Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Multiomics to elucidate inflammatory bowel disease risk factors and pathways

Abstract

Inflammatory bowel disease (IBD) is an immune-mediated disease of the intestinal tract, with complex pathophysiology involving genetic, environmental, microbiome, immunological and potentially other factors. Epidemiological data have provided important insights into risk factors associated with IBD, but are limited by confounding, biases and data quality, especially when pertaining to risk factors in early life. Multiomics platforms provide granular high-throughput data on numerous variables simultaneously and can be leveraged to characterize molecular pathways and risk factors for chronic diseases, such as IBD. Herein, we describe omics platforms that can advance our understanding of IBD risk factors and pathways, and available omics data on IBD and other relevant diseases. We highlight knowledge gaps and emphasize the importance of birth, at-risk and pre-diagnostic cohorts, and neonatal blood spots in omics analyses in IBD. Finally, we discuss network analysis, a powerful bioinformatics tool to assemble high-throughput data and derive clinical relevance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Complex pathways lead to IBD.
Fig. 2: Differences in the application of early life cohorts and pre-diagnostic cohorts in characterizing various omics signatures of IBD during different periods of life.
Fig. 3: Applications from neonatal screening.

Similar content being viewed by others

References

  1. Torres, J., Mehandru, S., Colombel, J. F. & Peyrin-Biroulet, L. Crohn’s disease. Lancet 389, 1741–1755 (2017).

    Article  PubMed  Google Scholar 

  2. Ungaro, R., Mehandru, S., Allen, P. B., Peyrin-Biroulet, L. & Colombel, J. F. Ulcerative colitis. Lancet 389, 1756–1770 (2017).

    Article  PubMed  Google Scholar 

  3. Ananthakrishnan, A. N. et al. Environmental triggers in IBD: a review of progress and evidence. Nat. Rev. Gastroenterol. Hepatol. 15, 39–49 (2018).

    Article  PubMed  Google Scholar 

  4. Piovani, D. et al. Environmental risk factors for inflammatory bowel diseases: an umbrella review of meta-analyses. Gastroenterology 157, 647–659.e4 (2019).

    Article  PubMed  Google Scholar 

  5. Agrawal, M. et al. Early life exposures and the risk of inflammatory bowel disease: systematic review and meta-analyses. EClinicalMedicine https://doi.org/10.1016/j.eclinm.2021.100884 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Schulte, P. A. et al. in Molecular Epidemiology: Principles and Practices, IARC Scientific Publication 163 Ch. 1 (eds Rothman, N. et al.) 1–7 (IARC, 2011).

  7. Torres, J. et al. Results of the seventh scientific workshop of ECCO: precision medicine in IBD– prediction and prevention of inflammatory bowel disease. J. Crohns Colitis 15, 1443–1454 (2021).

    Article  PubMed  Google Scholar 

  8. Graham, D. B. & Xavier, R. J. Pathway paradigms revealed from the genetics of inflammatory bowel disease. Nature 578, 527–539 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rioux, J. D. et al. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat. Genet. 39, 596–604 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ogura, Y. et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 411, 603–606 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Liu, J. Z. et al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat. Genet. 47, 979–986 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Inoue, N. et al. Lack of common NOD2 variants in Japanese patients with Crohn’s disease. Gastroenterology 123, 86–91 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Somineni, H. K. et al. Whole-genome sequencing of African Americans implicates differential genetic architecture in inflammatory bowel disease. Am. J. Hum. Genet. 108, 431–445 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Spencer, E. A., Helmus, D., Telesco, S., Colombel, J. F. & Dubinsky, M. C. Inflammatory bowel disease clusters within affected sibships in Ashkenazi Jewish multiplex families. Gastroenterology 159, 381–382 (2020).

    Article  PubMed  Google Scholar 

  15. Gomes, C. F., Jensen, C. B., Allin, K., Torres, J. & Burisch, J. M. Sa509 risk factors associated with familial inflammatory bowel disease [abstract]. Gastroenterology 160, S-528 (2021).

    Article  Google Scholar 

  16. Turpin, W. et al. Associations of NOD2 polymorphisms with Erysipelotrichaceae in stool of in healthy first degree relatives of Crohn’s disease subjects. BMC Med. Genet. 21, 204 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Miller, G. W. & Jones, D. P. The nature of nurture: refining the definition of the exposome. Toxicol. Sci. 137, 1–2 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Niedzwiecki, M. M. et al. The exposome: molecules to populations. Annu. Rev. Pharmacol. Toxicol. 59, 107–127 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Perera, F. P. et al. Effects of transplacental exposure to environmental pollutants on birth outcomes in a multiethnic population. Env. Health Perspect. 111, 201–205 (2003).

    Article  CAS  Google Scholar 

  20. Volk, H. E. et al. Prenatal air pollution exposure and neurodevelopment: a review and blueprint for a harmonised approach within ECHO. Environ. Res. 196, 110320 (2021).

    Article  CAS  PubMed  Google Scholar 

  21. Peters, A., Nawrot, T. S. & Baccarelli, A. A. Hallmarks of environmental insults. Cell 184, 1455–1468 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Agrawal, M., Hillenbrand, C. M., Allin, K. H. & Torres, J. Early life greenspace and the risk of pediatric-onset inflammatory bowel disease: insights into the link between environmental and human health. Gastroenterology 161, 355–357 (2021).

    Article  PubMed  Google Scholar 

  23. Rundle, A. G. et al. Prenatal exposure to airborne polycyclic aromatic hydrocarbons and childhood growth trajectories from age 5–14 years. Environ. Res. 177, 108595 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. McConnell, R. et al. A longitudinal cohort study of body mass index and childhood exposure to secondhand tobacco smoke and air pollution: the Southern California Children’s Health Study. Env. Health Perspect. 123, 360–366 (2015).

    Article  Google Scholar 

  25. Fleisch, A. F. et al. Prenatal and early life exposure to traffic pollution and cardiometabolic health in childhood. Pediatr. Obes. 12, 48–57 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Ruokolainen, L. et al. Green areas around homes reduce atopic sensitisation in children. Allergy 70, 195–202 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Ribeiro, A. I., Tavares, C., Guttentag, A. & Barros, H. Association between neighbourhood green space and biological markers in school-aged children. Findings from the Generation XXI birth cohort. Environ. Int. 132, 105070 (2019).

    Article  PubMed  Google Scholar 

  28. Elten, M. et al. Ambient air pollution and the risk of pediatric-onset inflammatory bowel disease: a population-based cohort study. Environ. Int. 138, 105676 (2020).

    Article  CAS  PubMed  Google Scholar 

  29. Elten, M. et al. Residential greenspace in childhood reduces risk of pediatric inflammatory bowel disease: a population-based cohort study. Am. J. Gastroenterol. 116, 347–353 (2020).

    Article  Google Scholar 

  30. Lovinsky-Desir, S. et al. Air pollution, urgent asthma medical visits and the modifying effect of neighborhood asthma prevalence. Pediatr. Res. 85, 36–42 (2019).

    Article  PubMed  Google Scholar 

  31. Mao, G. et al. Individual and joint effects of early-life ambient exposure and maternal prepregnancy obesity on childhood overweight or obesity. Env. Health Perspect. 125, 067005 (2017).

    Article  Google Scholar 

  32. Jedrychowski, W. A. et al. Prenatal exposure to fine particles and polycyclic aromatic hydrocarbons and birth outcomes: a two-pollutant approach. Int. Arch. Occup. Env. Health 90, 255–264 (2017).

    Article  CAS  Google Scholar 

  33. Hirten, R. P. et al. Use of physiological data from a wearable device to identify SARS-CoV-2 infection and symptoms and predict COVID-19 diagnosis: observational study. J. Med. Internet Res. 23, e26107 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hirten, R. P. et al. Longitudinal autonomic nervous system measures correlate with stress and ulcerative colitis disease activity and predict flare. Inflamm. Bowel Dis. 27, 1576–1584 (2020).

    Article  Google Scholar 

  35. Widbom, L. et al. Elevated plasma cotinine is associated with an increased risk of developing IBD, especially among users of combusted tobacco. PLoS ONE 15, e0235536 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Walker, D. I. et al. High-resolution metabolomics of occupational exposure to trichloroethylene. Int. J. Epidemiol. 45, 1517–1527 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Patti, G. J., Yanes, O. & Siuzdak, G. Innovation: Metabolomics: the apogee of the omics trilogy. Nat. Rev. Mol. Cell Biol. 13, 263–269 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li, N. et al. Gestational and childhood exposure to per- and polyfluoroalkyl substances and cardiometabolic risk at age 12 years. Environ. Int. 147, 106344 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jedrychowski, W. A. et al. Depressed height gain of children associated with intrauterine exposure to polycyclic aromatic hydrocarbons (PAH) and heavy metals: the cohort prospective study. Environ. Res. 136, 141–147 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Lochhead, P. et al. Plasma concentrations of perfluoroalkyl substances and risk of inflammatory bowel diseases in women: a nested case control analysis in the Nurses’ Health Study cohorts. Environ. Res. 207, 112222 (2021).

    Article  PubMed  CAS  Google Scholar 

  41. Steenland, K., Zhao, L. & Winquist, A. A cohort incidence study of workers exposed to perfluorooctanoic acid (PFOA). Occup. Env. Med. 72, 373–380 (2015).

    Article  Google Scholar 

  42. Xu, Y. et al. Inflammatory bowel disease and biomarkers of gut inflammation and permeability in a community with high exposure to perfluoroalkyl substances through drinking water. Environ. Res. 181, 108923 (2020).

    Article  CAS  PubMed  Google Scholar 

  43. Canturk, N., Atsu, S. S., Aka, P. S. & Dagalp, R. Neonatal line on fetus and infant teeth: an indicator of live birth and mode of delivery. Early Hum. Dev. 90, 393–397 (2014).

    Article  PubMed  Google Scholar 

  44. Nair, N. et al. Association between early-life exposures and inflammatory bowel diseases, based on analyses of deciduous teeth. Gastroenterology 159, 383–385 (2020).

    Article  PubMed  Google Scholar 

  45. Lai, Y. et al. Serum metabolomics identifies altered bioenergetics, signaling cascades in parallel with exposome markers in Crohn’s disease. Molecules 24, 449 (2019).

    Article  PubMed Central  CAS  Google Scholar 

  46. Kolho, K. L., Pessia, A., Jaakkola, T., de Vos, W. M. & Velagapudi, V. Faecal and serum metabolomics in paediatric inflammatory bowel disease. J. Crohns Colitis 11, 321–334 (2017).

    PubMed  Google Scholar 

  47. Daniluk, U. et al. Untargeted metabolomics and inflammatory markers profiling in children with Crohn’s disease and ulcerative colitis–a preliminary study. Inflamm. Bowel Dis. 25, 1120–1128 (2019).

    Article  PubMed  Google Scholar 

  48. Petrick, L. M., Uppal, K. & Funk, W. E. Metabolomics and adductomics of newborn bloodspots to retrospectively assess the early-life exposome. Curr. Opin. Pediatr. 32, 300–307 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Funk, W. E., Waidyanatha, S., Chaing, S. H. & Rappaport, S. M. Hemoglobin adducts of benzene oxide in neonatal and adult dried blood spots. Cancer Epidemiol. Biomark. Prev. 17, 1896–1901 (2008).

    Article  CAS  Google Scholar 

  50. Waidyanatha, S., Zheng, Y., Serdar, B. & Rappaport, S. M. Albumin adducts of naphthalene metabolites as biomarkers of exposure to polycyclic aromatic hydrocarbons. Cancer Epidemiol. Biomark. Prev. 13, 117–124 (2004).

    Article  CAS  Google Scholar 

  51. Lydic, T. A. & Goo, Y. H. Lipidomics unveils the complexity of the lipidome in metabolic diseases. Clin. Transl. Med. 7, 4 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Diab, J. et al. Lipidomics in ulcerative colitis reveal alteration in mucosal lipid composition associated with the disease state. Inflamm. Bowel Dis. 25, 1780–1787 (2019).

    Article  PubMed  Google Scholar 

  53. Iwatani, S. et al. Novel mass spectrometry-based comprehensive lipidomic analysis of plasma from patients with inflammatory bowel disease. J. Gastroenterol. Hepatol. 35, 1355–1364 (2020).

    Article  CAS  PubMed  Google Scholar 

  54. Murgia, A. et al. Italian cohort of patients affected by inflammatory bowel disease is characterised by variation in glycerophospholipid, free fatty acids and amino acid levels. Metabolomics 14, 140 (2018).

    Article  PubMed  CAS  Google Scholar 

  55. Deyssenroth, M. A. et al. Placental gene networks at the interface between maternal PM2.5 exposure early in gestation and reduced infant birthweight. Environ. Res. 199, 111342 (2021).

    Article  CAS  PubMed  Google Scholar 

  56. Gasparetto, M. et al. Transcription and DNA methylation patterns of blood-derived CD8(+) T cells are associated with age and inflammatory bowel disease but do not predict prognosis. Gastroenterology 160, 232–244.e7 (2021).

    Article  CAS  PubMed  Google Scholar 

  57. Torres, J. et al. Serum biomarkers identify patients who will develop inflammatory bowel diseases up to 5 years before diagnosis. Gastroenterology 159, 96–104 (2020).

    Article  CAS  PubMed  Google Scholar 

  58. Bergemalm, D. et al. Systemic inflammation in pre-clinical ulcerative colitis. Gastroenterology 161, 1526–1539.e9 (2021).

    Article  CAS  PubMed  Google Scholar 

  59. Kim, E. S. et al. Longitudinal changes in fecal calprotectin levels among pregnant women with and without inflammatory bowel disease and their babies. Gastroenterology 160, 1118–1130.e3 (2020).

    Article  PubMed  CAS  Google Scholar 

  60. Ramachandran, N. et al. Self-assembling protein microarrays. Science 305, 86–90 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Wang, H. et al. Identification of antibody against SNRPB, small nuclear ribonucleoprotein-associated proteins B and B’, as an autoantibody marker in Crohn’s disease using an immunoproteomics approach. J. Crohns Colitis 11, 848–856 (2017).

    Article  PubMed  Google Scholar 

  62. Kosoy, R. et al. Deep analysis of the peripheral immune system in IBD reveals new insight in disease subtyping and response to monotherapy or combination therapy. Cell. Mol. Gastroenterol. Hepatol. 12, 599–632 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Verhelst, X. et al. Protein glycosylation as a diagnostic and prognostic marker of chronic inflammatory gastrointestinal and liver diseases. Gastroenterology 158, 95–110 (2020).

    Article  CAS  PubMed  Google Scholar 

  64. Marth, J. D. & Grewal, P. K. Mammalian glycosylation in immunity. Nat. Rev. Immunol. 8, 874–887 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Miura, Y. et al. BlotGlycoABCTM, an integrated glycoblotting technique for rapid and large scale clinical glycomics. Mol. Cell Proteom. 7, 370–377 (2008).

    Article  CAS  Google Scholar 

  66. Dias, A. M. et al. Dysregulation of T cell receptor N-glycosylation: a molecular mechanism involved in ulcerative colitis. Hum. Mol. Genet. 23, 2416–2427 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. Dias, A. M. et al. Metabolic control of T cell immune response through glycans in inflammatory bowel disease. Proc. Natl Acad. Sci. USA 115, e4651–e4660 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Fujii, H. et al. Core fucosylation on T cells, required for activation of T-cell receptor signaling and induction of colitis in mice, is increased in patients with inflammatory bowel disease. Gastroenterology 150, 1620–1632 (2016).

    Article  CAS  PubMed  Google Scholar 

  69. Trbojević Akmačić, I. et al. Inflammatory bowel disease associates with proinflammatory potential of the immunoglobulin G glycome. Inflamm. Bowel Dis. 21, 1237–1247 (2015).

    PubMed  Google Scholar 

  70. Clerc, F. et al. Plasma N-glycan signatures are associated with features of inflammatory bowel diseases. Gastroenterology 155, 829–843 (2018).

    Article  CAS  PubMed  Google Scholar 

  71. Bering, S. B. Human milk oligosaccharides to prevent gut dysfunction and necrotizing enterocolitis in preterm neonates. Nutrients 10, 1461 (2018).

    Article  PubMed Central  CAS  Google Scholar 

  72. Han, S. M., Binia, A., Godfrey, K. M., El-Heis, S. & Cutfield, W. S. Do human milk oligosaccharides protect against infant atopic disorders and food allergy? Nutrients 12, 3212 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  73. Austin, S. & Bénet, T. Quantitative determination of non-lactose milk oligosaccharides. Anal. Chim. Acta 1010, 86–96 (2018).

    Article  CAS  PubMed  Google Scholar 

  74. Battersby, C., Longford, N., Mandalia, S., Costeloe, K. & Modi, N. Incidence and enteral feed antecedents of severe neonatal necrotising enterocolitis across neonatal networks in England, 2012-13: a whole-population surveillance study. Lancet Gastroenterol. Hepatol. 2, 43–51 (2017).

    Article  PubMed  Google Scholar 

  75. Autran, C. A. et al. Human milk oligosaccharide composition predicts risk of necrotising enterocolitis in preterm infants. Gut 67, 1064–1070 (2018).

    Article  CAS  PubMed  Google Scholar 

  76. Manthey, C. F., Autran, C. A., Eckmann, L. & Bode, L. Human milk oligosaccharides protect against enteropathogenic Escherichia coli attachment in vitro and EPEC colonisation in suckling mice. J. Pediatr. Gastroenterol. Nutr. 58, 165–168 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Baron, S. et al. Environmental risk factors in paediatric inflammatory bowel diseases: a population based case control study. Gut 54, 357–363 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Meda, F., Folci, M., Baccarelli, A. & Selmi, C. The epigenetics of autoimmunity. Cell. Mol. Immunol. 8, 226–236 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Baccarelli, A. & Bollati, V. Epigenetics and environmental chemicals. Curr. Opin. Pediatr. 21, 243–251 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Meaburn, E. & Schulz, R. Next generation sequencing in epigenetics: insights and challenges. Semin. Cell Dev. Biol. 23, 192–199 (2012).

    Article  CAS  PubMed  Google Scholar 

  81. Czamara, D. et al. Integrated analysis of environmental and genetic influences on cord blood DNA methylation in newborns. Nat. Commun. 10, 2548 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Wiklund, P. et al. DNA methylation links prenatal smoking exposure to later life health outcomes in offspring. Clin. Epigenet. 11, 97 (2019).

    Article  CAS  Google Scholar 

  83. Deng, Q. et al. The emerging epigenetic role of CD8+ T cells in autoimmune diseases: a systematic review. Front. Immunol. 10, 856 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tserel, L. et al. Age-related profiling of DNA methylation in CD8+ T cells reveals changes in immune response and transcriptional regulator genes. Sci. Rep. 5, 13107 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ventham, N. T. et al. Integrative epigenome-wide analysis demonstrates that DNA methylation may mediate genetic risk in inflammatory bowel disease. Nat. Commun. 7, 13507 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Howell, K. J. et al. DNA methylation and transcription patterns in intestinal epithelial cells from pediatric patients with inflammatory bowel diseases differentiate disease subtypes and associate with outcome. Gastroenterology 154, 585–598 (2018).

    Article  CAS  PubMed  Google Scholar 

  87. McDermott, E. et al. DNA methylation profiling in inflammatory bowel disease provides new insights into disease pathogenesis. J. Crohns Colitis 10, 77–86 (2016).

    Article  PubMed  Google Scholar 

  88. Pittayanon, R. et al. Differences in gut microbiota in patients with vs without inflammatory bowel diseases: a systematic review. Gastroenterology 158, 930–946.e1 (2020).

    Article  PubMed  Google Scholar 

  89. Torres, J. et al. Infants born to mothers with IBD present with altered gut microbiome that transfers abnormalities of the adaptive immune system to germ-free mice. Gut 69, 42–51 (2020).

    Article  CAS  PubMed  Google Scholar 

  90. Brand, E. C. et al. Healthy cotwins share gut microbiome signatures with their inflammatory bowel disease twins and unrelated patients. Gastroenterology 160, 1970–1985 (2021).

    Article  CAS  PubMed  Google Scholar 

  91. Kurilshikov, A. et al. Large-scale association analyses identify host factors influencing human gut microbiome composition. Nat. Genet. 53, 156–165 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Galipeau, H. J. et al. Novel fecal biomarkers that precede clinical diagnosis of ulcerative colitis. Gastroenterology 160, 1532–1545 (2021).

    Article  CAS  PubMed  Google Scholar 

  93. Lloyd-Price, J. et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 569, 655–662 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Vich Vila, A. et al. Gut microbiota composition and functional changes in inflammatory bowel disease and irritable bowel syndrome. Sci. Transl. Med. 10, eaap8914 (2018).

    Article  PubMed  CAS  Google Scholar 

  95. Narula, N. et al. Systematic review and meta-analysis: fecal microbiota transplantation for treatment of active ulcerative colitis. Inflamm. Bowel Dis. 23, 1702–1709 (2017).

    Article  PubMed  Google Scholar 

  96. Iliev, I. D. & Cadwell, K. Effects of intestinal fungi and viruses on immune responses and inflammatory bowel diseases. Gastroenterology 160, 1050–1066 (2021).

    Article  CAS  PubMed  Google Scholar 

  97. Zuo, T. et al. Gut mucosal virome alterations in ulcerative colitis. Gut 68, 1169–1179 (2019).

    Article  CAS  PubMed  Google Scholar 

  98. Leonardi, I. et al. Fungal trans-kingdom dynamics linked to responsiveness to fecal microbiota transplantation (FMT) therapy in ulcerative colitis. Cell Host Microbe 27, 823–829.e3 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Barr, D. B. et al. The use of dried blood spots for characterising children’s exposure to organic environmental chemicals. Environ. Res. 195, 110796 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Nørgaard-Pedersen, B. & Simonsen, H. Biological specimen banks in neonatal screening. Acta Paediatr. Suppl. 88, 106–109 (1999).

    Article  PubMed  Google Scholar 

  101. Nordfalk, F. & Ekstrøm, C. T. Newborn dried blood spot samples in Denmark: the hidden figures of secondary use and research participation. Eur. J. Hum. Genet. 27, 203–210 (2019).

    Article  PubMed  Google Scholar 

  102. Petrick, L. M. et al. Metabolomics of neonatal blood spots reveal distinct phenotypes of pediatric acute lymphoblastic leukemia and potential effects of early-life nutrition. Cancer Lett. 452, 71–78 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Thorsen, S. U. et al. Perinatal vitamin D levels are not associated with later risk of developing pediatric-onset inflammatory bowel disease: a Danish case-cohort study. Scand. J. Gastroenterol. 51, 927–933 (2016).

    Article  CAS  PubMed  Google Scholar 

  104. Petralia, F. et al. Integrated proteogenomic characterization across major histological types of pediatric brain cancer. Cell 183, 1962–1985.e31 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Chen, Y. et al. Variations in DNA elucidate molecular networks that cause disease. Nature 452, 429–435 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. de Souza, H. S. P., Fiocchi, C. & Iliopoulos, D. The IBD interactome: an integrated view of aetiology, pathogenesis and therapy. Nat. Rev. Gastroenterol. Hepatol. 14, 739–749 (2017).

    Article  PubMed  Google Scholar 

  107. Szklarczyk, D. et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 43, D447–D452 (2015).

    Article  CAS  PubMed  Google Scholar 

  108. Petralia, F., Wang, P., Yang, J. & Tu, Z. Integrative random forest for gene regulatory network inference. Bioinformatics 31, i197–i205 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Peters, L. A. et al. A functional genomics predictive network model identifies regulators of inflammatory bowel disease. Nat. Genet. 49, 1437–1449 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Khalili, H. et al. Oral contraceptives, reproductive factors and risk of inflammatory bowel disease. Gut 62, 1153–1159 (2013).

    Article  CAS  PubMed  Google Scholar 

  111. Khalili, H. et al. Physical activity and risk of inflammatory bowel disease: prospective study from the Nurses’ Health Study cohorts. BMJ 347, f6633 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Lo, C. H. et al. Ultra-processed foods and risk of Crohn’s disease and ulcerative colitis: a prospective cohort study. Clin. Gastroenterol. Hepatol. https://doi.org/10.1016/j.cgh.2021.08.031 (2021).

    Article  PubMed  Google Scholar 

  113. Turpin, W. et al. Analysis of genetic association of intestinal permeability in healthy first-degree relatives of patients with Crohn’s disease. Inflamm. Bowel Dis. 25, 1796–1804 (2019).

    Article  PubMed  Google Scholar 

  114. Lee, S.-H. et al. Anti-microbial antibody response is associated with future onset of Crohn’s disease independent of biomarkers of altered gut barrier function, subclinical inflammation, and genetic risk. Gastroenterology 161, 1540–1551 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank J. Gregory, Certified Medical Illustrator, Icahn School of Medicine at Mount Sinai, for the illustrations.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Manasi Agrawal.

Ethics declarations

Competing interests

M.A. is supported by the National Institute of Diabetes and Digestive and Kidney Diseases (K23DK129762-01). J.-F.C. has received research grants from AbbVie, Janssen Pharmaceuticals and Takeda; has received payment for lectures from AbbVie, Amgen, Allergan, Ferring Pharmaceuticals, Shire and Takeda; has received consulting fees from AbbVie, Amgen, Arena Pharmaceuticals, Boehringer Ingelheim, Bristol Myers Squibb, Celgene Corporation, Eli Lilly, Ferring Pharmaceuticals, Galmed Research, Glaxo Smith Kline, Geneva, Iterative Scopes, Janssen Pharmaceuticals, Kaleido Biosciences, Landos, Otsuka, Pfizer, Prometheus, Sanofi, Takeda and TiGenix; and holds stock options in Intestinal Biotech Development. K.H.A., F.P. and T.J. declare no competing interests.

Peer review

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks Anne Griffiths and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Comparative Toxicogenomics Database: http://ctdbase.org/

Human Glycome Project: https://human-glycome.org/

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agrawal, M., Allin, K.H., Petralia, F. et al. Multiomics to elucidate inflammatory bowel disease risk factors and pathways. Nat Rev Gastroenterol Hepatol 19, 399–409 (2022). https://doi.org/10.1038/s41575-022-00593-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-022-00593-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing