Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Organoid models of gastrointestinal cancers in basic and translational research

Abstract

Cancer is a major public health problem worldwide. Gastrointestinal cancers account for approximately one-third of the total global cancer incidence and mortality. Historically, the mechanisms of tumour initiation and progression in the gastrointestinal tract have been studied using cancer cell lines in vitro and animal models. Traditional cell culture methods are associated with a strong selection of aberrant genomic variants that no longer reflect the original tumours in terms of their (metastatic) behaviour or response to therapy. Organoid technology has emerged as a powerful alternative method for culturing gastrointestinal tumours and the corresponding normal tissues in a manner that preserves their genetic, phenotypic and behavioural traits. Importantly, accumulating evidence suggests that organoid cultures have great value in predicting the outcome of therapy in individual patients. Herein, we review the current literature on organoid models of the most common gastrointestinal cancers, including colorectal cancer, gastric cancer, oesophageal cancer, liver cancer and pancreatic cancer, and their value in modelling tumour initiation, metastatic progression and therapy response. We also explore the limitations of current organoid models and discuss how they could be improved to maximally benefit basic and translational research in the future, especially in the fields of drug discovery and personalized medicine.

Key points

  • Gastrointestinal cancers account for one-third of the total global cancer incidence and mortality; therefore, it is essential to translate knowledge from basic research into health benefits by advancing therapeutics.

  • Preclinical cancer research has been heavily reliant on cell lines and animal models, but both fail to recapitulate the original human tumours.

  • Organoid technology has emerged as a powerful alternative method for culturing gastrointestinal tumours and their corresponding normal tissues in a manner that preserves their genetic, phenotypic and behavioural traits.

  • Organoid models have been used to model tumour initiation, metastatic progression and therapy response of the most common gastrointestinal cancers, including colorectal cancer and liver cancer.

  • Clinical applications of patient-derived organoids are promising, as accumulating evidence has revealed the potential of organoid models in drug discovery, modelling therapy response and personalized medicine.

  • Current organoid models have multiple limitations; therefore, more work is necessary to enable them to maximally benefit basic and translational research in gastrointestinal cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A schematic depicting the establishment and applications of organoid cultures.
Fig. 2: A schematic of applications of patient-derived tumour organoids in translational research.
Fig. 3: A schematic summarizing current issues in developing organoid cultures and approaches to overcome these limitations.

Similar content being viewed by others

References

  1. Bray, F. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394–424 (2018).

    Article  PubMed  Google Scholar 

  2. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 69, 7–34 (2019).

    Article  PubMed  Google Scholar 

  3. Griffin-Sobel, J. P. Gastrointestinal cancers: screening and early detection. Semin. Oncol. Nurs. 33, 165–171 (2017).

    Article  PubMed  Google Scholar 

  4. Shams, A. Z. & Haug, U. Strategies for prevention of gastrointestinal cancers in developing countries: a systematic review. J. Glob. Health. 7, 020405 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  5. McMillin, D. W., Negri, J. M. & Mitsiades, C. S. The role of tumour-stromal interactions in modifying drug response: challenges and opportunities. Nat. Rev. Drug Discov. 12, 217–228 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Hay, M., Thomas, D. W., Craighead, J. L., Economides, C. & Rosenthal, J. Clinical development success rates for investigational drugs. Nat. Biotechnol. 32, 40–51 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Ben-David, U. et al. Genetic and transcriptional evolution alters cancer cell line drug response. Nature 560, 325–330 (2018). This study describes the extent, origins and consequences of genetic variation within cell lines, and provides suggestions for measuring such variation to maximally support reproducible cancer research.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sato, T. et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459, 262–265 (2009). This study describes a novel in vitro system to generate long-term intestinal organoid cultures; this method is fundamental to current organoid technology.

    Article  CAS  PubMed  Google Scholar 

  9. Eiraku, M. & Sasai, Y. Self-formation of layered neural structures in three-dimensional culture of ES cells. Curr. Opin. Neurobiol. 22, 768–777 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Lancaster, M. A. et al. Cerebral organoids model human brain development and microcephaly. Nature 501, 373–379 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Rock, J. R. et al. Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc. Natl Acad. Sci. USA 106, 12771–12775 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wong, A. P. et al. Directed differentiation of human pluripotent stem cells into mature airway epithelia expressing functional CFTR protein. Nat. Biotechnol. 30, 876–882 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Karthaus, W. R. et al. Identification of multipotent luminal progenitor cells in human prostate organoid cultures. Cell 159, 163–175 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gao, D. et al. Organoid cultures derived from patients with advanced prostate cancer. Cell 159, 176–187 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Eiraku, M. et al. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472, 51–56 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Nakano, T. et al. Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell 10, 771–785 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Nanduri, L. S. et al. Purification and ex vivo expansion of fully functional salivary gland stem cells. Stem Cell Reports 3, 957–964 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Maimets, M. et al. Long-term in vitro expansion of salivary gland stem cells driven by Wnt signals. Stem Cell Reports 6, 150–162 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Sachs, N. et al. A living biobank of breast cancer organoids captures disease heterogeneity. Cell 172, 373–386 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. Ren, W. et al. Single Lgr5- or Lgr6-expressing taste stem/progenitor cells generate taste bud cells ex vivo. Proc. Natl Acad. Sci. USA 111, 16401–16406 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Clevers, H. Modeling development and disease with organoids. Cell 165, 1586–1597 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Spence, J. R. et al. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature 470, 105–109 (2011). This study establishes a methodology to direct differentiation of hPSCs into intestinal tissue by manipulating the niche factors to mimic embryonic intestinal development.

    Article  PubMed  CAS  Google Scholar 

  23. McCracken, K. W. et al. Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature 516, 400–404 (2014). This study provides evidence that gastric organoids can be generated de novo from hPSCs by manipulating multiple signalling pathways including WNT, EGF and BMP.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Takebe, T. et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature 499, 481–484 (2013). This study is the first to generate vascularized and functional human liver by transplanting liver buds created from hPSCs in vitro into immunodeficient mice.

    Article  CAS  PubMed  Google Scholar 

  25. Broda, T. R., McCracken, K. W. & Wells, J. M. Generation of human antral and fundic gastric organoids from pluripotent stem cells. Nat. Protoc. 14, 28–50 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Barker, N. et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003–1007 (2007). This study provides evidence that Lgr5 acts as a stem cell marker in the small intestine and colon; notably, the identification of Lgr5 facilitated the establishment of a novel intestinal organoid system in a subsequent study by Sato et al. (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Sato, T. et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology 141, 1762–1772 (2011). This study establishes methodologies for generating long-term human-derived and mouse-derived epithelial organoids from normal colon and oesophagus as well as from Barrett’s epithelium, colon adenoma and adenocarcinoma.

    Article  CAS  PubMed  Google Scholar 

  28. Jung, P. et al. Isolation and in vitro expansion of human colonic stem cells. Nat. Med. 17, 1225–1227 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Jass, J. R. Classification of colorectal cancer based on correlation of clinical, morphological and molecular features. Histopathology 50, 113–130 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. IJspeert, J. E., Vermeulen, L., Meijer, G. A. & Dekker, E. Serrated neoplasia — role in colorectal carcinogenesis and clinical implications. Nat. Rev. Gastroenterol. Hepatol. 12, 401–409 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Bae, J. M., Kim, J. H. & Kang, G. H. Molecular subtypes of colorectal cancer and their clinicopathologic features, with an emphasis on the serrated neoplasia pathway. Arch. Pathol. Lab. Med. 140, 406–412 (2016).

    Article  CAS  PubMed  Google Scholar 

  32. Inamura, K. Colorectal cancers: an update on their molecular pathology. Cancers 10, 26 (2018).

    Article  PubMed Central  CAS  Google Scholar 

  33. The Cancer Genome Atlas Network Comprehensive molecular characterization of human colon and rectal cancer. Nature 487, 330–337 (2012).

    Article  CAS  Google Scholar 

  34. Guinney, J. et al. The consensus molecular subtypes of colorectal cancer. Nat. Med. 21, 1350–1356 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. van de Wetering, M. et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell 161, 933–945 (2015). This study performs high-throughput screening on a biobank of PDOs to identify potential target drugs and biomarkers of CRC.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Fujii, M. et al. A colorectal tumor organoid library demonstrates progressive loss of niche factor requirements during tumorigenesis. Cell Stem Cell 18, 827–838 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. Weeber, F. et al. Preserved genetic diversity in organoids cultured from biopsies of human colorectal cancer metastases. Proc. Natl Acad. Sci. USA 112, 13308–13311 (2015). Using whole-genome sequencing, this study provides evidence that organoids derived from patients can preserve the genetic diversity of the original tumours.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Drost, J. et al. Sequential cancer mutations in cultured human intestinal stem cells. Nature 521, 43–47 (2015). Using CRISPR–Cas9 genome editing, the most commonly mutated genes associated with CRC, including APC, SMAD4, TP53 and KRAS, are introduced into human colonic organoids to model the adenoma–carcinoma sequence.

    Article  CAS  PubMed  Google Scholar 

  39. Matano, M. et al. Modeling colorectal cancer using CRISPR–Cas9-mediated engineering of human intestinal organoids. Nat. Med. 21, 256–262 (2015). A study similar to Drost et al. (2015) but with the introduction of an additional mutation in PIK3CA into human colonic organoids; both studies provide evidence that organoids alone or upon transplantation into immunodeficient mice can recapitulate the adenoma–carcinoma sequence and metastasis in humans.

    Article  CAS  PubMed  Google Scholar 

  40. Fumagalli, A. et al. Genetic dissection of colorectal cancer progression by orthotopic transplantation of engineered cancer organoids. Proc. Natl Acad. Sci. USA 114, E2357–E2364 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fearon, E. R. & Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell 61, 759–767 (1990).

    Article  CAS  PubMed  Google Scholar 

  42. Vogelstein, B. et al. Cancer genome landscapes. Science 339, 1546–1558 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bolhaqueiro, A. C. F. et al. Ongoing chromosomal instability and karyotype evolution in human colorectal cancer organoids. Nat. Genet. 51, 824–834 (2019).

    Article  CAS  PubMed  Google Scholar 

  44. Sakai, E. et al. Combined mutation of Apc, Kras, and Tgfbr2 effectively drives metastasis of intestinal cancer. Cancer Res. 78, 1334–1346 (2018).

    Article  CAS  PubMed  Google Scholar 

  45. Roper, J. et al. In vivo genome editing and organoid transplantation models of colorectal cancer and metastasis. Nat. Biotechnol. 35, 569–576 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. O’Rourke, K. P. et al. Transplantation of engineered organoids enables rapid generation of metastatic mouse models of colorectal cancer. Nat. Biotechnol. 35, 577–582 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Murcia, O. et al. Serrated colorectal cancer: molecular classification, prognosis, and response to chemotherapy. World J. Gastroenterol. 22, 3516–3530 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Snover, D. C. Update on the serrated pathway to colorectal carcinoma. Hum. Pathol. 42, 1–10 (2011).

    Article  PubMed  Google Scholar 

  49. Fessler, E. et al. TGFβ signaling directs serrated adenomas to the mesenchymal colorectal cancer subtype. EMBO Mol. Med. 8, 745–760 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lannagan, T. R. M. et al. Genetic editing of colonic organoids provides a molecularly distinct and orthotopic preclinical model of serrated carcinogenesis. Gut 68, 684–692 (2019). Using CRISPR–Cas9 genome editing, mutations on serrated CRC-associated genes are introduced into mouse colonic organoids to model serrated carcinogenesis.

    Article  CAS  PubMed  Google Scholar 

  51. Kawasaki, K. et al. Chromosome engineering of human colon-derived organoids to develop a model of traditional serrated adenoma. Gastroenterology 158, 638–651.e8 (2019).

    Article  PubMed  CAS  Google Scholar 

  52. Richard, G. F., Kerrest, A. & Dujon, B. Comparative genomics and molecular dynamics of DNA repeats in eukaryotes. Microbiol. Mol. Biol. Rev. 72, 686–727 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Boland, C. R. & Goel, A. Microsatellite instability in colorectal cancer. Gastroenterology 138, 2073–2087 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Thibodeau, S. N., Bren, G. & Schaid, D. Microsatellite instability in cancer of the proximal colon. Science 260, 816–819 (1993).

    Article  CAS  PubMed  Google Scholar 

  55. Drost, J. et al. Use of CRISPR-modified human stem cell organoids to study the origin of mutational signatures in cancer. Science 358, 234–238 (2017). Using CRISPR–Cas9 genome editing, MLH1, a regulatory gene in the DNA mismatch repair system, is deleted in human colonic organoids to model microsatellite instability-driven CRC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Barker, N. et al. Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 457, 608–611 (2009). This study depicts the role of LGR5 + crypt stem cells in carcinogenesis by deleting a CRC-driver gene, APC, and concludes that these cells can be the cell of origin of intestinal cancer.

    Article  CAS  PubMed  Google Scholar 

  57. Vermeulen, L. et al. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat. Cell Biol. 12, 468–476 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Hirsch, D. et al. LGR5 positivity defines stem-like cells in colorectal cancer. Carcinogenesis 35, 849–858 (2014).

    Article  CAS  PubMed  Google Scholar 

  59. Shimokawa, M. et al. Visualization and targeting of LGR5+ human colon cancer stem cells. Nature 545, 187–192 (2017).

    Article  CAS  PubMed  Google Scholar 

  60. de Sousa e Melo, F. et al. A distinct role for Lgr5+ stem cells in primary and metastatic colon cancer. Nature 543, 676–680 (2017).

    Article  PubMed  CAS  Google Scholar 

  61. Dame, M. K. et al. Identification, isolation and characterization of human LGR5-positive colon adenoma cells. Development 145, dev153049 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Tilg, H., Adolph, T. E., Gerner, R. R. & Moschen, A. R. The intestinal microbiota in colorectal cancer. Cancer Cell 33, 954–964 (2018).

    Article  CAS  PubMed  Google Scholar 

  63. Wong, S. H. & Yu, J. Gut microbiota in colorectal cancer: mechanisms of action and clinical applications. Nat. Rev. Gastroenterol. Hepatol. 16, 690–704 (2019).

    Article  CAS  PubMed  Google Scholar 

  64. Nakatsu, G. et al. Gut mucosal microbiome across stages of colorectal carcinogenesis. Nat. Commun. 6, 8727 (2015).

    Article  CAS  PubMed  Google Scholar 

  65. Wong, S. H. et al. Gavage of fecal samples from patients with colorectal cancer promotes intestinal carcinogenesis in germ-free and conventional mice. Gastroenterology 153, 1621–1633 (2017).

    Article  PubMed  Google Scholar 

  66. Liang, Q. et al. Fecal bacteria act as novel biomarkers for noninvasive diagnosis of colorectal cancer. Clin. Cancer Res. 23, 2061–2070 (2017).

    Article  CAS  PubMed  Google Scholar 

  67. Yu, J. et al. Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer. Gut 66, 70–78 (2018).

    Article  CAS  Google Scholar 

  68. Hill, D. R. & Spence, J. R. Gastrointestinal organoids: understanding the molecular basis of the host-microbe interface. Cell. Mol. Gastroenterol. Hepatol. 3, 138–149 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Dutta, D. & Clevers, H. Organoid culture systems to study host-pathogen interactions. Curr. Opin. Immunol. 48, 15–22 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Li, Y. et al. Constitutive TLR4 signalling in intestinal epithelium reduces tumor load by increasing apoptosis in APCMin/+ mice. Oncogene 33, 369–377 (2014).

    Article  PubMed  CAS  Google Scholar 

  71. Peuker, K. et al. Epithelial calcineurin controls microbiota-dependent intestinal tumor development. Nat. Med. 22, 506–515 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Barker, N. et al. Lgr5+ve stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell 6, 25–36 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Stange, D. E. et al. Differentiated Troy+ chief cells act as reserve stem cells to generate all lineages of the stomach epithelium. Cell 155, 357–368 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bartfeld, S. et al. In vitro expansion of human gastric epithelial stem cells and their responses to bacterial infection. Gastroenterology. 148, 126–136 (2015). This study establishes a methodology to develop long-term gastric organoids from human gastric corpus tissues, and assesses the ability of this model to study H. pylori infection or other gastric pathologies.

    Article  PubMed  Google Scholar 

  75. Schumacher, M. A. et al. The use of murine-derived fundic organoids in studies of gastric physiology. J. Physiol. 593, 1809–1827 (2015). This study describes a novel in vitro system with features of physiological functions by coculturing mouse gastric organoids and immortalized stomach mesenchymal cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Chia, N. Y. & Tan, P. Molecular classification of gastric cancer. Ann. Oncol. 27, 763–769 (2016).

    Article  PubMed  Google Scholar 

  77. Röcken, C. Molecular classification of gastric cancer. Expert Rev. Mol. Diagn. 17, 293–301 (2017).

    Article  PubMed  CAS  Google Scholar 

  78. Hooi, J. K. Y. et al. Global prevalence of Helicobacter pylori infection: systematic review and meta-analysis. Gastroenterology 153, 420–429 (2017).

    Article  PubMed  Google Scholar 

  79. Eslick, G. D., Lim, L. L., Byles, J. E., Xia, H. H. & Talley, N. J. Association of Helicobacter pylori infection with gastric carcinoma: a meta-analysis. Am. J. Gastroenterol. 94, 2373–2379 (1999).

    Article  CAS  PubMed  Google Scholar 

  80. Uemura, N. et al. Helicobacter pylori infection and the development of gastric cancer. N. Engl. J. Med. 345, 784–789 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Waskito, L. A., Salama, N. R. & Yamaoka, Y. Pathogenesis of Helicobacter pylori infection. Helicobacter 23, e12516 (2018).

    Article  PubMed  CAS  Google Scholar 

  82. Burkitt, M. D., Duckworth, C. A., Williams, J. M. & Pritchard, D. M. Helicobacter pylori-induced gastric pathology: insights from in vivo and ex vivo models. Dis. Model. Mech. 10, 89–104 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Schumacher, M. A. et al. Helicobacter pylori-induced sonic hedgehog expression is regulated by NFκB pathway activation: the use of a novel in vitro model to study epithelial response to infection. Helicobacter 20, 19–28 (2015).

    Article  CAS  PubMed  Google Scholar 

  84. Bertaux-Skeirik, N. et al. CD44 plays a functional role in Helicobacter pylori-induced epithelial cell proliferation. PLoS Pathog. 11, e1004663 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Wroblewski, L. E. et al. Helicobacter pylori targets cancer-associated apical-junctional constituents in gastroids and gastric epithelial cells. Gut 64, 720–730 (2015).

    Article  CAS  PubMed  Google Scholar 

  86. Holokai, L. et al. Increased programmed death-ligand 1 is an early epithelial cell response to Helicobacter pylori infection. PLoS Pathog. 15, e1007468 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Schlaermann, P. et al. A novel human gastric primary cell culture system for modelling Helicobacter pylori infection in vitro. Gut 65, 202–213 (2016). This study describes a novel in vitro model of H. pylori infection that can recapitulate most of the key hallmarks of infection by utilizing human gastric organoid-derived primary cells.

    Article  CAS  PubMed  Google Scholar 

  88. The Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 513, 202–209 (2014).

    Article  CAS  Google Scholar 

  89. Nanki, K. et al. Divergent routes toward Wnt and R-spondin niche independency during human gastric carcinogenesis. Cell 174, 856–869 (2018).

    Article  CAS  PubMed  Google Scholar 

  90. Seidlitz, T. et al. Human gastric cancer modelling using organoids. Gut 68, 207–217 (2019). This study establishes human and mouse gastric cancer organoid models that represent the typical characteristics and altered pathways of each of the four subtypes of gastric cancer as published by TCGA Research Network (2014).

    Article  CAS  PubMed  Google Scholar 

  91. DeWard, A. D., Cramer, J. & Lagasse, E. Cellular heterogeneity in the mouse esophagus implicates the presence of a nonquiescent epithelial stem cell population. Cell Rep. 9, 701–711 (2014). This study establishes a methodology to develop long-term oesophageal organoids featuring the stratified squamous epithelium from mouse oesophageal mucosa.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Trisno, S. L. et al. Esophageal organoids from human pluripotent stem cells delineate Sox2 functions during esophageal specification. Cell Stem Cell 23, 501–515 (2018). This study provides evidence that hPSCs can first be induced into definitive endoderm and then into oesophageal organoids by manipulating multiple signalling pathways such as WNT and EGF.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zhang, Y. et al. 3D modeling of esophageal development using human PSC-derived basal progenitors reveals a critical role for Notch signaling. Cell Stem Cell 23, 516–529 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kijima, T. et al. Three-dimensional organoids reveal therapy resistance of esophageal and oropharyngeal squamous cell carcinoma cells. Cell. Mol. Gastroenterol. Hepatol. 7, 73–91 (2019). This study establishes a methodology to develop long-term organoid cultures derived from patients with oesophageal squamous cell carcinoma, and provides evidence that these organoids enable exploration of mechanisms of resistance to therapy.

    Article  PubMed  Google Scholar 

  95. Li, X. et al. Organoid cultures recapitulate esophageal adenocarcinoma heterogeneity providing a model for clonality studies and precision therapeutics. Nat. Commun. 9, 2983 (2018). This study establishes a methodology to develop long-term organoid cultures derived from patients with oesophageal adenocarcinoma, and provides evidence that these organoids can be used as preclinical tools for precision therapeutics.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Falk, G. W. et al. Barrett’s esophagus: prevalence-incidence and etiology-origins. Ann. N. Y. Acad. Sci. 1232, 1–17 (2011).

    Article  CAS  PubMed  Google Scholar 

  97. Liu, X. et al. Modeling Wnt signaling by CRISPR-Cas9 genome editing recapitulates neoplasia in human Barrett epithelial organoids. Cancer Lett. 436, 109–118 (2018). This study establishes a methodology to develop long-term organoid cultures derived from patients with Barrett oesophagus with histopathological features.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kasagi, Y., Chandramouleeswaran, P. M. & Whelan, K. A. The esophageal organoid system reveals functional interplay between Notch and cytokines in reactive epithelial changes. Cell. Mol. Gastroenterol. Hepatol. 5, 333–352 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  99. von Furstenberg, R. J. et al. Porcine esophageal submucosal gland culture model shows capacity for proliferation and differentiation. Cell. Mol. Gastroenterol. Hepatol. 4, 385–404 (2017).

    Article  Google Scholar 

  100. Jiang, M. et al. Transitional basal cells at the squamous-columnar junction generate Barrett’s oesophagus. Nature 550, 529–533 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Miyajima, A., Tanaka, M. & Itoh, T. Stem/progenitor cells in liver development, homeostasis, regeneration, and reprogramming. Cell Stem Cell 14, 561–574 (2014).

    Article  CAS  PubMed  Google Scholar 

  102. Itoh, T. Stem/progenitor cells in liver regeneration. Hepatology 64, 663–668 (2016).

    Article  PubMed  Google Scholar 

  103. Yanger, K. et al. Robust cellular reprogramming occurs spontaneously during liver regeneration. Genes Dev. 27, 719–724 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Yimlamai, D. et al. Hippo pathway activity influences liver cell fate. Cell 157, 1324–1338 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Tarlow, B. D. et al. Bipotential adult liver progenitors are derived from chronically injured mature hepatocytes. Cell Stem Cell 15, 605–618 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Katsuda, T., Kawamata, M. & Hagiwara, K. Conversion of terminally committed hepatocytes to culturable bipotent progenitor cells with regenerative capacity. Cell Stem Cell 20, 41–55 (2017).

    Article  CAS  PubMed  Google Scholar 

  107. Huch, M. et al. In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature 494, 247–250 (2013). This study provides evidence that Lgr5 + liver stem cells from mice can give rise to long-term liver organoids with expression of markers of hepatocytes and bile ducts; notably, these organoids differentiate into mature hepatocytes upon transplantation into immunodeficient mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Huch, M. et al. Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell 160, 299–312 (2015). This study describes a novel in vitro system to generate long-term organoid cultures derived from human bipotent progenitor liver cells that are able to express bile duct-like phenotypes and to differentiate into functional hepatocytes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lugli, N. et al. R-spondin 1 and Noggin facilitate expansion of resident stem cells from non-damaged gallbladders. EMBO Rep. 17, 769–779 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Sampaziotis, F. et al. Reconstruction of the mouse extrahepatic biliary tree using primary human extrahepatic cholangiocyte organoids. Nat. Med. 23, 954–963 (2017).

    Article  CAS  PubMed  Google Scholar 

  111. Vyas, D. et al. Self-assembled liver organoids recapitulate hepatobiliary organogenesis in vitro. Hepatology 67, 750–761 (2017). This study provides evidence that organoids derived from fetal liver progenitor cells are able to recapitulate simultaneous hepatobiliary organogenesis using a single culture medium combination.

    Article  CAS  Google Scholar 

  112. Koike, H. et al. Modelling human hepato-biliary-pancreatic organogenesis from the foregut-midgut boundary. Nature 574, 112–116 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Cazals-Hatem, D. et al. Clinical and molecular analysis of combined hepatocellular-cholangiocarcinomas. J. Hepatol. 41, 292–298 (2004).

    Article  CAS  PubMed  Google Scholar 

  114. Woo, H. G. et al. Identification of a cholangiocarcinoma-like gene expression trait in hepatocellular carcinoma. Cancer Res. 70, 3034–3041 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Wege, H., Li, J. & Ittrich, H. Treatment lines in hepatocellular carcinoma. Visc. Med. 35, 266–272 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Broutier Lm et al. Human primary liver cancer-derived organoid cultures for disease modeling and drug screening. Nat. Med. 23, 1424–1435 (2017). This study establishes a methodology to develop long-term organoid cultures derived from patients with primary liver cancer, and provides evidence that these organoids can recapitulate the histological characteristics, genetic alterations and metastatic features of their originating tumours.

    Article  CAS  Google Scholar 

  117. Nuciforo, S. et al. Organoid models of human liver cancers derived from tumor needle biopsies. Cell Rep. 24, 1363–1376 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Cao, W. et al. Modeling liver cancer and therapy responsiveness using organoids derived from primary mouse liver tumors. Carcinogenesis 40, 145–1540 (2019).

    Article  CAS  PubMed  Google Scholar 

  119. Li, L. et al. Acquisition of cholangiocarcinoma traits during advanced hepatocellular carcinoma development in mice. Am. J. Pathol. 188, 656–671 (2018). This study provides evidence that features of CCA can be acquired during advanced HCC progression by transplanting organoids derived from a transgenic liver cancer mouse model into immunodeficient mice.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Chan, L. H. et al. PRMT6 regulates RAS/RAF binding and MEK/ERK-mediated cancer stemness activities in hepatocellular carcinoma through CRAF methylation. Cell Rep. 25, 690–701 (2018).

    Article  CAS  PubMed  Google Scholar 

  121. Cohen, J. C., Horton, J. D. & Hobbs, H. H. Human fatty liver disease: old questions and new insights. Science 332, 1519–1523 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Leite, S. B. et al. Novel human hepatic organoid model enables testing of drug-induced liver fibrosis in vitro. Biomaterials 78, 1–10 (2016).

    Article  CAS  PubMed  Google Scholar 

  123. Kruitwagen, H. S. et al. Long-term adult feline liver organoid cultures for disease modeling of hepatic steatosis. Stem Cell Reports 8, 822–830 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Sendi, H. et al. miR-122 inhibition in a human liver organoid model leads to liver inflammation, necrosis, steatofibrosis and dysregulated insulin signaling. PLoS One 13, e0200847 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Nie, Y. Z. et al. Recapitulation of hepatitis B virus-host interactions in liver organoids from human induced pluripotent stem cells. EBioMedicine 35, 114–123 (2018). This study describes a novel method to model HBV infection in liver organoids derived from hPSCs that display characteristics of early acute liver failure and fibrosis.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Huch, M. et al. Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis. EMBO J. 32, 2708–2721 (2013).This study provides evidence that isolated mouse pancreatic ductal cells can generate long-term organoid cultures that can differentiate along ductal and endocrine lineages upon transplantation into immunodeficient mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Boj, S. F. et al. Organoid models of human and mouse ductal pancreatic cancer. Cell 160, 324–338 (2015). This study establishes a methodology to develop long-term organoid cultures derived from pancreatic tissues of healthy individuals and patients with PDAC; notably, the tumour-derived organoids can recapitulate features of pancreatic intraepithelial neoplasia, whereas organoids derived from normal tissues give rise to ductal and endocrine structures upon transplantation into immunodeficient mice.

    Article  CAS  PubMed  Google Scholar 

  128. Huang, L. et al. Ductal pancreatic cancer modeling and drug screening using human pluripotent stem cell- and patient-derived tumor organoids. Nat. Med. 21, 1364–1371 (2015). This study describes a novel method to generate pancreatic organoids from hPSCs that have features of early stages of transformation upon introducing mutations into KRAS and TP53 in these organoids.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Greggio, C. et al. Artificial three-dimensional niches deconstruct pancreas development in vitro. Development 140, 4452–4462 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Dorrell, C. et al. The organoid-initiating cells in mouse pancreas and liver are phenotypically and functionally similar. Stem Cell Res. 13, 275–283 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Ryan, D. P., Hong, T. S. & Bardeesy, N. Pancreatic adenocarcinoma. N. Engl. J. Med. 371, 1039–1049 (2014).

    Article  CAS  PubMed  Google Scholar 

  132. Kanda, M. et al. Presence of somatic mutations in most early-stage pancreatic intraepithelial neoplasia. Gastroenterology 142, 730–733 (2012).

    Article  CAS  PubMed  Google Scholar 

  133. Morris, J. P. 4th, Wang, S. C. & Hebrok, M. KRAS, hedgehog, Wnt and the twisted developmental biology of pancreatic ductal adenocarcinoma. Nat. Rev. Cancer 10, 683–695 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Yachida, S. et al. Clinical significance of the genetic landscape of pancreatic cancer and implications for identification of potential long-term survivors. Clin. Cancer Res. 18, 6339–6347 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Li, X. et al. Oncogenic transformation of diverse gastrointestinal tissues in primary organoid culture. Nat. Med. 20, 769–777 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Lee, J. et al. Reconstituting development of pancreatic intraepithelial neoplasia from primary human pancreas duct cells. Nat. Commun. 8, 14686 (2017). Using CRISPR–Cas9 genome editing, overexpression of four driver genes of PDAC — KRAS, CDKN2A, TP53 and SMAD4 — in human pancreatic organoids is used to model carcinogenesis.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Seino, T. et al. Human pancreatic tumor organoids reveal loss of stem cell niche factor dependence during disease progression. Cell Stem Cell 22, 454–467 (2018). A study similar to Lee et al. (2017) except mutations are knocked into organoids rather than being overexpressed; both studies provide evidence that progression from pancreatic intraepithelial neoplasia to adenocarcinoma can be recapitulated accurately in organoids using CRISPR–Cas9 technology.

    Article  CAS  PubMed  Google Scholar 

  138. Chio, I. I. C. et al. NRF2 promotes tumor maintenance by modulating mRNA translation in pancreatic cancer. Cell 166, 963–976 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Roe, J. S. et al. Enhancer reprogramming promotes pancreatic cancer metastasis. Cell 170, 875–888 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Sailaja, B. S., He, X. C. & Li, L. The regulatory niche of intestinal stem cells. J. Physiol. 594, 4827–4836 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Yuan, Y., Jiang, Y. C., Sun, C. K. & Chen, Q. M. Role of the tumor microenvironment in tumor progression and the clinical applications (Review). Oncol. Rep. 35, 2499–2515 (2016).

    Article  CAS  PubMed  Google Scholar 

  142. Bu, L. et al. Biological heterogeneity and versatility of cancer-associated fibroblasts in the tumor microenvironment. Oncogene 38, 4887–4901 (2019).

    Article  CAS  PubMed  Google Scholar 

  143. Takahashi, Y. et al. Reciprocal inflammatory signaling between intestinal epithelial cells and adipocytes in the absence of immune cells. EBioMedicine 23, 34–45 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Nozaki, K. et al. Co-culture with intestinal epithelial organoids allows efficient expansion and motility analysis of intraepithelial lymphocytes. J. Gastroenterol. 51, 206–213 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Jung, K. B. et al. Interleukin-2 induces the in vitro maturation of human pluripotent stem cell-derived intestinal organoids. Nat. Commun. 9, 3039 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Hahn, S. et al. Organoid-based epithelial to mesenchymal transition (OEMT) model: from an intestinal fibrosis perspective. Sci. Rep. 7, 2435 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Trumpi, K. et al. Macrophages induce “budding” in aggressive human colon cancer subtypes by protease-mediated disruption of tight junctions. Oncotarget 9, 19490–19507 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Hirokawa, Y., Yip, K. H., Tan, C. W. & Burgess, A. W. Colonic myofibroblast cell line stimulates colonoid formation. Am. J. Physiol. Gastrointest. Liver Physiol. 306, G547–G556 (2014).

    Article  CAS  PubMed  Google Scholar 

  149. Pastuła, A. et al. Three-dimensional gastrointestinal organoid culture in combination with nerves or fibroblasts: a method to characterize the gastrointestinal stem cell niche. Stem Cell Int. 2016, 3710836 (2016).

    Google Scholar 

  150. Neal, J. T. et al. Organoid modeling of the tumor immune microenvironment. Cell 175, 1972–1988 (2018). This study describes a novel method for culturing PDOs with preservation of the stromal architecture, T cell receptor spectrum, immune checkpoint system and functional lymphocytes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Chakrabarti, J. et al. Hedgehog signaling induces PD-L1 expression and tumor cell proliferation in gastric cancer. Oncotarget 9, 37439–37457 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Wen, Y. A. et al. Adipocytes activate mitochondrial fatty acid oxidation and autophagy to promote tumor growth in colon cancer. Cell Death Dis. 8, e2593 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Wang, Y. et al. Microenvironment of a tumor-organoid system enhances hepatocellular carcinoma malignancy-related hallmarks. Organogenesis 13, 83–94 (2017). This study provides evidence that the TME can enhance the malignancy of HCC by coculturing HCC organoids with endothelial cells and fibroblasts.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Öhlund, D. et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J. Exp. Med. 214, 579–596 (2017). This study provides evidence of the presence of heterogeneity in CAFs by coculturing pancreatic stellate cells and organoids derived from a PDAC mouse model.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Biffi, G. et al. IL1-induced JAK/STAT signaling is antagonized by TGFβ to shape CAF heterogeneity in pancreatic ductal adenocarcinoma. Cancer Discov. 9, 282–301 (2019).

    Article  PubMed  Google Scholar 

  156. Genovese, L. et al. Cellular localization, invasion, and turnover are differently influenced by healthy and tumor-derived extracellular matrix. Tissue Eng. Part. A 20, 2005–2018 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Romero-López, M. et al. Recapitulating the human tumor microenvironment: colon tumor-derived extracellular matrix promotes angiogenesis and tumor cell growth. Biomaterials 116, 118–129 (2017).

    Article  PubMed  CAS  Google Scholar 

  158. Cukierman, E., Pankov, R., Stevens, D. R. & Yamada, K. M. Taking cell-matrix adhesions to the third dimension. Science 294, 1708–1712 (2001).

    Article  CAS  PubMed  Google Scholar 

  159. Hidalgo, M. et al. Patient-derived xenograft models: an emerging platform for translational cancer research. Cancer Discov. 4, 998–1013 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Weeber, F., Ooft, S. N., Dijkstra, K. K. & Voest, E. E. Tumor organoids as a pre-clinical cancer model for drug discovery. Cell Chem. Biol. 24, 1092–1100 (2017).

    Article  CAS  PubMed  Google Scholar 

  161. Tiriac, H. et al. Successful creation of pancreatic cancer organoids by means of EUS-guided fine-needle biopsy sampling for personalized cancer treatment. Gastrointest. Endosc. 87, 1474–1480 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Gao, M. et al. Development of patient-derived gastric cancer organoids from endoscopic biopsies and surgical tissues. Ann. Surg. Oncol. 25, 2767–2775 (2018).

    Article  PubMed  Google Scholar 

  163. Skardal, A., Devarasetty, M., Rodman, C., Atala, A. & Soker, S. Liver-tumor hybrid organoids for modeling tumor growth and drug response in vitro. Ann. Biomed. Eng. 43, 2361–2373 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Roy, P. et al. Organoids as preclinical models to improve intraperitoneal chemotherapy effectiveness for colorectal cancer patients with peritoneal metastases: preclinical models to improve HIPEC. Int. J. Pharm. 531, 143–152 (2017).

    Article  CAS  PubMed  Google Scholar 

  165. Sgodda, M. et al. A scalable approach for the generation of human pluripotent stem cell-derived hepatic organoids with sensitive hepatotoxicity features. Stem Cell Dev. 26, 1490–1504 (2017).

    Article  CAS  Google Scholar 

  166. Crespo, M. et al. Colonic organoids derived from human induced pluripotent stem cells for modeling colorectal cancer and drug testing. Nat. Med. 23, 878–884 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Sharifnia, T., Hong, A. L., Painter, C. A. & Boehm, J. S. Emerging opportunities for target discovery in rare cancers. Cell Chem. Biol. 24, 1075–1091 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Haugabook, S. J., Ferrer, M. & Ottinger, E. A. In vitro and in vivo translational models for rare liver diseases. Biochim. Biophys. Acta Mol. Basis Dis. 1865, 1003–1018 (2018).

    Article  PubMed  CAS  Google Scholar 

  169. Dekkers, J. F. et al. A functional CFTR assay using primary cystic fibrosis intestinal organoids. Nat. Med. 19, 939–945 (2013).

    Article  CAS  PubMed  Google Scholar 

  170. Dekkers, J. F. et al. Characterizing responses to CFTR-modulating drugs using rectal organoids derived from subjects with cystic fibrosis. Sci. Transl. Med. 8, 344ra84 (2016).

    Article  PubMed  CAS  Google Scholar 

  171. Pauli, C. et al. Personalized in vitro and in vivo cancer models to guide precision medicine. Cancer Discov. 7, 462–477 (2017). This study provides evidence that histopathological features of the native tumours can be conserved in PDOs and PDXs.

    Article  PubMed  PubMed Central  Google Scholar 

  172. Tiriac, H. et al. Organoid profiling identifies common responders to chemotherapy in pancreatic cancer. Cancer Discov. 8, 1112–1129 (2018). This study performs therapeutic profiling to identify chemotherapy responsiveness and potential treatments against chemorefractory organoids derived from patients with PDAC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Kondo, J. et al. High-throughput screening in colorectal cancer tissue-originated spheroids. Cancer Sci. 110, 345–355 (2019). This study performs high-throughput screening of a panel of 2,427 drugs on PDOs with subsequent validation of the responsiveness of ‘hit’ drugs using a biobank of PDOs.

    Article  CAS  PubMed  Google Scholar 

  174. Yan, H. H. N. et al. A comprehensive human gastric cancer organoid biobank captures tumor subtype heterogeneity and enables therapeutic screening. Cell Stem Cell 23, 882–897 (2018).

    Article  CAS  PubMed  Google Scholar 

  175. Li, L. et al. Human primary liver cancer organoids reveal intratumor and interpatient drug response heterogeneity. JCI Insight 4, 121490 (2019).

    Article  PubMed  Google Scholar 

  176. Aberle, M. R. et al. Patient-derived organoid models help define personalized management of gastrointestinal cancer. Br. J. Surg. 105, e48–e60 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Vlachogiannis, G. et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science 359, 920–926 (2018). This study is the first to demonstrate the predictive value of PDOs in personalized medicine using a biobank of organoids derived from patients with metastatic CRC and gastro-oesophageal cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Steele, N. G. et al. An organoid-based preclinical model of human gastric cancer. Cell. Mol. Gastroenterol. Hepatol. 7, 161–184 (2019).

    Article  PubMed  Google Scholar 

  179. Ganesh, K. et al. A rectal cancer organoid platform to study individual responses to chemoradiation. Nat. Med. 25, 1607–1614 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Ooft, S. N. et al. Patient-derived organoids can predict response to chemotherapy in metastatic colorectal cancer patients. Sci. Transl. Med. 11, pii: eaay2574 (2019).

    Article  CAS  Google Scholar 

  181. Yao, Y. et al. Patient-derived organoids predict chemoradiation responses of locally advanced rectal cancer. Cell Stem Cell 26, 17–26.e6 (2019). This study is the first to demonstrate that PDOs could enable tailoring of the treatment approach of chemoradiation or chemotherapy to improve clinical outcomes and reduce toxicities in patients with CRC.

    Article  PubMed  CAS  Google Scholar 

  182. Schumacher, D. et al. Heterogeneous pathway activation and drug response modelled in colorectal-tumor-derived 3D cultures. PLoS Genet. 15, e1008076 (2019). This study is an example of how basic research in PDOs can link to personalized medicine by evaluating the influence of intratumoural heterogeneity on drug response.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Gjorevski, N. et al. Designer matrices for intestinal stem cell and organoid culture. Nature 539, 560–564 (2016). This study establishes a minimal environment for organoid cultures and identifies key parameters in the ECM that govern intestinal organoid formation.

    Article  CAS  PubMed  Google Scholar 

  184. Candiello, J. et al. 3D heterogeneous islet organoid generation from human embryonic stem cells using a novel engineered hydrogel platform. Biomaterials 177, 27–39 (2018).

    Article  CAS  PubMed  Google Scholar 

  185. Ootani, A. et al. Sustained in vitro intestinal epithelial culture within a Wnt-dependent stem cell niche. Nat. Med. 15, 701–706 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Wang, Y. et al. Formation of human colonic crypt array by application of chemical gradients across a shaped epithelial monolayer. Cell. Mol. Gastroenterol. Hepatol. 5, 113–130 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Wallaschek, N. et al. Establishing pure cancer organoid cultures: identification, selection and verification of cancer phenotypes and genotypes. J. Mol. Biol. 431, 2884–2893 (2019). This study establishes multiple step-by-step protocols for obtaining pure populations of human gastric cancer organoids with subsequent validation of cancer identity.

    Article  CAS  PubMed  Google Scholar 

  188. Jackstadt, R. & Sansom, O. J. Mouse models of intestinal cancer. J. Pathol. 238, 141–151 (2016).

    Article  PubMed  Google Scholar 

  189. Oh, B. Y., Hong, H. K., Lee, W. Y. & Cho, Y. B. Animal models of colorectal cancer with liver metastasis. Cancer Lett. 387, 114–120 (2017).

    Article  CAS  PubMed  Google Scholar 

  190. Bhatia, S. N. & Ingber, D. E. Microfluidic organs-on-chips. Nat. Biotechnol. 32, 760–772 (2014).

    Article  CAS  PubMed  Google Scholar 

  191. Mittal, R. et al. Organ-on-chip models: implications in drug discovery and clinical applications. J. Cell Physiol. 234, 8352–8380 (2019).

    Article  CAS  PubMed  Google Scholar 

  192. Mattei, F. et al. A multidisciplinary study using in vivo tumor models and microfluidic cell-on-chip approach to explore the cross-talk between cancer and immune cells. J. Immunotoxicol. 11, 337–346 (2014).

    Article  CAS  PubMed  Google Scholar 

  193. Agliari, E. et al. Cancer-driven dynamics of immune cells in a microfluidic environment. Sci. Rep. 4, 6639 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Liu, P. F. et al. A bladder cancer microenvironment simulation system based on a microfluidic co-culture model. Oncotarget 6, 37695–37705 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  195. de Souza, N. Organoid culture. Nat. Methods 14, 35 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank C. H. Szeto for comments on the structure and content of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

H.C.H.L. researched data for the article, made a substantial contribution to discussion of content, designed the figures, and wrote the article. O.K. and H.X. made a substantial contribution to discussion of content, and reviewed/edited the manuscript before submission. J.Y. researched data for the article, made a substantial contribution to discussion of content, wrote the article, and reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Jun Yu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks Y. Zavros, H. Tiriac, D. Stange and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lau, H.C.H., Kranenburg, O., Xiao, H. et al. Organoid models of gastrointestinal cancers in basic and translational research. Nat Rev Gastroenterol Hepatol 17, 203–222 (2020). https://doi.org/10.1038/s41575-019-0255-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-019-0255-2

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer