubMed Central  Google Scholar 

  35. Davidovich, P., Kearney, C. J. & Martin, S. J. Inflammatory outcomes of apoptosis, necrosis and necroptosis. Biol. Chem. 395, 1163–1171 (2014).

    CAS  PubMed  Google Scholar 

  36. Lammert, C. R. et al. AIM2 inflammasome surveillance of DNA damage shapes neurodevelopment. Nature 580, 647–652 (2020). This study reports the requirement for AIM2 inflammasome and gasdermin D, but not IL-1 or IL-18, in the response to genotoxic stress in neurons during development.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kleinclauss, F. et al. Intravenous apoptotic spleen cell infusion induces a TGF-β-dependent regulatory T-cell expansion. Cell Death Differ. 13, 41–52 (2006).

    CAS  PubMed  Google Scholar 

  38. Nagata, S. Apoptosis and clearance of apoptotic cells. Annu. Rev. Immunol. 36, 489–517 (2018).

    CAS  PubMed  Google Scholar 

  39. Martin, S. J. et al. Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl. J. Exp. Med. 182, 1545–1556 (1995). This landmark study reports the early externalization of PtdSer in a wide array of mouse and human cells undergoing apoptosis.

    CAS  PubMed  Google Scholar 

  40. Maeda, Y., Shiratsuchi, A., Namiki, M. & Nakanishi, Y. Inhibition of sperm production in mice by annexin V microinjected into seminiferous tubules: possible etiology of phagocytic clearance of apoptotic spermatogenic cells and male infertility. Cell Death Differ. 9, 742–749 (2002).

    CAS  PubMed  Google Scholar 

  41. Franc, N. C., Dimarcq, J. L., Lagueux, M., Hoffmann, J. & Ezekowitz, R. A. Croquemort, a novel Drosophila hemocyte/macrophage receptor that recognizes apoptotic cells. Immunity 4, 431–443 (1996).

    CAS  PubMed  Google Scholar 

  42. Lang, R. A. & Bishop, J. M. Macrophages are required for cell death and tissue remodeling in the developing mouse eye. Cell 74, 453–462 (1993).

    CAS  PubMed  Google Scholar 

  43. Diez-Roux, G. & Lang, R. A. Macrophages induce apoptosis in normal cells in vivo. Development 124, 3633–3638 (1997).

    CAS  PubMed  Google Scholar 

  44. Hoeppner, D. J., Hengartner, M. O. & Schnabel, R. Engulfment genes cooperate with ced-3 to promote cell death in Caenorhabditis elegans. Nature 412, 202–206 (2001).

    CAS  PubMed  Google Scholar 

  45. Reddien, P. W., Cameron, S. & Horvitz, H. R. Phagocytosis promotes programmed cell death in C. elegans. Nature 412, 198–202 (2001). Together with Hoeppner et al. (2001), this paper presents the discovery that cells normally destined to die survive in C. elegans carrying mutations in engulfment genes.

    CAS  PubMed  Google Scholar 

  46. Galluzzi, L. et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 25, 486–541 (2018).

    PubMed  PubMed Central  Google Scholar 

  47. Bergsbaken, T., Fink, S. L. & Cookson, B. T. Pyroptosis: host cell death and inflammation. Nat. Rev. Microbiol. 7, 99–109 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Sulston, J. E., Schierenberg, E., White, J. G. & Thomson, J. N. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol. 100, 64–119 (1983).

    CAS  PubMed  Google Scholar 

  49. Juncadella, I. J. et al. Apoptotic cell clearance by bronchial epithelial cells critically influences airway inflammation. Nature 493, 547–551 (2013). This manuscript identifies bronchial epithelial cells as phagocytes for neighbouring apoptotic epithelial cells and inducers of anti-inflammatory responses.

    CAS  PubMed  Google Scholar 

  50. Han, C. Z. et al. Macrophages redirect phagocytosis by non-professional phagocytes and influence inflammation. Nature 539, 570–574 (2016). This study reports the ability of engulfing macrophages to regulate the phagocytic capacity and inflammatory response of epithelial cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Hall, S. E., Savill, J. S., Henson, P. M. & Haslett, C. Apoptotic neutrophils are phagocytosed by fibroblasts with participation of the fibroblast vitronectin receptor and involvement of a mannose/fucose-specific lectin. J. Immunol. 153, 3218–3227 (1994).

    CAS  PubMed  Google Scholar 

  52. Ramirez-Ortiz, Z. G. et al. The scavenger receptor SCARF1 mediates the clearance of apoptotic cells and prevents autoimmunity. Nat. Immunol. 14, 917–926 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Kumar, S. & Birge, R. B. Efferocytosis. Curr. Biol. 26, R558–R559 (2016).

    CAS  PubMed  Google Scholar 

  54. Lu, Z. et al. Phagocytic activity of neuronal progenitors regulates adult neurogenesis. Nat. Cell Biol. 13, 1076–1083 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Wu, H. H. et al. Glial precursors clear sensory neuron corpses during development via Jedi-1, an engulfment receptor. Nat. Neurosci. 12, 1534–1541 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Nguyen, J. V. et al. Myelination transition zone astrocytes are constitutively phagocytic and have synuclein dependent reactivity in glaucoma. Proc. Natl Acad. Sci. USA 108, 1176–1181 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Morizawa, Y. M. et al. Reactive astrocytes function as phagocytes after brain ischemia via ABCA1-mediated pathway. Nat. Commun. 8, 28 (2017).

    PubMed  PubMed Central  Google Scholar 

  58. Loov, C., Hillered, L., Ebendal, T. & Erlandsson, A. Engulfing astrocytes protect neurons from contact-induced apoptosis following injury. PLoS ONE 7, e33090 (2012).

    PubMed  PubMed Central  Google Scholar 

  59. Iram, T. et al. Megf10 is a receptor for C1Q that mediates clearance of apoptotic cells by astrocytes. J. Neurosci. 36, 5185–5192 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Damisah, E. C. et al. Astrocytes and microglia play orchestrated roles and respect phagocytic territories during neuronal corpse removal in vivo. Sci. Adv. 6, eaba3239 (2020). This study makes use of photochemical induction of death in a single neuron in the mouse brain to report the ability of astrocytes to engulf small dendritic apoptotic bodies, whereas microglia engulf the soma and apical dendrites.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Reemst, K., Noctor, S. C., Lucassen, P. J. & Hol, E. M. The indispensable roles of microglia and astrocytes during brain development. Front. Hum. Neurosci. 10, 566 (2016).

    PubMed  PubMed Central  Google Scholar 

  62. Blaschke, A. J., Staley, K. & Chun, J. Widespread programmed cell death in proliferative and postmitotic regions of the fetal cerebral cortex. Development 122, 1165–1174 (1996).

    CAS  PubMed  Google Scholar 

  63. Wong, F. K. & Marin, O. Developmental cell death in the cerebral cortex. Annu. Rev. Cell Dev. Biol. 35, 523–542 (2019).

    CAS  PubMed  Google Scholar 

  64. Morioka, S., Maueroder, C. & Ravichandran, K. S. Living on the edge: efferocytosis at the interface of homeostasis and pathology. Immunity 50, 1149–1162 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Cummings, R. J. et al. Different tissue phagocytes sample apoptotic cells to direct distinct homeostasis programs. Nature 539, 565–569 (2016). This study defines the transcriptional changes of distinct subsets of intestinal dendritic cells and macrophages as a consequence of the homeostatic removal of apoptotic epithelial cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Savill, J. S. et al. Macrophage phagocytosis of aging neutrophils in inflammation. Programmed cell death in the neutrophil leads to its recognition by macrophages. J. Clin. Invest. 83, 865–875 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Boulter, L. et al. Macrophage-derived Wnt opposes Notch signaling to specify hepatic progenitor cell fate in chronic liver disease. Nat. Med. 18, 572–579 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Duffield, J. S. et al. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J. Clin. Invest. 115, 56–65 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Lucas, T. et al. Differential roles of macrophages in diverse phases of skin repair. J. Immunol. 184, 3964–3977 (2010).

    CAS  PubMed  Google Scholar 

  70. Gumienny, T. L. & Hengartner, M. O. How the worm removes corpses: the nematode C. elegans as a model system to study engulfment. Cell Death Differ. 8, 564–568 (2001).

    CAS  PubMed  Google Scholar 

  71. A-Gonzalez, N. et al. Phagocytosis imprints heterogeneity in tissue-resident macrophages. J. Exp. Med. 214, 1281–1296 (2017). This study identifies distinct types of receptors, opsonins and transcription factors in the phagocytosis of apoptotic cells by tissue-resident macrophages, underscoring the heterogeneity of this process across multiple tissues.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Mass, E. et al. Specification of tissue-resident macrophages during organogenesis. Science 353, aaf4238 (2016).

    PubMed  PubMed Central  Google Scholar 

  73. Tasdemir-Yilmaz, O. E. & Freeman, M. R. Astrocytes engage unique molecular programs to engulf pruned neuronal debris from distinct subsets of neurons. Genes Dev. 28, 20–33 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. D’Cruz, P. M. et al. Mutation of the receptor tyrosine kinase gene Mertk in the retinal dystrophic RCS rat. Hum. Mol. Genet. 9, 645–651 (2000).

    PubMed  Google Scholar 

  75. Chen, Y. et al. Functions of TAM RTKs in regulating spermatogenesis and male fertility in mice. Reproduction 138, 655–666 (2009).

    CAS  PubMed  Google Scholar 

  76. Duncan, J. L. et al. An RCS-like retinal dystrophy phenotype in mer knockout mice. Invest. Ophthalmol. Vis. Sci. 44, 826–838 (2003).

    PubMed  Google Scholar 

  77. Penberthy, K. K. et al. Context-dependent compensation among phosphatidylserine-recognition receptors. Sci. Rep. 7, 14623 (2017).

    PubMed  PubMed Central  Google Scholar 

  78. Green, D. R., Ferguson, T., Zitvogel, L. & Kroemer, G. Immunogenic and tolerogenic cell death. Nat. Rev. Immunol. 9, 353–363 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Ferguson, T. A., Choi, J. & Green, D. R. Armed response: how dying cells influence T-cell functions. Immunol. Rev. 241, 77–88 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Jorgensen, I., Zhang, Y., Krantz, B. A. & Miao, E. A. Pyroptosis triggers pore-induced intracellular traps (PITs) that capture bacteria and lead to their clearance by efferocytosis. J. Exp. Med. 213, 2113–2128 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Jorgensen, I. & Miao, E. A. Pyroptotic cell death defends against intracellular pathogens. Immunol. Rev. 265, 130–142 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Xu, Y. et al. A bacterial effector reveals the V-ATPase–ATG16L1 axis that initiates xenophagy. Cell 178, 552–566 (2019).

    CAS  PubMed  Google Scholar 

  83. Dinarello, C. A. IL-18: a TH1-inducing, proinflammatory cytokine and new member of the IL-1 family. J. Allergy. Clin. Immunol. 103, 11–24 (1999).

    CAS  PubMed  Google Scholar 

  84. Veldhoen, M., Hocking, R. J., Atkins, C. J., Locksley, R. M. & Stockinger, B. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24, 179–189 (2006).

    CAS  PubMed  Google Scholar 

  85. Sutton, C. E. et al. Interleukin-1 and IL-23 induce innate IL-17 production from γδ T cells, amplifying TH17 responses and autoimmunity. Immunity 31, 331–341 (2009).

    CAS  PubMed  Google Scholar 

  86. Rathinam, V. A. & Fitzgerald, K. A. Inflammasome complexes: emerging mechanisms and effector functions. Cell 165, 792–800 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Lee, S., Hirohama, M., Noguchi, M., Nagata, K. & Kawaguchi, A. Influenza A virus infection triggers pyroptosis and apoptosis of respiratory epithelial cells through the type I interferon signaling pathway in a mutually exclusive manner. J. Virol. 92, e00396–00418 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Tan, M. S. et al. Amyloid-β induces NLRP1-dependent neuronal pyroptosis in models of Alzheimer’s disease. Cell Death Dis. 5, e1382 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Szabo, G. & Petrasek, J. Inflammasome activation and function in liver disease. Nat. Rev. Gastroenterol. Hepatol. 12, 387–400 (2015).

    CAS  PubMed  Google Scholar 

  90. Liu, G. et al. High mobility group protein-1 inhibits phagocytosis of apoptotic neutrophils through binding to phosphatidylserine. J. Immunol. 181, 4240–4246 (2008).

    CAS  PubMed  Google Scholar 

  91. Friggeri, A. et al. HMGB1 inhibits macrophage activity in efferocytosis through binding to the αvβ3-integrin. Am. J. Physiol. Cell. Physiol. 299, C1267–C1276 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Tiefenthaler, M. et al. Increased lactate production follows loss of mitochondrial membrane potential during apoptosis of human leukaemia cells. Br. J. Haematol. 114, 574–580 (2001).

    CAS  PubMed  Google Scholar 

  93. Colegio, O. R. et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 513, 559–563 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Greenlee-Wacker, M. C. et al. Phagocytosis of Staphylococcus aureus by human neutrophils prevents macrophage efferocytosis and induces programmed necrosis. J. Immunol. 192, 4709–4717 (2014).

    CAS  PubMed  Google Scholar 

  95. Newton, K. et al. Activity of caspase-8 determines plasticity between cell death pathways. Nature 575, 679–682 (2019).

    CAS  PubMed  Google Scholar 

  96. Fritsch, M. et al. Caspase-8 is the molecular switch for apoptosis, necroptosis and pyroptosis. Nature 575, 683–687 (2019). Together with Newton et al. (Nature 575, 2019), this study reveals the plasticity between and hierarchy across different cell death modalities when specific executionary mediators of cell death are inhibited.

    CAS  PubMed  Google Scholar 

  97. Shan, B., Pan, H., Najafov, A. & Yuan, J. Necroptosis in development and diseases. Genes Dev. 32, 327–340 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Newton, K., Sun, X. & Dixit, V. M. Kinase RIP3 is dispensable for normal NF-κBs, signaling by the B-cell and T-cell receptors, tumor necrosis factor receptor 1, and Toll-like receptors 2 and 4. Mol. Cell. Biol. 24, 1464–1469 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Wu, J. et al. Mlkl knockout mice demonstrate the indispensable role of Mlkl in necroptosis. Cell Res. 23, 994–1006 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Polykratis, A. et al. Cutting edge: RIPK1 kinase inactive mice are viable and protected from TNF-induced necroptosis in vivo. J. Immunol. 193, 1539–1543 (2014).

    CAS  PubMed  Google Scholar 

  101. Kaiser, W. J. et al. RIP3 mediates the embryonic lethality of caspase-8-deficient mice. Nature 471, 368–372 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Oberst, A. et al. Catalytic activity of the caspase-8-FLIPL complex inhibits RIPK3-dependent necrosis. Nature 471, 363–367 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Alvarez-Diaz, S. et al. The pseudokinase MLKL and the kinase RIPK3 have distinct roles in autoimmune disease caused by loss of death-receptor-induced apoptosis. Immunity 45, 513–526 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Chen, C. C. et al. Organ-level quorum sensing directs regeneration in hair stem cell populations. Cell 161, 277–290 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Wang, Y. et al. Mitochondrial fission promotes the continued clearance of apoptotic cells by macrophages. Cell 171, 331–345 (2017). This study identifies a metabolic pathway required for sequential phagocytosis.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Sisson, T. H. et al. Targeted injury of type II alveolar epithelial cells induces pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 181, 254–263 (2010).

    CAS  PubMed  Google Scholar 

  107. Kim, K. K. et al. Efferocytosis of apoptotic alveolar epithelial cells is sufficient to initiate lung fibrosis. Cell Death Dis. 9, 1056 (2018).

    PubMed  PubMed Central  Google Scholar 

  108. Martin, S. J. Cell death and inflammation: the case for IL-1 family cytokines as the canonical DAMPs of the immune system. FEBS J. 283, 2599–2615 (2016).

    CAS  PubMed  Google Scholar 

  109. Arpaia, N. et al. A distinct function of regulatory T cells in tissue protection. Cell 162, 1078–1089 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Greter, M. et al. Stroma-derived interleukin-34 controls the development and maintenance of Langerhans cells and the maintenance of microglia. Immunity 37, 1050–1060 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Merad, M., Ginhoux, F. & Collin, M. Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells. Nat. Rev. Immunol. 8, 935–947 (2008).

    CAS  PubMed  Google Scholar 

  112. Igyarto, B. Z. et al. Skin-resident murine dendritic cell subsets promote distinct and opposing antigen-specific T helper cell responses. Immunity 35, 260–272 (2011).

    CAS  PubMed  Google Scholar 

  113. Gyorki, D. E., Asselin-Labat, M. L., van Rooijen, N., Lindeman, G. J. & Visvader, J. E. Resident macrophages influence stem cell activity in the mammary gland. Breast Cancer Res. 11, R62 (2009).

    PubMed  PubMed Central  Google Scholar 

  114. Gouon-Evans, V., Rothenberg, M. E. & Pollard, J. W. Postnatal mammary gland development requires macrophages and eosinophils. Development 127, 2269–2282 (2000).

    CAS  PubMed  Google Scholar 

  115. Monks, J., Smith-Steinhart, C., Kruk, E. R., Fadok, V. A. & Henson, P. M. Epithelial cells remove apoptotic epithelial cells during post-lactation involution of the mouse mammary gland. Biol. Reprod. 78, 586–594 (2008).

    CAS  PubMed  Google Scholar 

  116. O’Brien, J., Martinson, H., Durand-Rougely, C. & Schedin, P. Macrophages are crucial for epithelial cell death and adipocyte repopulation during mammary gland involution. Development 139, 269–275 (2012).

    PubMed  Google Scholar 

  117. Minutti, C. M. et al. Local amplifiers of IL-4Rα-mediated macrophage activation promote repair in lung and liver. Science 356, 1076–1080 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Sommerfeld, S. D. et al. Interleukin-36γ-producing macrophages drive IL-17-mediated fibrosis. Sci. Immunol. 4, aax4783 (2019).

    Google Scholar 

  119. Gosselin, D. et al. Environment drives selection and function of enhancers controlling tissue-specific macrophage identities. Cell 159, 1327–1340 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Sakai, M. et al. Liver-derived signals sequentially reprogram myeloid enhancers to initiate and maintain Kupffer cell identity. Immunity 51, 655–670 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Cohen, M. et al. Lung single-cell signaling interaction map reveals basophil role in macrophage imprinting. Cell 175, 1031–1044 (2018).

    CAS  PubMed  Google Scholar 

  122. Buechler, M. B. et al. A stromal niche defined by expression of the transcription factor WT1 mediates programming and homeostasis of cavity-resident macrophages. Immunity 51, 119–130 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Svedberg, F. R. et al. The lung environment controls alveolar macrophage metabolism and responsiveness in type 2 inflammation. Nat. Immunol. 20, 571–580 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. van Beek, A. A., Van den Bossche, J., Mastroberardino, P. G., de Winther, M. P. J. & Leenen, P. J. M. Metabolic alterations in aging macrophages: ingredients for inflammaging? Trends Immunol. 40, 113–127 (2019).

    PubMed  Google Scholar 

  125. Frisch, B. J. et al. Aged marrow macrophages expand platelet-biased hematopoietic stem cells via interleukin-1B. JCI Insight 5, e124213 (2019).

    Google Scholar 

  126. Keenan, C. R. & Allan, R. S. Epigenomic drivers of immune dysfunction in aging. Aging Cell 18, e12878 (2019).

    CAS  PubMed  Google Scholar 

  127. Gerlach, B. D. et al. Resolvin D1 promotes the targeting and clearance of necroptotic cells. Cell Death Differ. 27, 525–539 (2019).

    PubMed  PubMed Central  Google Scholar 

  128. Newton, K. et al. Cleavage of RIPK1 by caspase-8 is crucial for limiting apoptosis and necroptosis. Nature 574, 428–431 (2019).

    CAS  PubMed  Google Scholar 

  129. Riegler, A. N., Brissac, T., Gonzalez-Juarbe, N. & Orihuela, C. J. Necroptotic cell death promotes adaptive immunity against colonizing pneumococci. Front. Immunol. 10, 615 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Cho, Y. S. et al. Phosphorylation-driven assembly of the RIP1–RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137, 1112–1123 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Molnar, T. et al. Current translational potential and underlying molecular mechanisms of necroptosis. Cell Death Dis. 10, 860 (2019).

    PubMed  PubMed Central  Google Scholar 

  132. Li, S., Ning, L. G., Lou, X. H. & Xu, G. Q. Necroptosis in inflammatory bowel disease and other intestinal diseases. World J. Clin. Cases 6, 745–752 (2018).

    PubMed  PubMed Central  Google Scholar 

  133. Hermetet, F. et al. Efferocytosis of apoptotic human papillomavirus-positive cervical cancer cells by human primary fibroblasts. Biol. Cell 108, 189–204 (2016).

    CAS  PubMed  Google Scholar 

  134. Roberts, E. W. et al. Critical role for CD103+/CD141+ dendritic cells bearing CCR7 for tumor antigen trafficking and priming of T cell immunity in melanoma. Cancer Cell 30, 324–336 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Pober, J. S. et al. Lymphocytes recognize human vascular endothelial and dermal fibroblast Ia antigens induced by recombinant immune interferon. Nature 305, 726–729 (1983).

    CAS  PubMed  Google Scholar 

  136. Boots, A. M., Wimmers-Bertens, A. J. & Rijnders, A. W. Antigen-presenting capacity of rheumatoid synovial fibroblasts. Immunology 82, 268–274 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Rieder, F., Brenmoehl, J., Leeb, S., Scholmerich, J. & Rogler, G. Wound healing and fibrosis in intestinal disease. Gut 56, 130–139 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Martinez, F. J. et al. Idiopathic pulmonary fibrosis. Nat. Rev. Dis. Prim. 3, 17074 (2017).

    PubMed  Google Scholar 

  139. Hernandez-Gea, V. & Friedman, S. L. Pathogenesis of liver fibrosis. Annu. Rev. Pathol. 6, 425–456 (2011).

    CAS  PubMed  Google Scholar 

  140. Rowe, S. M., Miller, S. & Sorscher, E. J. Cystic fibrosis. N. Engl. J. Med. 352, 1992–2001 (2005).

    CAS  PubMed  Google Scholar 

  141. Ratjen, F. & Doring, G. Cystic fibrosis. Lancet 361, 681–689 (2003).

    CAS  PubMed  Google Scholar 

  142. Elraiyah, T. et al. A systematic review and meta-analysis of debridement methods for chronic diabetic foot ulcers. J. Vasc. Surg. 63, 37S–45S (2016).

    PubMed  Google Scholar 

  143. Cornell, R. S., Meyr, A. J., Steinberg, J. S. & Attinger, C. E. Debridement of the noninfected wound. J. Vasc. Surg. 52, 31S–36S (2010).

    PubMed  Google Scholar 

  144. Magnus, T., Chan, A., Linker, R. A., Toyka, K. V. & Gold, R. Astrocytes are less efficient in the removal of apoptotic lymphocytes than microglia cells: implications for the role of glial cells in the inflamed central nervous system. J. Neuropathol. Exp. Neurol. 61, 760–766 (2002).

    PubMed  Google Scholar 

Download references

Acknowledgements

C.V.R. and S.G. acknowledge M. K. Basu for analyses and discussions of single-cell RNA-sequencing data. T.D.H. acknowledges M. Chalfant for insightful discussions. This work was supported by grants from the National Institutes of Health (NIH-NIAID R01 AI089824 and NIH-NCI R01 CA212376) and the Kenneth Rainin Foundation. C.V.R is a Howard Hughes Medical Institute Faculty Scholar.

Author information

Authors and Affiliations

Authors

Contributions

T.D.H conceived and developed the mathematical representation. C.V.R and S.G. wrote the manuscript.

Corresponding authors

Correspondence to Carla V. Rothlin or Sourav Ghosh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Immunology thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

VirtualCytometry: https://www.grnpedia.org/cytometry

Glossary

Necrosome complex

An amyloid signalling complex assembled upon interaction and activation (phosphorylation) of receptor-interacting serine/threonine protein kinase 3 (RIPK3) and RIPK1. The necrosome leads to the phosphorylation of mixed lineage kinase domain-like protein (MLKL) and induction of necroptosis.

LC3-associated phagocytosis

(LAP). A form of phagocytosis during which the canonical autophagy protein LC3 is conjugated to the phagosome to form the LAPosome. LC3 conjugation is crucial for phagosome maturation and acidification, through fusion with lysosomes, and the degradation of cargo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rothlin, C.V., Hille, T.D. & Ghosh, S. Determining the effector response to cell death. Nat Rev Immunol 21, 292–304 (2021). https://doi.org/10.1038/s41577-020-00456-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-020-00456-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing