Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Gastrointestinal and brain barriers: unlocking gates of communication across the microbiota–gut–brain axis

A Publisher Correction to this article was published on 04 April 2024

This article has been updated

Abstract

Crosstalk between gut and brain has long been appreciated in health and disease, and the gut microbiota is a key player in communication between these two distant organs. Yet, the mechanisms through which the microbiota influences development and function of the gut–brain axis remain largely unknown. Barriers present in the gut and brain are specialized cellular interfaces that maintain strict homeostasis of different compartments across this axis. These barriers include the gut epithelial barrier, the blood–brain barrier and the blood–cerebrospinal fluid barrier. Barriers are ideally positioned to receive and communicate gut microbial signals constituting a gateway for gut–microbiota–brain communication. In this Review, we focus on how modulation of these barriers by the gut microbiota can constitute an important channel of communication across the gut–brain axis. Moreover, barrier malfunction upon alterations in gut microbial composition could form the basis of various conditions, including often comorbid neurological and gastrointestinal disorders. Thus, we should focus on unravelling the molecular and cellular basis of this communication and move from simplistic framing as ‘leaky gut’. A mechanistic understanding of gut microbiota modulation of barriers, especially during critical windows of development, could be key to understanding the aetiology of gastrointestinal and neurological disorders.

Key points

  • Barriers across the microbiota–gut–brain axis are key elements in the communication across this axis.

  • By enabling a physical segregation between the host and microbiome, barriers have played key parts in the evolution of the holobiont.

  • Gut and brain barriers are epithelial or endothelial in nature and they have different levels of permissiveness under physiological conditions, which is important for their function.

  • Barriers are dynamic in nature and their function varies across the lifespan.

  • Preclinical studies provide direct evidence of microbial metabolites influencing barrier functioning, linking gut microbial alterations to barrier dysfunction and the subsequent abnormal passage of substances (microbial and non-microbial) along the gut–brain axis.

  • Barrier dysregulation has been shown to be a hallmark in disorders of the gut and of the brain, and could underlie some of their comorbidities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic cross section of gastrointestinal and brain barriers in vertebrates.
Fig. 2: Cross-species comparison of gastrointestinal and brain barriers.
Fig. 3: Mechanistic overview of microbial modulation of barriers across the microbiota–gut–brain axis.
Fig. 4: The interaction between barriers and the gut microbiota in microbiota–gut–brain axis communication.

Similar content being viewed by others

Change history

References

  1. Cryan, J. F. et al. The microbiota-gut-brain axis. Physiol. Rev. 99, 1877–2013 (2019).

    CAS  PubMed  Google Scholar 

  2. Tolkien, J. R. R. The Lord of the Rings (George Allen & Unwin, 1954–1955).

  3. Theis, K. R. et al. Getting the hologenome concept right: an eco-evolutionary framework for hosts and their microbiomes. mSystems 1, e00028-16 (2016).

    PubMed  PubMed Central  Google Scholar 

  4. Nagpal, J. & Cryan, J. F. Microbiota-brain interactions: moving toward mechanisms in model organisms. Neuron 109, 3930–3953 (2021).

    CAS  PubMed  Google Scholar 

  5. Izumi, Y. & Furuse, M. Molecular organization and function of invertebrate occluding junctions. Semin. Cell Dev. Biol. 36, 186–193 (2014).

    CAS  PubMed  Google Scholar 

  6. Chomicki, G., Werner, G. D. A., West, S. A. & Kiers, E. T. Compartmentalization drives the evolution of symbiotic cooperation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20190602 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Peterson, L. W. & Artis, D. Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat. Rev. Immunol. 14, 141–153 (2014).

    CAS  PubMed  Google Scholar 

  8. Schröder, K. & Bosch, T. C. G. The origin of mucosal immunity: lessons from the holobiont Hydra. MBio 7, e01184-16 (2016).

    PubMed  PubMed Central  Google Scholar 

  9. Horowitz, A., Chanez-Paredes, S. D., Haest, X. & Turner, J. R. Paracellular permeability and tight junction regulation in gut health and disease. Nat. Rev. Gastroenterol. Hepatol. 20, 417–432 (2023).

    PubMed  Google Scholar 

  10. Bevins, C. L. & Salzman, N. H. Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat. Rev. Microbiol. 9, 356–368 (2011).

    CAS  PubMed  Google Scholar 

  11. Chen, K., Magri, G., Grasset, E. K. & Cerutti, A. Rethinking mucosal antibody responses: IgM, IgG and IgD join IgA. Nat. Rev. Immunol. 20, 427–441 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Gustafsson, J. K. & Johansson, M. E. V. The role of goblet cells and mucus in intestinal homeostasis. Nat. Rev. Gastroenterol. Hepatol. 14, 3171–3183 (2022).

    Google Scholar 

  13. Perez-Lopez, A., Behnsen, J., Nuccio, S.-P. & Raffatellu, M. Mucosal immunity to pathogenic intestinal bacteria. Nat. Rev. Immunol. 16, 135–148 (2016).

    CAS  PubMed  Google Scholar 

  14. Powell, N., Walker, M. M. & Talley, N. J. The mucosal immune system: master regulator of bidirectional gut-brain communications. Nat. Rev. Gastroenterol. Hepatol. 14, 143–159 (2017).

    CAS  PubMed  Google Scholar 

  15. Spadoni, I. et al. A gut-vascular barrier controls the systemic dissemination of bacteria. Science 350, 830–834 (2015).

    CAS  PubMed  Google Scholar 

  16. Vicentini, F. A. et al. Intestinal microbiota shapes gut physiology and regulates enteric neurons and glia. Microbiome 9, 210 (2021).

    PubMed  PubMed Central  Google Scholar 

  17. Hayes, C. L. et al. Commensal microbiota induces colonic barrier structure and functions that contribute to homeostasis. Sci. Rep. 8, 14184 (2018).

    PubMed  PubMed Central  Google Scholar 

  18. McCallum, G. & Tropini, C. The gut microbiota and its biogeography. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-023-00969-0 (2023).

  19. Eckburg, P. B. et al. Diversity of the human intestinal microbial flora. Science 308, 1635–1638 (2005).

    PubMed  PubMed Central  Google Scholar 

  20. Lieberkühn, J. N. De Fabrica et Actione villorum intestinorum tenuium Hominis. J. Physiol. Biochem. 64, 393–414 (2008).

    PubMed  Google Scholar 

  21. Kanaya, T., Williams, I. R. & Ohno, H. Intestinal M cells: tireless samplers of enteric microbiota. Traffic 21, 34–44 (2020).

    CAS  PubMed  Google Scholar 

  22. Schneider, C., O’Leary, C. E. & Locksley, R. M. Regulation of immune responses by tuft cells. Nat. Rev. Immunol. 19, 584–593 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Gehart, H. & Clevers, H. Tales from the crypt: new insights into intestinal stem cells. Nat. Rev. Gastroenterol. Hepatol. 16, 19–34 (2019).

    PubMed  Google Scholar 

  24. Donaldson, G. P., Lee, S. M. & Mazmanian, S. K. Gut biogeography of the bacterial microbiota. Nat. Rev. Microbiol. 14, 20–32 (2016).

    CAS  PubMed  Google Scholar 

  25. Zihni, C., Mills, C., Matter, K. & Balda, M. S. Tight junctions: from simple barriers to multifunctional molecular gates. Nat. Rev. Mol. Cell Biol. 17, 564–580 (2016).

    CAS  PubMed  Google Scholar 

  26. Martel, J. et al. Gut barrier disruption and chronic disease. Trends Endocrinol. Metab. 33, 247–265 (2022).

    CAS  PubMed  Google Scholar 

  27. Otani, T. & Furuse, M. Tight junction structure and function revisited. Trends Cell Biol. 30, 805–817 (2020).

    CAS  PubMed  Google Scholar 

  28. Chelakkot, C., Ghim, J. & Ryu, S. H. Mechanisms regulating intestinal barrier integrity and its pathological implications. Exp. Mol. Med. 50, 103 (2018).

    PubMed  PubMed Central  Google Scholar 

  29. Verma, N., Paul, J. & Kumari, R. ATP-binding cassette (ABC) transporters and their role in inflammatory bowel disease (IBD). Preprint at Biomed. J. Sci. Tech. Res. Med. 5, https://doi.org/10.26717/BJSTR.2018.05.001141 (2018).

  30. Foley, S. E. et al. Gut microbiota regulation of P-glycoprotein in the intestinal epithelium in maintenance of homeostasis. Microbiome 9, 183 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Foley, S. E. et al. Microbial metabolites orchestrate a distinct multi-tiered regulatory network in the intestinal epithelium that directs P-glycoprotein expression. mBio 13, e0199322 (2022).

    PubMed  Google Scholar 

  32. Odenwald, M. A. & Turner, J. R. The intestinal epithelial barrier: a therapeutic target? Nat. Rev. Gastroenterol. Hepatol. 14, 9–21 (2017).

    CAS  PubMed  Google Scholar 

  33. Bischoff, S. C. et al. Intestinal permeability – a new target for disease prevention and therapy. BMC Gastroenterol. 14, 189 (2014).

    PubMed  PubMed Central  Google Scholar 

  34. Pellegrini, C. et al. The intestinal barrier in disorders of the central nervous system. Lancet Gastroenterol. Hepatol. 8, 66–80 (2023).

    PubMed  Google Scholar 

  35. Zeisel, M. B., Dhawan, P. & Baumert, T. F. Tight junction proteins in gastrointestinal and liver disease. Gut 68, 547–561 (2019).

    CAS  PubMed  Google Scholar 

  36. Yu, Y.-B. & Li, Y.-Q. Enteric glial cells and their role in the intestinal epithelial barrier. World J. Gastroenterol. 20, 11273–11280 (2014).

    PubMed  PubMed Central  Google Scholar 

  37. Seguella, L. & Gulbransen, B. D. Enteric glial biology, intercellular signalling and roles in gastrointestinal disease. Nat. Rev. Gastroenterol. Hepatol. 18, 571–587 (2021).

    PubMed  PubMed Central  Google Scholar 

  38. Sweeney, M. D., Zhao, Z., Montagne, A., Nelson, A. R. & Zlokovic, B. V. Blood-brain barrier: from physiology to disease and back. Physiol. Rev. 99, 21–78 (2019).

    CAS  PubMed  Google Scholar 

  39. Carloni, S. et al. Identification of a choroid plexus vascular barrier closing during intestinal inflammation. Science 374, 439–448 (2021).

    CAS  PubMed  Google Scholar 

  40. Spadoni, I., Fornasa, G. & Rescigno, M. Organ-specific protection mediated by cooperation between vascular and epithelial barriers. Nat. Rev. Immunol. 17, 761–773 (2017).

    CAS  PubMed  Google Scholar 

  41. Saunders, N. R., Dziegielewska, K. M., Fame, R. M., Lehtinen, M. K. & Liddelow, S. A. The choroid plexus: a missing link in our understanding of brain development and function. Physiol. Rev. 103, 919–956 (2023).

    CAS  PubMed  Google Scholar 

  42. Ehrlich, P. Das Sauerstoff-Bedürfniss des Organismus: Eine Farbenanalytische Studie (August Hirschwald, 1885).

  43. Saunders, N. R. et al. The rights and wrongs of blood-brain barrier permeability studies: a walk through 100 years of history. Front. Neurosci. 8, 404 (2014).

    PubMed  PubMed Central  Google Scholar 

  44. Alves de Lima, K., Rustenhoven, J. & Kipnis, J. Meningeal immunity and its function in maintenance of the central nervous system in health and disease. Annu. Rev. Immunol. 38, 597–620 (2020).

    CAS  PubMed  Google Scholar 

  45. Weller, R. O., Sharp, M. M., Christodoulides, M., Carare, R. O. & Møllgård, K. The meninges as barriers and facilitators for the movement of fluid, cells and pathogens related to the rodent and human CNS. Acta Neuropathol. 135, 363–385 (2018).

    CAS  PubMed  Google Scholar 

  46. Langen, U. H., Ayloo, S. & Gu, C. Development and cell biology of the blood-brain barrier. Annu. Rev. Cell Dev. Biol. 35, 591–613 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Kadry, H., Noorani, B. & Cucullo, L. A blood-brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids Barriers CNS 17, 69 (2020).

    PubMed  PubMed Central  Google Scholar 

  48. Zhao, Q. et al. Prenatal disruption of blood–brain barrier formation via cyclooxygenase activation leads to lifelong brain inflammation. Proc. Natl Acad. Sci. USA 119, e2113310119 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Kang, R. et al. The dual role of microglia in blood-brain barrier dysfunction after stroke. Curr. Neuropharmacol. 18, 1237–1249 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Schaeffer, S. & Iadecola, C. Revisiting the neurovascular unit. Nat. Neurosci. 24, 1198–1209 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Dion-Albert, L., Dudek, K. A., Russo, S. J., Campbell, M. & Menard, C. Neurovascular adaptations modulating cognition, mood, and stress responses. Trends Neurosci. 46, 276–292 (2023).

    CAS  PubMed  Google Scholar 

  52. Profaci, C. P., Munji, R. N., Pulido, R. S. & Daneman, R. The blood-brain barrier in health and disease: important unanswered questions. J. Exp. Med. 217, e20190062 (2020).

    PubMed  PubMed Central  Google Scholar 

  53. Knox, E. G., Aburto, M. R., Clarke, G., Cryan, J. F. & O’Driscoll, C. M. The blood-brain barrier in aging and neurodegeneration. Mol. Psychiatry 27, 2659–2673 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Segarra, M., Aburto, M. R. & Acker-Palmer, A. Blood-brain barrier dynamics to maintain brain homeostasis. Trends Neurosci. 44, 393–405 (2021).

    CAS  PubMed  Google Scholar 

  55. Chow, B. W. & Gu, C. Gradual suppression of transcytosis governs functional blood-retinal barrier formation. Neuron 93, 1325–1333.e3 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. O’Brown, N. M., Megason, S. G. & Gu, C. Suppression of transcytosis regulates zebrafish blood-brain barrier function. Elife 8, e47326 (2019).

    PubMed  PubMed Central  Google Scholar 

  57. Ayloo, S. & Gu, C. Transcytosis at the blood-brain barrier. Curr. Opin. Neurobiol. 57, 32–38 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Fischer, H., Gottschlich, R. & Seelig, A. Blood-brain barrier permeation: molecular parameters governing passive diffusion. J. Membr. Biol. 165, 201–211 (1998).

    CAS  PubMed  Google Scholar 

  59. Andreone, B. J. et al. Blood-brain barrier permeability is regulated by lipid transport-dependent suppression of caveolae-mediated transcytosis. Neuron 94, 581–594.e5 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Ben-Zvi, A. et al. Mfsd2a is critical for the formation and function of the blood-brain barrier. Nature 509, 507–511 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Wilhelm, I., Nyúl-Tóth, Á., Suciu, M., Hermenean, A. & Krizbai, I. A. Heterogeneity of the blood-brain barrier. Tissue Barriers 4, e1143544 (2016).

    PubMed  PubMed Central  Google Scholar 

  62. Banks, W. A. The blood-brain barrier as an endocrine tissue. Nat. Rev. Endocrinol. 15, 444–455 (2019).

    CAS  PubMed  Google Scholar 

  63. Dunton, A. D., Göpel, T., Ho, D. H. & Burggren, W. Form and function of the vertebrate and invertebrate blood-brain barriers. Int. J. Mol. Sci. 22, 12111 (2021).

    PubMed  PubMed Central  Google Scholar 

  64. O’Brown, N. M., Pfau, S. J. & Gu, C. Bridging barriers: a comparative look at the blood-brain barrier across organisms. Genes. Dev. 32, 466–478 (2018).

    PubMed  PubMed Central  Google Scholar 

  65. Lun, M. P., Monuki, E. S. & Lehtinen, M. K. Development and functions of the choroid plexus-cerebrospinal fluid system. Nat. Rev. Neurosci. 16, 445–457 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Fame, R. M. & Lehtinen, M. K. Emergence and developmental roles of the cerebrospinal fluid system. Dev. Cell 52, 261–275 (2020).

    CAS  PubMed  Google Scholar 

  67. Lehtinen, M. K. et al. The cerebrospinal fluid provides a proliferative niche for neural progenitor cells. Neuron 69, 893–905 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Johansson, P. A. The choroid plexuses and their impact on developmental neurogenesis. Front. Neurosci. 8, 340 (2014).

    PubMed  PubMed Central  Google Scholar 

  69. Steinemann, A., Galm, I., Chip, S., Nitsch, C. & Maly, I. P. Claudin-1, -2 and -3 are selectively expressed in the epithelia of the choroid plexus of the mouse from early development and into adulthood while claudin-5 is restricted to endothelial cells. Front. Neuroanat. 10, 16 (2016).

    PubMed  PubMed Central  Google Scholar 

  70. Wolburg, H., Wolburg-Buchholz, K., Liebner, S. & Engelhardt, B. Claudin-1, claudin-2 and claudin-11 are present in tight junctions of choroid plexus epithelium of the mouse. Neurosci. Lett. 307, 77–80 (2001).

    CAS  PubMed  Google Scholar 

  71. Bill, B. R. & Korzh, V. Choroid plexus in developmental and evolutionary perspective. Front. Neurosci. 8, 363 (2014).

    PubMed  PubMed Central  Google Scholar 

  72. Dani, N. et al. A cellular and spatial map of the choroid plexus across brain ventricles and ages. Cell 184, 3056–3074.e21 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Mortazavi, M. M. et al. The choroid plexus: a comprehensive review of its history, anatomy, function, histology, embryology, and surgical considerations. Childs Nerv. Syst. 30, 205–214 (2014).

    PubMed  Google Scholar 

  74. Spor, A., Koren, O. & Ley, R. Unravelling the effects of the environment and host genotype on the gut microbiome. Nat. Rev. Microbiol. 9, 279–290 (2011).

    CAS  PubMed  Google Scholar 

  75. Tosoni, G., Conti, M. & Diaz Heijtz, R. Bacterial peptidoglycans as novel signaling molecules from microbiota to brain. Curr. Opin. Pharmacol. 48, 107–113 (2019).

    CAS  PubMed  Google Scholar 

  76. Jiang, W. & Banks, W. A. Viewpoint: is lipopolysaccharide a hormone or a vitamin? Brain Behav. Immun. 114, 1–2 (2023).

    CAS  PubMed  Google Scholar 

  77. Haas-Neill, S. & Forsythe, P. A budding relationship: bacterial extracellular vesicles in the microbiota-gut-brain axis. Int. J. Mol. Sci. 21, 8899 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Krautkramer, K. A., Fan, J. & Bäckhed, F. Gut microbial metabolites as multi-kingdom intermediates. Nat. Rev. Microbiol. 19, 77–94 (2020).

    PubMed  Google Scholar 

  79. Chen, L. et al. Influence of the microbiome, diet and genetics on inter-individual variation in the human plasma metabolome. Nat. Med. 28, 2333–2343 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Caspani, G. & Swann, J. Small talk: microbial metabolites involved in the signaling from microbiota to brain. Curr. Opin. Pharmacol. 48, 99–106 (2019).

    CAS  PubMed  Google Scholar 

  81. Dalile, B., Van Oudenhove, L., Vervliet, B. & Verbeke, K. The role of short-chain fatty acids in microbiota-gut-brain communication. Nat. Rev. Gastroenterol. Hepatol. 16, 461–478 (2019).

    PubMed  Google Scholar 

  82. O’Riordan, K. J. et al. Short chain fatty acids: microbial metabolites for gut-brain axis signalling. Mol. Cell. Endocrinol. 546, 111572 (2022).

    PubMed  Google Scholar 

  83. den Besten, G. et al. Gut-derived short-chain fatty acids are vividly assimilated into host carbohydrates and lipids. Am. J. Physiol. Gastrointest. Liver Physiol. 305, G900–G910 (2013).

    Google Scholar 

  84. Roediger, W. E. Utilization of nutrients by isolated epithelial cells of the rat colon. Gastroenterology 83, 424–429 (1982).

    CAS  PubMed  Google Scholar 

  85. Demigné, C., Yacoub, C. & Rémésy, C. Effects of absorption of large amounts of volatile fatty acids on rat liver metabolism. J. Nutr. 116, 77–86 (1986).

    PubMed  Google Scholar 

  86. Mitchell, R. W., On, N. H., Del Bigio, M. R., Miller, D. W. & Hatch, G. M. Fatty acid transport protein expression in human brain and potential role in fatty acid transport across human brain microvessel endothelial cells. J. Neurochem. 117, 735–746 (2011).

    CAS  PubMed  Google Scholar 

  87. Vijay, N. & Morris, M. E. Role of monocarboxylate transporters in drug delivery to the brain. Curr. Pharm. Des. 20, 1487–1498 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Hoyles, L. et al. Microbiome-host systems interactions: protective effects of propionate upon the blood-brain barrier. Microbiome 6, 55 (2018).

    PubMed  PubMed Central  Google Scholar 

  89. Soliman, M. L. & Rosenberger, T. A. Acetate supplementation increases brain histone acetylation and inhibits histone deacetylase activity and expression. Mol. Cell. Biochem. 352, 173–180 (2011).

    CAS  PubMed  Google Scholar 

  90. Schroeder, F. A., Lin, C. L., Crusio, W. E. & Akbarian, S. Antidepressant-like effects of the histone deacetylase inhibitor, sodium butyrate, in the mouse. Biol. Psychiatry 62, 55–64 (2007).

    CAS  PubMed  Google Scholar 

  91. Fischer, A., Sananbenesi, F., Wang, X., Dobbin, M. & Tsai, L.-H. Recovery of learning and memory is associated with chromatin remodelling. Nature 447, 178–182 (2007).

    CAS  PubMed  Google Scholar 

  92. Valvassori, S. S. et al. Sodium butyrate, a histone deacetylase inhibitor, reverses behavioral and mitochondrial alterations in animal models of depression induced by early- or late-life stress. Curr. Neurovasc. Res. 12, 312–320 (2015).

    CAS  PubMed  Google Scholar 

  93. Braniste, V. et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci. Transl. Med. 6, 263ra158 (2014).

    PubMed  PubMed Central  Google Scholar 

  94. Knox, E. G. et al. Microbial-derived metabolites induce actin cytoskeletal rearrangement and protect blood-brain barrier function. iScience 25, 105648 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Wishart, D. S. et al. Human metabolome database. Nucleic Acids Res. 35, D521–D526 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Xie, J. et al. Gut microbiota regulates blood-cerebrospinal fluid barrier function and Aβ pathology. EMBO J. 42, e111515 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Radjabzadeh, D. et al. Gut microbiome-wide association study of depressive symptoms. Nat. Commun. 13, 7128 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Valles-Colomer, M. et al. The neuroactive potential of the human gut microbiota in quality of life and depression. Nat. Microbiol. 4, 623–632 (2019).

    CAS  PubMed  Google Scholar 

  99. Schönfeld, P. & Wojtczak, L. Short- and medium-chain fatty acids in energy metabolism: the cellular perspective. J. Lipid Res. 57, 943–954 (2016).

    PubMed  PubMed Central  Google Scholar 

  100. Rose, S. et al. Butyrate enhances mitochondrial function during oxidative stress in cell lines from boys with autism. Transl. Psychiatry 8, 42 (2018).

    PubMed  PubMed Central  Google Scholar 

  101. Park, Y. U. et al. Disrupted-in-schizophrenia 1 (DISC1) plays essential roles in mitochondria in collaboration with Mitofilin. Proc. Natl Acad. Sci. USA 107, 17785–177890 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Picard, M. & Sandi, C. The social nature of mitochondria: implications for human health. Neurosci. Biobehav. Rev. 120, 595–610 (2021).

    PubMed  Google Scholar 

  103. Tărlungeanu, D. C. et al. Impaired amino acid transport at the blood brain barrier is a cause of autism spectrum disorder. Cell 167, 1481–1494.e18 (2016).

    PubMed  PubMed Central  Google Scholar 

  104. Vuong, H. E. et al. The maternal microbiome modulates fetal neurodevelopment in mice. Nature 586, 281–286 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Hoyles, L. et al. Regulation of blood-brain barrier integrity by microbiome-associated methylamines and cognition by trimethylamine N-oxide. Microbiome 9, 235 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Zhu, W. et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell 165, 111–124 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Stachulski, A. V., Knausenberger, T. B.-A., Shah, S. N., Hoyles, L. & McArthur, S. A host-gut microbial amino acid co-metabolite, p-cresol glucuronide, promotes blood-brain barrier integrity in vivo. Tissue Barriers 11, 2073175 (2022).

    PubMed  PubMed Central  Google Scholar 

  108. Rothhammer, V. & Quintana, F. J. The aryl hydrocarbon receptor: an environmental sensor integrating immune responses in health and disease. Nat. Rev. Immunol. 19, 184–197 (2019).

    CAS  PubMed  Google Scholar 

  109. Wiggins, B. G. et al. Endothelial sensing of AHR ligands regulates intestinal homeostasis. Nature 621, 821–829 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Bobot, M. et al. Uremic toxic blood-brain barrier disruption mediated by AhR activation leads to cognitive impairment during experimental renal dysfunction. J. Am. Soc. Nephrol. 31, 1509–1521 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Filbrandt, C. R., Wu, Z., Zlokovic, B., Opanashuk, L. & Gasiewicz, T. A. Presence and functional activity of the aryl hydrocarbon receptor in isolated murine cerebral vascular endothelial cells and astrocytes. Neurotoxicology 25, 605–616 (2004).

    CAS  PubMed  Google Scholar 

  112. Dolwick, K. M., Schmidt, J. V., Carver, L. A., Swanson, H. I. & Bradfield, C. A. Cloning and expression of a human Ah receptor cDNA. Mol. Pharmacol. 44, 911–917 (1993).

    CAS  PubMed  Google Scholar 

  113. Scott, S. A., Fu, J. & Chang, P. V. Microbial tryptophan metabolites regulate gut barrier function via the aryl hydrocarbon receptor. Proc. Natl Acad. Sci. USA 117, 19376–19387 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Modoux, M. et al. Butyrate acts through HDAC inhibition to enhance aryl hydrocarbon receptor activation by gut microbiota-derived ligands. Gut Microbes 14, 2105637 (2022).

    PubMed  PubMed Central  Google Scholar 

  115. Agus, A., Planchais, J. & Sokol, H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe 23, 716–724 (2018).

    CAS  PubMed  Google Scholar 

  116. Lanis, J. M. et al. Tryptophan metabolite activation of the aryl hydrocarbon receptor regulates IL-10 receptor expression on intestinal epithelia. Mucosal Immunol. 10, 1133–1144 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Yano, J. M. et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161, 264–276 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Collins, S. L., Stine, J. G., Bisanz, J. E., Okafor, C. D. & Patterson, A. D. Bile acids and the gut microbiota: metabolic interactions and impacts on disease. Nat. Rev. Microbiol. 21, 236–247 (2023).

    CAS  PubMed  Google Scholar 

  119. Stenman, L. K., Holma, R., Eggert, A. & Korpela, R. A novel mechanism for gut barrier dysfunction by dietary fat: epithelial disruption by hydrophobic bile acids. Am. J. Physiol. Gastrointest. Liver Physiol. 304, G227–G234 (2013).

    CAS  PubMed  Google Scholar 

  120. Raimondi, F. et al. Bile acids modulate tight junction structure and barrier function of Caco-2 monolayers via EGFR activation. Am. J. Physiol. Gastrointest. Liver Physiol. 294, G906–G913 (2008).

    CAS  PubMed  Google Scholar 

  121. Sarathy, J. et al. The Yin and Yang of bile acid action on tight junctions in a model colonic epithelium. Physiol. Rep. 5, e13294 (2017).

    PubMed  PubMed Central  Google Scholar 

  122. Quinn, M. et al. Bile acids permeabilize the blood brain barrier after bile duct ligation in rats via Rac1-dependent mechanisms. Dig. Liver Dis. 46, 527–534 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Miller-Fleming, L., Olin-Sandoval, V., Campbell, K. & Ralser, M. Remaining mysteries of molecular biology: the role of polyamines in the cell. J. Mol. Biol. 427, 3389–3406 (2015).

    CAS  PubMed  Google Scholar 

  124. Kurihara, S. Polyamine metabolism and transport in gut microbes. Biosci. Biotechnol. Biochem. 86, 957–966 (2022).

    PubMed  Google Scholar 

  125. Schroeder, S. et al. Dietary spermidine improves cognitive function. Cell Rep. 35, 108985 (2021).

    CAS  PubMed  Google Scholar 

  126. Gonzalez-Santana, A. & Diaz Heijtz, R. Bacterial peptidoglycans from microbiota in neurodevelopment and behavior. Trends Mol. Med. 26, 729–743 (2020).

    CAS  PubMed  Google Scholar 

  127. Luo, Z. et al. Variation in blood microbial lipopolysaccharide (LPS) contributes to immune reconstitution in response to suppressive antiretroviral therapy in HIV. EBioMedicine 80, 104037 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Mohr, A. E., Crawford, M., Jasbi, P., Fessler, S. & Sweazea, K. L. Lipopolysaccharide and the gut microbiota: considering structural variation. FEBS Lett. 596, 849–875 (2022).

    CAS  PubMed  Google Scholar 

  129. Xie, J., Haesebrouck, F., Van Hoecke, L. & Vandenbroucke, R. E. Bacterial extracellular vesicles: an emerging avenue to tackle diseases. Trends Microbiol. 31, 1206–1224 (2023).

    CAS  PubMed  Google Scholar 

  130. Liang, X. et al. Gut bacterial extracellular vesicles: important players in regulating intestinal microenvironment. Gut Microbes 14, 2134689 (2022).

    PubMed  PubMed Central  Google Scholar 

  131. Dallmann, R., Viola, A. U., Tarokh, L., Cajochen, C. & Brown, S. A. The human circadian metabolome. Proc. Natl Acad. Sci. USA 109, 2625–2629 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Kabouridis, P. S. et al. Microbiota controls the homeostasis of glial cells in the gut lamina propria. Neuron 85, 289–295 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Rothhammer, V. et al. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat. Med. 22, 586–597 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Spichak, S. et al. Microbially-derived short-chain fatty acids impact astrocyte gene expression in a sex-specific manner. Brain Behav. Immun. Health 16, 100318 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Rothhammer, V. et al. Microglial control of astrocytes in response to microbial metabolites. Nature 557, 724–728 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Castillo-Ruiz, A. et al. Brain effects of gestating germ-free persist in mouse neonates despite acquisition of a microbiota at birth. Front. Neurosci. 17, 1130347 (2023).

    PubMed  PubMed Central  Google Scholar 

  137. Erny, D. et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat. Neurosci. 18, 965–977 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Knox, E. G. et al. The gut microbiota is important for the maintenance of blood-cerebrospinal fluid barrier integrity. Eur. J. Neurosci. 57, 233–241 (2022).

    PubMed  PubMed Central  Google Scholar 

  139. Leclercq, S. et al. Low-dose penicillin in early life induces long-term changes in murine gut microbiota, brain cytokines and behavior. Nat. Commun. 8, 15062 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Morel, C., Martinez Sanchez, I., Cherifi, Y., Chartrel, N. & Diaz Heijtz, R. Perturbation of maternal gut microbiota in mice during a critical perinatal window influences early neurobehavioral outcomes in offspring. Neuropharmacology 229, 109479 (2023).

    CAS  PubMed  Google Scholar 

  141. Huang, Y. et al. Indoxyl sulfate induces intestinal barrier injury through IRF1-DRP1 axis-mediated mitophagy impairment. Theranostics 10, 7384–7400 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Schneider, K. M. et al. The enteric nervous system relays psychological stress to intestinal inflammation. Cell 186, 2823–2838.e20 (2023).

    CAS  PubMed  Google Scholar 

  143. Walker, A. K., Wing, E. E., Banks, W. A. & Dantzer, R. Leucine competes with kynurenine for blood-to-brain transport and prevents lipopolysaccharide-induced depression-like behavior in mice. Mol. Psychiatry 24, 1523–1532 (2019).

    CAS  PubMed  Google Scholar 

  144. Turpin, W. et al. Increased intestinal permeability is associated with later development of Crohn’s disease. Gastroenterology 159, 2092–2100.e5 (2020).

    CAS  PubMed  Google Scholar 

  145. Torres, J. et al. Serum biomarkers identify patients who will develop inflammatory bowel diseases up to 5 years before diagnosis. Gastroenterology 159, 96–104 (2020).

    CAS  PubMed  Google Scholar 

  146. Mehandru, S. & Colombel, J.-F. The intestinal barrier, an arbitrator turned provocateur in IBD. Nat. Rev. Gastroenterol. Hepatol. 18, 83–84 (2021).

    PubMed  Google Scholar 

  147. Zeissig, S. et al. Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn’s disease. Gut 56, 61–72 (2007).

    CAS  PubMed  Google Scholar 

  148. Madsen, K. L. et al. Interleukin-10 gene-deficient mice develop a primary intestinal permeability defect in response to enteric microflora. Inflamm. Bowel Dis. 5, 262–270 (1999).

    CAS  PubMed  Google Scholar 

  149. Melgar, S. et al. Validation of murine dextran sulfate sodium-induced colitis using four therapeutic agents for human inflammatory bowel disease. Int. Immunopharmacol. 8, 836–844 (2008).

    CAS  PubMed  Google Scholar 

  150. Li, J. et al. Changes in the phosphorylation of claudins during the course of experimental colitis. Int. J. Clin. Exp. Pathol. 8, 12225–12233 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Paone, P. & Cani, P. D. Mucus barrier, mucins and gut microbiota: the expected slimy partners? Gut 69, 2232–2243 (2020).

    CAS  PubMed  Google Scholar 

  152. Tuganbaev, T. et al. Diet diurnally regulates small intestinal microbiome-epithelial-immune homeostasis and enteritis. Cell 182, 1441–1459.e21 (2020).

    CAS  PubMed  Google Scholar 

  153. Duerksen, D. R., Wilhelm-Boyles, C. & Parry, D. M. Intestinal permeability in long-term follow-up of patients with celiac disease on a gluten-free diet. Dig. Dis. Sci. 50, 785–790 (2005).

    CAS  PubMed  Google Scholar 

  154. Leonard, M. M. et al. Microbiome signatures of progression toward celiac disease onset in at-risk children in a longitudinal prospective cohort study. Proc. Natl Acad. Sci. USA 118, e2020322118 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Girdhar, K. et al. Dynamics of the gut microbiome, IgA response, and plasma metabolome in the development of pediatric celiac disease. Microbiome 11, 9 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Ford, A. C., Sperber, A. D., Corsetti, M. & Camilleri, M. Irritable bowel syndrome. Lancet 396, 1675–1688 (2020).

    CAS  PubMed  Google Scholar 

  157. Black, C. J. & Ford, A. C. Global burden of irritable bowel syndrome: trends, predictions and risk factors. Nat. Rev. Gastroenterol. Hepatol. 17, 473–486 (2020).

    PubMed  Google Scholar 

  158. Stasi, C. et al. The complex interplay between gastrointestinal and psychiatric symptoms in irritable bowel syndrome: a longitudinal assessment. J. Gastroenterol. Hepatol. 34, 713–719 (2019).

    CAS  PubMed  Google Scholar 

  159. Hanning, N. et al. Intestinal barrier dysfunction in irritable bowel syndrome: a systematic review. Ther. Adv. Gastroenterol. 14, 1756284821993586 (2021).

    CAS  Google Scholar 

  160. Martínez, C. et al. Diarrhoea-predominant irritable bowel syndrome: an organic disorder with structural abnormalities in the jejunal epithelial barrier. Gut 62, 1160–1168 (2013).

    PubMed  Google Scholar 

  161. Piche, T. et al. Impaired intestinal barrier integrity in the colon of patients with irritable bowel syndrome: involvement of soluble mediators. Gut 58, 196–201 (2009).

    CAS  PubMed  Google Scholar 

  162. Bertiaux-Vandaële, N. et al. The expression and the cellular distribution of the tight junction proteins are altered in irritable bowel syndrome patients with differences according to the disease subtype. Am. J. Gastroenterol. 106, 2165–2173 (2011).

    PubMed  Google Scholar 

  163. Montagne, A. et al. Blood-brain barrier breakdown in the aging human hippocampus. Neuron 85, 296–302 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Fiorentino, M. et al. Blood-brain barrier and intestinal epithelial barrier alterations in autism spectrum disorders. Mol. Autism 7, 49 (2016).

    PubMed  PubMed Central  Google Scholar 

  165. Esnafoglu, E. et al. Increased serum zonulin levels as an intestinal permeability marker in autistic subjects. J. Pediatr. 188, 240–244 (2017).

    CAS  PubMed  Google Scholar 

  166. Hsiao, E. Y. et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155, 1451–1463 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Cui, J. et al. Inflammation of the embryonic choroid plexus barrier following maternal immune activation. Dev. Cell 75, 617–628.e6 (2020).

    Google Scholar 

  168. Kumar, H. & Sharma, B. Minocycline ameliorates prenatal valproic acid induced autistic behaviour, biochemistry and blood brain barrier impairments in rats. Brain Res. 1630, 83–97 (2016).

    CAS  PubMed  Google Scholar 

  169. Sgritta, M. et al. Mechanisms underlying microbial-mediated changes in social behavior in mouse models of autism spectrum disorder. Neuron 101, 246–259.e6 (2019).

    CAS  PubMed  Google Scholar 

  170. Wei, S.-C. et al. SHANK3 regulates intestinal barrier function through modulating ZO-1 expression through the PKCε-dependent pathway. Inflamm. Bowel Dis. 23, 1730–1740 (2017).

    PubMed  Google Scholar 

  171. Tartaglione, A. M. et al. Maternal immune activation induces autism-like changes in behavior, neuroinflammatory profile and gut microbiota in mouse offspring of both sexes. Transl. Psychiatry 12, 384 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Zuffa, S. et al. Early-life differences in the gut microbiota composition and functionality of infants at elevated likelihood of developing autism spectrum disorder. Transl. Psychiatry 13, 257 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Sharon, G. et al. Human gut microbiota from autism spectrum disorder promote behavioral symptoms in mice. Cell 177, 1600–1618.e17 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Xu, R. et al. Altered gut microbiota and mucosal immunity in patients with schizophrenia. Brain Behav. Immun. 85, 120–127 (2020).

    CAS  PubMed  Google Scholar 

  175. Peça, J. et al. Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature 472, 437–442 (2011).

    PubMed  PubMed Central  Google Scholar 

  176. Liu, C.-X. et al. CRISPR/Cas9-induced shank3b mutant zebrafish display autism-like behaviors. Mol. Autism 9, 23 (2018).

    PubMed  PubMed Central  Google Scholar 

  177. James, D. M. et al. Intestinal dysmotility in a zebrafish (Danio rerio) shank3a;shank3b mutant model of autism. Mol. Autism 10, 3 (2019).

    PubMed  PubMed Central  Google Scholar 

  178. Tabouy, L. et al. Dysbiosis of microbiome and probiotic treatment in a genetic model of autism spectrum disorders. Brain Behav. Immun. 73, 310–319 (2018).

    PubMed  Google Scholar 

  179. Osman, A. et al. Acetate supplementation rescues social deficits and alters transcriptional regulation in prefrontal cortex of Shank3 deficient mice. Brain Behav. Immun. 114, 311–324 (2023).

    CAS  PubMed  Google Scholar 

  180. Nagpal, J. & Cryan, J. F. Host genetics, the microbiome & behaviour – a ’Holobiont’ perspective. Cell Res 31, 832–833 (2021).

    PubMed  PubMed Central  Google Scholar 

  181. Canetta, S. E. & Brown, A. S. Prenatal infection, maternal immune activation, and risk for schizophrenia. Transl. Neurosci. 3, 320–327 (2012).

    PubMed  Google Scholar 

  182. Brown, A. S. et al. Prenatal rubella, premorbid abnormalities, and adult schizophrenia. Biol. Psychiatry 49, 473–486 (2001).

    CAS  PubMed  Google Scholar 

  183. Nudel, R. et al. Maternal pregnancy-related infections and autism spectrum disorder – the genetic perspective. Transl. Psychiatry 12, 334 (2022).

    PubMed  PubMed Central  Google Scholar 

  184. Choi, G. B. et al. The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring. Science 351, 933–939 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Menard, C. et al. Social stress induces neurovascular pathology promoting depression. Nat. Neurosci. 20, 1752–1760 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Dudek, K. A. et al. Molecular adaptations of the blood-brain barrier promote stress resilience vs. depression. Proc. Natl Acad. Sci. USA 117, 3326–3336 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Dion-Albert, L. et al. Vascular and blood-brain barrier-related changes underlie stress responses and resilience in female mice and depression in human tissue. Nat. Commun. 13, 164 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Greene, C., Hanley, N. & Campbell, M. Blood-brain barrier associated tight junction disruption is a hallmark feature of major psychiatric disorders. Transl. Psychiatry 10, 373 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. McEwen, B. S. Protection and damage from acute and chronic stress: allostasis and allostatic overload and relevance to the pathophysiology of psychiatric disorders. Ann. N. Y. Acad. Sci. 1032, 1–7 (2004).

    PubMed  Google Scholar 

  190. Ochi, S. & Dwivedi, Y. Dissecting early life stress-induced adolescent depression through epigenomic approach. Mol. Psychiatry 28, 141–153 (2023).

    CAS  PubMed  Google Scholar 

  191. Leigh, S.-J. et al. The impact of acute and chronic stress on gastrointestinal physiology and function: a microbiota-gut-brain axis perspective. J. Physiol. 601, 4491–4538 (2023).

    CAS  PubMed  Google Scholar 

  192. Bastiaanssen, T. F. S. et al. Volatility as a concept to understand the impact of stress on the microbiome. Psychoneuroendocrinology 124, 105047 (2021).

    CAS  PubMed  Google Scholar 

  193. Morton, J. T. et al. Multi-level analysis of the gut-brain axis shows autism spectrum disorder-associated molecular and microbial profiles. Nat. Neurosci. 26, 1208–1217 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Braak, H., Rüb, U., Gai, W. P. & Del Tredici, K. Idiopathic Parkinson’s disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J. Neural Transm. 110, 517–536 (2003).

    CAS  PubMed  Google Scholar 

  195. Kim, S. et al. Transneuronal propagation of pathologic α-synuclein from the gut to the brain models Parkinson’s disease. Neuron 103, 627–641.e7 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Horsager, J. et al. Brain-first versus body-first Parkinson’s disease: a multimodal imaging case-control study. Brain 143, 3077–3088 (2020).

    PubMed  Google Scholar 

  197. Wallen, Z. D. et al. Metagenomics of Parkinson’s disease implicates the gut microbiome in multiple disease mechanisms. Nat. Commun. 13, 6958 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Tan, A. H., Lim, S. Y. & Lang, A. E. The microbiome-gut-brain axis in Parkinson disease – from basic research to the clinic. Nat. Rev. Neurol. 18, 476–495 (2022).

    PubMed  Google Scholar 

  199. Clairembault, T. et al. Structural alterations of the intestinal epithelial barrier in Parkinson’s disease. Acta Neuropathol. Commun. 3, 12 (2015).

    PubMed  PubMed Central  Google Scholar 

  200. Lord, C. et al. Autism spectrum disorder. Nat. Rev. Dis. Prim. 6, 5 (2020).

    PubMed  Google Scholar 

  201. Madra, M., Ringel, R. & Margolis, K. G. Gastrointestinal issues and autism spectrum disorder. Child. Adolesc. Psychiatr. Clin. N. Am. 29, 501–513 (2020).

    PubMed  PubMed Central  Google Scholar 

  202. Buffington, S. A. et al. Microbial reconstitution reverses maternal diet-induced social and synaptic deficits in offspring. Cell 165, 1762–1775 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Buffington, S. A. et al. Dissecting the contribution of host genetics and the microbiome in complex behaviors. Cell 184, 1740–1756.e16 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Kim, E. et al. Maternal gut bacteria drive intestinal inflammation in offspring with neurodevelopmental disorders by altering the chromatin landscape of CD4+ T cells. Immunity 55, 145–158.e7 (2021).

    PubMed  PubMed Central  Google Scholar 

  205. Kim, S. et al. Maternal gut bacteria promote neurodevelopmental abnormalities in mouse offspring. Nature 549, 528–532 (2017).

    PubMed  PubMed Central  Google Scholar 

  206. Xie, R. et al. Maternal high fat diet alters gut microbiota of offspring and exacerbates DSS-induced colitis in adulthood. Front. Immunol. 9, 2608 (2018).

    PubMed  PubMed Central  Google Scholar 

  207. Haddad-Tóvolli, R. et al. Maternal obesity damages the median eminence blood-brain barrier structure and function in the progeny: the beneficial impact of cross-fostering by lean mothers. Am. J. Physiol. Endocrinol. Metab. 324, E154–E166 (2023).

    PubMed  Google Scholar 

  208. Agorastos, A. & Chrousos, G. P. The neuroendocrinology of stress: the stress-related continuum of chronic disease development. Mol. Psychiatry 27, 502–513 (2022).

    PubMed  Google Scholar 

  209. Bisgaard, T. H., Allin, K. H., Keefer, L., Ananthakrishnan, A. N. & Jess, T. Depression and anxiety in inflammatory bowel disease: epidemiology, mechanisms and treatment. Nat. Rev. Gastroenterol. Hepatol. 19, 717–726 (2022).

    PubMed  Google Scholar 

  210. Schirmer, M., Garner, A., Vlamakis, H. & Xavier, R. J. Microbial genes and pathways in inflammatory bowel disease. Nat. Rev. Microbiol. 17, 497–511 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Bosch, J. A. et al. The gut microbiota and depressive symptoms across ethnic groups. Nat. Commun. 13, 7129 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Doney, E. et al. Chronic stress exposure alters the gut barrier: sex-specific effects on microbiota and jejunum tight junctions. Biol. Psychiatry Glob. Open Sci. https://doi.org/10.1016/j.bpsgos.2023.04.007 (2023).

  213. Furman, D. et al. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 25, 1822–1832 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Kriegstein, A. R., Subramanian, L., Obernier, K. & Alvarez-Buylla, A. in Patterning and Cell Type Specification in the Developing CNS and PNS 2nd edn Ch. 31 (eds Rubenstein, J., Rakic, P., Chen, B. & Kwan, K. Y.). 775–806 (Academic Press, 2020).

  215. Shimada, Y. et al. Commensal bacteria-dependent indole production enhances epithelial barrier function in the colon. PLoS ONE 8, e80604 (2013).

    PubMed  PubMed Central  Google Scholar 

  216. Nielsen, D. S. G. et al. Effect of butyrate and fermentation products on epithelial integrity in a mucus-secreting human colon cell line. J. Funct. Foods 40, 9–17 (2018).

    CAS  Google Scholar 

  217. Peng, L., He, Z., Chen, W., Holzman, I. R. & Lin, J. Effects of butyrate on intestinal barrier function in a Caco-2 cell monolayer model of intestinal barrier. Pediatr. Res. 61, 37–41 (2007).

    CAS  PubMed  Google Scholar 

  218. Peng, L., Li, Z.-R., Green, R. S., Holzman, I. R. & Lin, J. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. J. Nutr. 139, 1619–1625 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Feng, Y., Wang, Y., Wang, P., Huang, Y. & Wang, F. Short-chain fatty acids manifest stimulative and protective effects on intestinal barrier function through the inhibition of NLRP3 inflammasome and autophagy. Cell. Physiol. Biochem. 49, 190–205 (2018).

    CAS  PubMed  Google Scholar 

  220. Wang, H.-B., Wang, P.-Y., Wang, X., Wan, Y.-L. & Liu, Y.-C. Butyrate enhances intestinal epithelial barrier function via up-regulation of tight junction protein Claudin-1 transcription. Dig. Dis. Sci. 57, 3126–3135 (2012).

    CAS  PubMed  Google Scholar 

  221. Paparo, L. et al. Butyrate as a bioactive human milk protective component against food allergy. Allergy 76, 1398–1415 (2021).

    CAS  PubMed  Google Scholar 

  222. Diao, H., Jiao, A. R., Yu, B., Mao, X. B. & Chen, D. W. Gastric infusion of short-chain fatty acids can improve intestinal barrier function in weaned piglets. Genes. Nutr. 14, 4 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Li, J. et al. Indole-3-propionic acid improved the intestinal barrier by enhancing epithelial barrier and mucus barrier. J. Agric. Food Chem. 69, 1487–1495 (2021).

    CAS  PubMed  Google Scholar 

  224. Venkatesh, M. et al. Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and Toll-like receptor 4. Immunity 41, 296–310 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Hu, J. et al. Gut microbiota-derived 3-phenylpropionic acid promotes intestinal epithelial barrier function via AhR signaling. Microbiome 11, 102 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  226. Singh, R. et al. Enhancement of the gut barrier integrity by a microbial metabolite through the Nrf2 pathway. Nat. Commun. 10, 89 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  227. Guo, X. et al. Polyamines are necessary for synthesis and stability of occludin protein in intestinal epithelial cells. Am. J. Physiol. Gastrointest. Liver Physiol. 288, G1159–G1169 (2005).

    CAS  PubMed  Google Scholar 

  228. Guo, X. et al. Regulation of adherens junctions and epithelial paracellular permeability: a novel function for polyamines. Am. J. Physiol. Cell Physiol. 285, C1174–C1187 (2003).

    CAS  PubMed  Google Scholar 

  229. Chen, S.-Y. et al. A novel trimethylamine oxide-induced model implicates gut microbiota-related mechanisms in frailty. Front. Cell. Infect. Microbiol. 12, 803082 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Travier, L. et al. Neonatal susceptibility to meningitis results from the immaturity of epithelial barriers and gut microbiota. Cell Rep. 35, 109319 (2021).

    CAS  PubMed  Google Scholar 

  231. Ishida, I. et al. Gut permeability and its clinical relevance in schizophrenia. Neuropsychopharmacol. Rep. 42, 70–76 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Gokulakrishnan, K. et al. Altered intestinal permeability biomarkers in schizophrenia: a possible link with subclinical inflammation. Ann. Neurosci. 29, 151–158 (2022).

    PubMed  PubMed Central  Google Scholar 

  233. Greene, C. et al. Dose-dependent expression of claudin-5 is a modifying factor in schizophrenia. Mol. Psychiatry 23, 2156–2166 (2018).

    CAS  PubMed  Google Scholar 

  234. Crockett, A. M. et al. Disruption of the blood-brain barrier in 22q11.2 deletion syndrome. Brain 144, 1351–1360 (2021).

    PubMed  PubMed Central  Google Scholar 

  235. Lizano, P. et al. Association of choroid plexus enlargement with cognitive, inflammatory, and structural phenotypes across the psychosis spectrum. Am. J. Psychiatry 176, 564–572 (2019).

    PubMed  PubMed Central  Google Scholar 

  236. Kim, S., Hwang, Y., Lee, D. & Webster, M. J. Transcriptome sequencing of the choroid plexus in schizophrenia. Transl. Psychiatry 6, e964 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  237. Aydoğan Avşar, P. et al. Serum zonulin and claudin-5 levels in children with attention-deficit/hyperactivity disorder. Int. J. Psychiatry Clin. Pract. 25, 49–55 (2021).

    PubMed  Google Scholar 

  238. Greene, C. et al. Microvascular stabilization via blood-brain barrier regulation prevents seizure activity. Nat. Commun. 13, 2003 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  239. Kılıç, F., Işık, Ü., Demirdaş, A., Doğuç, D. K. & Bozkurt, M. Serum zonulin and claudin-5 levels in patients with bipolar disorder. J. Affect. Disord. 266, 37–42 (2020).

    PubMed  Google Scholar 

  240. Orlovska-Waast, S. et al. Cerebrospinal fluid markers of inflammation and infections in schizophrenia and affective disorders: a systematic review and meta-analysis. Mol. Psychiatry 24, 869–887 (2019).

    CAS  PubMed  Google Scholar 

  241. Wu, X. et al. Childhood social isolation causes anxiety-like behaviors via the damage of blood-brain barrier in amygdala in female mice. Front. Cell Dev. Biol. 10, 943067 (2022).

    PubMed  PubMed Central  Google Scholar 

  242. Montagne, A. et al. APOE4 leads to blood-brain barrier dysfunction predicting cognitive decline. Nature 581, 71–76 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  243. Stopa, E. G. et al. Comparative transcriptomics of choroid plexus in Alzheimer’s disease, frontotemporal dementia and Huntington’s disease: implications for CSF homeostasis. Fluids Barriers CNS 15, 18 (2018).

    PubMed  PubMed Central  Google Scholar 

  244. Ryu, J. K. & McLarnon, J. G. A leaky blood-brain barrier, fibrinogen infiltration and microglial reactivity in inflamed Alzheimer’s disease brain. J. Cell. Mol. Med. 13, 2911–2925 (2009).

    CAS  PubMed  Google Scholar 

  245. Sengillo, J. D. et al. Deficiency in mural vascular cells coincides with blood-brain barrier disruption in Alzheimer’s disease. Brain Pathol. 23, 303–310 (2013).

    PubMed  Google Scholar 

  246. Brkic, M. et al. Amyloid β oligomers disrupt blood–CSF barrier integrity by activating matrix metalloproteinases. J. Neurosci. 35, 12766–12778 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  247. Perez-Pardo, P. et al. Role of TLR4 in the gut-brain axis in Parkinson’s disease: a translational study from men to mice. Gut 68, 829–843 (2019).

    CAS  PubMed  Google Scholar 

  248. Forsyth, C. B. et al. Increased intestinal permeability correlates with sigmoid mucosa alpha-synuclein staining and endotoxin exposure markers in early Parkinson’s disease. PLoS ONE 6, e28032 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  249. Al-Bachari, S., Naish, J. H., Parker, G. J. M., Emsley, H. C. A. & Parkes, L. M. Blood-brain barrier leakage is increased in Parkinson’s disease. Front. Physiol. 11, 593026 (2020).

    PubMed  PubMed Central  Google Scholar 

  250. Pellegrini, C. et al. Enteric α-synuclein impairs intestinal epithelial barrier through caspase-1-inflammasome signaling in Parkinson’s disease before brain pathology. NPJ Parkinsons Dis. 8, 9 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  251. Lan, G. et al. Astrocytic VEGFA: an essential mediator in blood-brain-barrier disruption in Parkinson’s disease. Glia 70, 337–353 (2022).

    CAS  PubMed  Google Scholar 

  252. Lim, R. G. et al. Huntington’s disease iPSC-derived brain microvascular endothelial cells reveal WNT-mediated angiogenic and blood-brain barrier deficits. Cell Rep. 19, 1365–1377 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  253. Linville, R. M. et al. Brain microvascular endothelial cell dysfunction in an isogenic juvenile iPSC model of Huntington’s disease. Fluids Barriers CNS 19, 54 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  254. Drouin-Ouellet, J. et al. Cerebrovascular and blood-brain barrier impairments in Huntington’s disease: potential implications for its pathophysiology. Ann. Neurol. 78, 160–177 (2015).

    PubMed  Google Scholar 

  255. Stan, T. L. et al. Increased intestinal permeability and gut dysbiosis in the R6/2 mouse model of Huntington’s disease. Sci. Rep. 10, 18270 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  256. Quiñonez-Silvero, C., Hübner, K. & Herzog, W. Development of the brain vasculature and the blood-brain barrier in zebrafish. Dev. Biol. 457, 181–190 (2020).

    PubMed  Google Scholar 

  257. Chen, J., Poskanzer, K. E., Freeman, M. R. & Monk, K. R. Live-imaging of astrocyte morphogenesis and function in zebrafish neural circuits. Nat. Neurosci. 23, 1297–1306 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  258. Li, Y. et al. Claudin-5a is essential for the functional formation of both zebrafish blood-brain barrier and blood-cerebrospinal fluid barrier. Fluids Barriers CNS 19, 40 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  259. Parab, S., Quick, R. E. & Matsuoka, R. L. Endothelial cell-type-specific molecular requirements for angiogenesis drive fenestrated vessel development in the brain. Elife 10, e64295 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  260. Balmaceda-Aguilera, C. et al. Glucose transporter 1 and monocarboxylate transporters 1, 2, and 4 localization within the glial cells of shark blood-brain-barriers. PLoS ONE 7, e32409 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  261. Liu, X., Hodgson, J. J. & Buchon, N. Drosophila as a model for homeostatic, antibacterial, and antiviral mechanisms in the gut. PLoS Pathog. 13, e1006277 (2017).

    PubMed  PubMed Central  Google Scholar 

  262. Flores, E. M., Nguyen, A. T., Odem, M. A., Eisenhoffer, G. T. & Krachler, A. M. The zebrafish as a model for gastrointestinal tract-microbe interactions. Cell. Microbiol. 22, e13152 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  263. Asano, A., Asano, K., Sasaki, H., Furuse, M. & Tsukita, S. Claudins in Caenorhabditis elegans: their distribution and barrier function in the epithelium. Curr. Biol. 13, 1042–1046 (2003).

    CAS  PubMed  Google Scholar 

  264. Günzel, D. & Yu, A. S. L. Claudins and the modulation of tight junction permeability. Physiol. Rev. 93, 525–569 (2013).

    PubMed  PubMed Central  Google Scholar 

  265. Stamatovic, S. M., Johnson, A. M., Keep, R. F. & Andjelkovic, A. V. Junctional proteins of the blood-brain barrier: new insights into function and dysfunction. Tissue Barriers 4, e1154641 (2016).

    PubMed  PubMed Central  Google Scholar 

  266. Saunders, N. R., Dziegielewska, K. M., Møllgård, K. & Habgood, M. D. Physiology and molecular biology of barrier mechanisms in the fetal and neonatal brain. J. Physiol. 596, 5723–5756 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  267. Kimura, I. et al. Maternal gut microbiota in pregnancy influences offspring metabolic phenotype in mice. Science 367, eaaw8429 (2020).

    CAS  PubMed  Google Scholar 

  268. Kennedy, K. M. et al. Questioning the fetal microbiome illustrates pitfalls of low-biomass microbial studies. Nature 613, 639–649 (2023).

    CAS  PubMed  Google Scholar 

  269. Maltepe, E., Bakardjiev, A. I. & Fisher, S. J. The placenta: transcriptional, epigenetic, and physiological integration during development. J. Clin. Invest. 120, 1016–1025 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  270. Miranda, J. et al. Syncytiotrophoblast of placentae from women with zika virus infection has altered tight junction protein expression and increased paracellular permeability. Cells 8, 1174 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  271. Johansson, P. A. et al. The transcription factor Otx2 regulates choroid plexus development and function. Development 140, 1055–1066 (2013).

    CAS  PubMed  Google Scholar 

  272. Vukavic, T. Timing of the gut closure. J. Pediatr. Gastroenterol. Res. 3, 700–703 (1984).

    CAS  Google Scholar 

  273. Round, J. L. & Mazmanian, S. K. The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immunol. 9, 313–323 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  274. Abrams, G. D., Bauer, H. & Sprinz, H. Influence of the normal flora on mucosal morphology and cellular renewal in the ileum. A comparison of germ-free and conventional mice. Lab. Invest. 12, 355–364 (1963).

    CAS  PubMed  Google Scholar 

  275. Stappenbeck, T. S., Hooper, L. V. & Gordon, J. I. Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells. Proc. Natl Acad. Sci. USA 99, 15451–15455 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  276. Reinhardt, C. et al. Tissue factor and PAR1 promote microbiota-induced intestinal vascular remodelling. Nature 483, 627–631 (2012).

    CAS  PubMed  Google Scholar 

  277. Willms, R. J., Jones, L. O., Hocking, J. C. & Foley, E. A cell atlas of microbe-responsive processes in the zebrafish intestine. Cell Rep. 38, 110311 (2022).

    CAS  PubMed  Google Scholar 

  278. Coelho-Santos, V. & Shih, A. Y. Postnatal development of cerebrovascular structure and the neurogliovascular unit. Wiley Interdiscip. Rev. Dev. Biol. 9, e363 (2020).

    PubMed  Google Scholar 

  279. Gömöri, E. et al. Fetal development of membrane water channel proteins aquaporin-1 and aquaporin-4 in the human brain. Int. J. Dev. Neurosci. 24, 295–305 (2006).

    PubMed  Google Scholar 

  280. Gleeson, J. P. et al. The enhanced intestinal permeability of infant mice enables oral protein and macromolecular absorption without delivery technology. Int. J. Pharm. 593, 120120 (2021).

    CAS  PubMed  Google Scholar 

  281. Gulbransen, B. D. & Sharkey, K. A. Novel functional roles for enteric glia in the gastrointestinal tract. Nat. Rev. Gastroenterol. Hepatol. 9, 625–632 (2012).

    CAS  PubMed  Google Scholar 

  282. Yang, A. C. et al. Physiological blood-brain transport is impaired with age by a shift in transcytosis. Nature 583, 425–430 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  283. Banks, W. A., Reed, M. J., Logsdon, A. F., Rhea, E. M. & Erickson, M. A. Healthy aging and the blood-brain barrier. Nat. Aging 1, 243–254 (2021).

    PubMed  PubMed Central  Google Scholar 

  284. Scarpetta, V. et al. Morphological and mitochondrial changes in murine choroid plexus epithelial cells during healthy aging. Fluids Barriers CNS 20, 19 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  285. Kelly, J. R. et al. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front. Cell. Neurosci. 9, 392 (2015).

    PubMed  PubMed Central  Google Scholar 

  286. Man, A. L. et al. Age-associated modifications of intestinal permeability and innate immunity in human small intestine. Clin. Sci. 129, 515–527 (2015).

    CAS  Google Scholar 

  287. Thevaranjan, N. et al. Age-associated microbial dysbiosis promotes intestinal permeability, systemic inflammation, and macrophage dysfunction. Cell Host Microbe 21, 455–466.e4 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  288. Clark, R. I. et al. Distinct shifts in microbiota composition during Drosophila aging impair intestinal function and drive mortality. Cell Rep. 12, 1656–1667 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  289. Di Marco Barros, R., Fitzpatrick, Z. & Clatworthy, M. R. The gut–meningeal immune axis: priming brain defense against the most likely invaders. J. Exp. Med. 219, e20211520 (2022).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

M.R.A. gratefully acknowledges the support of the ERC-StG (RADIOGUT, project 101040951) and SFI-IRC Pathway Programme (SFI21/PATH-S/9424). J.F.C. gratefully acknowledges the support of the Science Foundation Ireland (SFI/12/RC/2273_P2). The authors thank J. Nagpal and K. O’Riordan (APC Microbiome Ireland, University College Cork) for critical and constructive reading of the manuscript. The authors thank the reviewers for their time and their valuable comments that helped to improve the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched data for the article, contributed substantially to discussion of the content and reviewed and/or edited the manuscript before submission. M.R.A. wrote the article.

Corresponding author

Correspondence to María R. Aburto.

Ethics declarations

Competing interests

J.F.C. has been an invited speaker at conferences organized by Mead Johnson, Ordesa, and Yakult, and has received research funding from Reckitt, Nutricia, Dupont/IFF and Nestlé. M.R.A. has no competing interests.

Peer review

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks William Banks, Emeran Mayer, Caroline Menard and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aburto, M.R., Cryan, J.F. Gastrointestinal and brain barriers: unlocking gates of communication across the microbiota–gut–brain axis. Nat Rev Gastroenterol Hepatol 21, 222–247 (2024). https://doi.org/10.1038/s41575-023-00890-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-023-00890-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing