Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Halogen-powered static conversion chemistry

Abstract

Halogen-powered static conversion batteries (HSCBs) thrive in energy storage applications. They fall into the category of secondary non-flow batteries and operate by reversibly changing the chemical valence of halogens in the electrodes or/and electrolytes to transfer electrons, distinguishing them from the classic rocking-chair batteries. The active halide chemicals developed for these purposes include organic halides, halide salts, halogenated inorganics, organic–inorganic halides and the most widely studied elemental halogens. Aside from this, various redox mechanisms have been discovered based on multi-electron transfer and effective reaction pathways, contributing to improved electrochemical performances and stabilities of HSCBs. In this Review, we discuss the status of HSCBs and their electrochemical mechanism–performance correlations. We first provide a detailed exposition of the fundamental redox mechanisms, thermodynamics, conversion and catalysis chemistry, and mass or electron transfer modes involved in HSCBs. We conclude with a perspective on the challenges faced by the community and opportunities towards practical applications of high-energy halogen cathodes in energy-storage devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Physicochemical and electrochemical properties of halogens.
Fig. 2: Electrochemically active halogen chemicals.
Fig. 3: Full halogen battery configuration with static conversion chemistry.
Fig. 4: Diversified static conversion chemistry.
Fig. 5: Challenges and enhancement approaches of halogen-powered static conversion chemistry.

Similar content being viewed by others

References

  1. Armand, M. & Tarascon, J. M. Building better batteries. Nature 451, 652–657 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Simon, P. & Gogotsi, Y. Perspectives for electrochemical capacitors and related devices. Nat. Mater. 19, 1151–1163 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Xu, K. Li-ion battery electrolytes. Nat. Energy 6, 763 (2021).

    Article  CAS  Google Scholar 

  4. Sun, Y. M., Liu, N. A. & Cui, Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat. Energy 1, 16071 (2016).

    Article  CAS  Google Scholar 

  5. Liu, K., Liu, Y., Lin, D., Pei, A. & Cui, Y. Materials for lithium-ion battery safety. Sci. Adv. 4, eaas9820 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Nitta, N., Wu, F. X., Lee, J. T. & Yushin, G. Li-ion battery materials: present and future. Mater. Today 18, 252–264 (2015).

    Article  CAS  Google Scholar 

  7. Jiao, S. H. et al. Stable cycling of high-voltage lithium metal batteries in ether electrolytes. Nat. Energy 3, 739–746 (2018).

    Article  CAS  Google Scholar 

  8. Duffner, F. et al. Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure. Nat. Energy 6, 123–134 (2021).

    Article  CAS  Google Scholar 

  9. Cui, J., Zheng, H. & He, K. J. A. M. In situ TEM study on conversion‐type electrodes for rechargeable ion batteries. Adv. Mater. 33, 2000699 (2021).

    Article  CAS  Google Scholar 

  10. Dai, C. et al. Enabling fast-charging selenium-based aqueous batteries via conversion reaction with copper ions. Nat. Commun. 13, 1863 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wei, S. et al. A stable room-temperature sodium–sulfur battery. Nat. Commun. 7, 11722 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhou, J. W., Liu, Y., Zhang, S. L., Zhou, T. F. & Guo, Z. P. Metal chalcogenides for potassium storage. InfoMat 2, 437–465 (2020).

    Article  CAS  Google Scholar 

  13. Geels, F. W., Sovacool, B. K., Schwanen, T. & Sorrell, S. The socio-technical dynamics of low-carbon transitions. Joule 1, 463–479 (2017).

    Article  Google Scholar 

  14. Liang, G., Mo, F., Ji, X. & Zhi, C. Non-metallic charge carriers for aqueous batteries. Nat. Rev. Mater. 6, 109–123 (2021). A comprehensive review of the regulation of electrolytes and anion chemistry.

    Article  CAS  Google Scholar 

  15. Zhao, X., Zhao-Karger, Z., Fichtner, M. & Shen, X. Halide-based materials and chemistry for rechargeable batteries. Angew. Chem. Int. Ed. 59, 5902–5949 (2020).

    Article  CAS  Google Scholar 

  16. She, L. et al. Rechargeable aqueous zinc–halogen batteries: fundamental mechanisms, research issues, and future perspectives. Adv. Sci. 11, 2305061 (2024).

    Article  CAS  Google Scholar 

  17. Birk, J. Development of the Zinc–Chlorine Battery for Utility Applications. Interim report, January 1, 1977–March 31, 1978. [100-MWh plant with 45-kWh modules] (Energy Development Associates, 1979).

  18. Xue, Z. Y., Gao, Z. Y. & Zhao, X. Y. Halogen storage electrode materials for rechargeable batteries. Energy Environ. Mater. 5, 1155–1179 (2022).

    Article  CAS  Google Scholar 

  19. Gutmann, F., Hermann, A. & Rembaum, A. Solid‐state electrochemical cells based on charge transfer complexes. J. Electrochem. Soc. 114, 323 (1967).

    Article  CAS  Google Scholar 

  20. Zhao, Y., Wang, L. & Byon, H. R. High-performance rechargeable lithium-iodine batteries using triiodide/iodide redox couples in an aqueous cathode. Nat. Commun. 4, 1896 (2013).

    Article  PubMed  Google Scholar 

  21. Yang, C. et al. Aqueous Li-ion battery enabled by halogen conversion–intercalation chemistry in graphite. Nature 569, 245–250 (2019). This is the first study demonstrating the intercalation and co-conversion chemistry of Br–Cl in interhalogen mode with ‘water-in-salt’ electrolytes.

    Article  CAS  PubMed  Google Scholar 

  22. Zhu, G. et al. Rechargeable Na/Cl2 and Li/Cl2 batteries. Nature 596, 525–530 (2021). This is the first study demonstrating the rechargeable Li-SOCl2 battery operating via redox between mainly Cl2 and Cl.

    Article  CAS  PubMed  Google Scholar 

  23. Zou, Y. et al. A four-electron Zn-I2 aqueous battery enabled by reversible I/I2/I+ conversion. Nat. Commun. 12, 170 (2021). This is the first study demonstrating the two-electron transfer chemistry of zinc-iodine batteries in aqueous/organic hybrid electrolytes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li, X. et al. Two-electron redox chemistry enabled high-performance iodide-ion conversion battery. Angew. Chem. Int. Ed. 61, e202113576 (2022).

    Article  CAS  Google Scholar 

  25. Ma, W. et al. A twelve-electron conversion iodine cathode enabled by interhalogen chemistry in aqueous solution. Nat. Commun. 14, 5508 (2023). This paper realizes the multi-electron transfer mode in hetero-halogen electrolytes with a I/IO3 redox couple.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. He, B. et al. Halogen chemistry of solid electrolytes in all-solid-state batteries. Nat. Rev. Chem. 7, 826–842 (2023). This paper comprehensively summarizes halogen-based solid-state electrolytes.

    PubMed  Google Scholar 

  27. Schwerdtfeger, P., Smits, O. R. & Pyykko, P. The periodic table and the physics that drives it. Nat. Rev. Chem. 4, 359–380 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Politzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. An overview of halogen bonding. J. Mol. Model. 13, 305–311 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Kirk, K. L. in Biochemistry of the Elemental Halogens Inorganic Halides (ed. Kirk, K. L.) 1–17 (Springer, 1991).

  30. Tang, X., Fan, T., Wang, C. & Zhang, H. Halogen functionalization in the 2D material flatland: strategies, properties, and applications. Small 17, e2005640 (2021).

    Article  PubMed  Google Scholar 

  31. Solel, E., Ruth, M. & Schreiner, P. R. London dispersion helps refine steric A-values: the halogens. J. Org. Chem. 86, 7701–7713 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Pennington, W. T., Hanks, T. W. & Arman, H. D. in Halogen Bonding. Structure and Bonding (eds Metrangolo, P. & Resnati, G.) 65–104 (Springer, 2007).

  33. Zhou, F. et al. A new type of halogen bond involving multivalent astatine: an ab initio study. Phys. Chem. Chem. Phys. 21, 15310–15318 (2019).

    Article  CAS  PubMed  Google Scholar 

  34. Ji, X. A perspective of ZnCl2 electrolytes: the physical and electrochemical properties. eScience 1, 99–107 (2021).

    Article  Google Scholar 

  35. Guo, Q. et al. Reversible insertion of I–Cl interhalogen in a graphite cathode for aqueous dual-ion batteries. ACS Energy Lett. 6, 459–467 (2021).

    Article  CAS  Google Scholar 

  36. Chun, S. E. et al. Design of aqueous redox-enhanced electrochemical capacitors with high specific energies and slow self-discharge. Nat. Commun. 6, 7818 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Zhao, Y. et al. A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage. Chem. Soc. Rev. 44, 7968–7996 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Boettcher, S. W. et al. Potentially confusing: potentials in electrochemistry. ACS Energy Lett. 6, 261–266 (2021).

    Article  CAS  Google Scholar 

  39. Zhang, J. et al. An all-aqueous redox flow battery with unprecedented energy density. Energy Environ. Sci. 11, 2010–2015 (2018).

    Article  CAS  Google Scholar 

  40. Liu, Z. et al. Voltage issue of aqueous rechargeable metal-ion batteries. Chem. Soc. Rev. 49, 180–232 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Fan, X. & Wang, C. High-voltage liquid electrolytes for Li batteries: progress and perspectives. Chem. Soc. Rev. 50, 10486–10566 (2021).

    Article  CAS  PubMed  Google Scholar 

  42. Wang, Z., Meng, X., Chen, K. & Mitra, S. High capacity aqueous periodate batteries featuring a nine-electron transfer process. Energy Storage Mater. 19, 206–211 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zhang, K. & Jin, Z. Halogen-enabled rechargeable batteries: current advances and future perspectives. Energy Storage Mater. 45, 332–369 (2022).

    Article  Google Scholar 

  44. Lu, K. et al. A rechargeable iodine-carbon battery that exploits ion intercalation and iodine redox chemistry. Nat. Commun. 8, 527 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Qian, M. et al. Realizing few-layer iodinene for high-rate sodium-ion batteries. Adv. Mater. 32, e2004835 (2020).

    Article  PubMed  Google Scholar 

  46. Sui, Y. et al. Reversible Cl2/Cl redox for low-temperature aqueous batteries. ACS Energy Lett. 8, 988–994 (2023). This paper reports the rechargeable aqueous Cl battery at an ultra-low temperature of −78 °C.

    Article  CAS  Google Scholar 

  47. Biswas, S. et al. Minimal architecture zinc–bromine battery for low cost electrochemical energy storage. Energy Environ. Sci. 10, 114–120 (2017).

    Article  CAS  Google Scholar 

  48. Li, X. et al. Enhanced redox kinetics and duration of aqueous I2/I conversion chemistry by MXene confinement. Adv. Mater. 33, e2006897 (2021).

    Article  PubMed  Google Scholar 

  49. Wu, W. L. et al. A polybromide confiner with selective bromide conduction for high performance aqueous zinc-bromine batteries. Energy Storage Mater. 49, 11–18 (2022).

    Article  Google Scholar 

  50. Li, X. et al. Confining aqueous Zn–Br halide redox chemistry by Ti3C2TX MXene. ACS Nano 15, 1718–1726 (2021).

    Article  CAS  PubMed  Google Scholar 

  51. Brown, R. F. Electronegativity, non-bonded interactions and polarizability in the hydrogen halides and the interhalogen compounds. J. Am. Chem. Soc. 83, 36–42 (2002).

    Article  Google Scholar 

  52. Lv, S. et al. A high-performance quasi-solid-state aqueous zinc-dual halogen battery. ACS Nano 16, 20389–20399 (2022).

    Article  CAS  PubMed  Google Scholar 

  53. Chen, S. et al. Solid interhalogen compounds with effective Br0 fixing for stable high‐energy zinc batteries. Angew. Chem. Int. Ed. 62, e202301467 (2023).

    Article  CAS  Google Scholar 

  54. Gao, T. et al. Povidone-iodine-based polymeric nanoparticles for antibacterial applications. ACS Appl. Mater. Interfaces 9, 25738–25746 (2017).

    Article  CAS  PubMed  Google Scholar 

  55. Gao, L. et al. A high-performance aqueous zinc-bromine static battery. iScience 23, 101348 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Li, X. et al. Three-electron transfer-based high-capacity organic lithium-iodine (chlorine) batteries. Angew. Chem. Int. Ed. 62, e202310168 (2023).

    Article  CAS  Google Scholar 

  57. Sun, Y., Zou, Q. & Lu, Y. C. Fast and reversible four‐electron storage enabled by ethyl viologen for rechargeable magnesium batteries. Adv. Energy Mater. 9, 1903002 (2019).

    Article  CAS  Google Scholar 

  58. Li, X. L. et al. Bis-ammonium salts with strong chemisorption to halide ions for fast and durable aqueous redox Zn ion batteries. Nano Energy 98, 107278 (2022). This is the first study demonstrating the halogen-powered static conversion chemistry of perovskite materials.

    Article  CAS  Google Scholar 

  59. Méndez-Díaz, J. D. et al. Sunlight-driven photochemical halogenation of dissolved organic matter in seawater: a natural abiotic source of organobromine and organoiodine. Environ. Sci. Technol. 48, 7418–7427 (2014).

    Article  PubMed  Google Scholar 

  60. Kim, S., Kim, S. K., Sun, P., Oh, N. & Braun, P. V. Reduced graphene oxide/LiI composite lithium ion battery cathodes. Nano Lett. 17, 6893–6899 (2017).

    Article  CAS  PubMed  Google Scholar 

  61. Liu, H. et al. A zinc–dual-halogen battery with a molten hydrate electrolyte. Adv. Mater. 32, e2004553 (2020).

    Article  PubMed  Google Scholar 

  62. Xia, M. T. et al. A rechargeable K/Br battery. Adv. Funct. Mater. 32, 2205879 (2022).

    Article  CAS  Google Scholar 

  63. Hong, J. J. et al. A dual plating battery with the iodine/[ZnIx(OH2)4−x]2−x cathode. Angew. Chem. Int. Ed. 58, 15910–15915 (2019).

    Article  CAS  Google Scholar 

  64. Li, X. et al. Perovskite cathodes for aqueous and organic iodine batteries operating under one and two electrons redox modes. Adv. Mater. 36, 2304557 (2023).

    Article  Google Scholar 

  65. Wang, S. et al. Conversion‐type organic‐inorganic tin‐based perovskite cathodes for durable aqueous zinc‐iodine batteries. Adv. Energy Mater. 13, 2300922 (2023).

    Article  CAS  Google Scholar 

  66. Park, M. et al. Edge-halogenated graphene nanoplatelets with F, Cl, or Br as electrocatalysts for all-vanadium redox flow batteries. Nano Energy 26, 233–240 (2016).

    Article  CAS  Google Scholar 

  67. Li, M. et al. Element replacement approach by reaction with Lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. J. Am. Chem. Soc. 141, 4730–4737 (2019).

    Article  CAS  PubMed  Google Scholar 

  68. Li, Y. et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat. Mater. 19, 894–899 (2020).

    Article  CAS  PubMed  Google Scholar 

  69. Li, X. et al. Activating the I0/I+ redox couple in an aqueous I2–Zn battery to achieve a high voltage plateau. Energy Environ. Sci. 14, 407–413 (2021).

    Article  CAS  Google Scholar 

  70. Kamysbayev, V. et al. Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science 369, 979–983 (2020).

    Article  CAS  PubMed  Google Scholar 

  71. Li, M. et al. Halogenated Ti3C2 MXenes with electrochemically active terminals for high-performance zinc ion batteries. ACS Nano 15, 1077–1085 (2021). This is the first study demonstrating the conversion chemistry of halogenated MXenes.

    Article  CAS  PubMed  Google Scholar 

  72. Yao, N., Chen, X., Fu, Z. H. & Zhang, Q. Applying classical, ab initio, and machine-learning molecular dynamics simulations to the liquid electrolyte for rechargeable batteries. Chem. Rev. 122, 10970–11021 (2022).

    Article  CAS  PubMed  Google Scholar 

  73. Tang, H. et al. Unleashing energy storage ability of aqueous battery electrolytes. Mater. Futures 1, 022001 (2022).

    Article  Google Scholar 

  74. Li, X. et al. Intrinsic voltage plateau of a Nb2CTx MXene cathode in an aqueous electrolyte induced by high-voltage scanning. Joule 5, 2993–3005 (2021).

    Article  CAS  Google Scholar 

  75. Sun, Q. J. et al. Interfacial and interphasial chemistry of electrolyte components to invoke high-performance antimony anodes and non-flammable lithium-ion batteries. Adv. Funct. Mater. 33, 2210292 (2023).

    Article  CAS  Google Scholar 

  76. Yang, S. et al. Rechargeable iodine batteries: fundamentals, advances, and perspectives. ACS Nano 16, 13554–13572 (2022).

    Article  CAS  PubMed  Google Scholar 

  77. Liu, H. et al. High sulfur loading and shuttle inhibition of advanced sulfur cathode enabled by graphene network skin and N, P, F-doped mesoporous carbon interfaces for ultra-stable lithium sulfur battery. Nano Res. Energy 2, e9120049 (2023).

    Article  Google Scholar 

  78. Prehal, C. et al. Persistent and reversible solid iodine electrodeposition in nanoporous carbons. Nat. Commun. 11, 4838 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Liu, M. et al. Physicochemical confinement effect enables high-performing zinc–iodine batteries. J. Am. Chem. Soc. 144, 21683–21691 (2022).

    Article  CAS  PubMed  Google Scholar 

  80. Zhao, Q., Lu, Y., Zhu, Z., Tao, Z. & Chen, J. Rechargeable lithium-iodine batteries with iodine/nanoporous carbon cathode. Nano Lett. 15, 5982–5987 (2015).

    Article  CAS  PubMed  Google Scholar 

  81. Li, X. et al. MXene chemistry, electrochemistry and energy storage applications. Nat. Rev. Chem. 6, 389–404 (2022).

    Article  PubMed  Google Scholar 

  82. Lee, J. H. et al. High-energy efficiency membraneless flowless Zn–Br battery: utilizing the electrochemical–chemical growth of polybromides. Adv. Mater. 31, e1904524 (2019).

    Article  PubMed  Google Scholar 

  83. Guo, C. et al. Hydrogen-bonded organic framework for high-performance lithium/sodium-iodine organic batteries. Angew. Chem. Int. Ed. 61, e202213276 (2022).

    Article  CAS  Google Scholar 

  84. Wang, F. et al. Fully conjugated phthalocyanine copper metal–organic frameworks for sodium–iodine batteries with long‐time‐cycling durability. Adv. Mater. 32, 1905361 (2020).

    Article  CAS  Google Scholar 

  85. Ma, L. et al. Electrocatalytic iodine reduction reaction enabled by aqueous zinc-iodine battery with improved power and energy densities. Angew. Chem. Int. Ed. 60, 3791–3798 (2021). This paper reports how the catalytic sites in hosts catalyse the conversion chemistry of iodine batteries.

    Article  CAS  Google Scholar 

  86. Yang, Y., Liang, S. & Zhou, J. Progress and prospect of the zinc–iodine battery. Curr. Opin. Electrochem. 30, 100761 (2021).

    Article  CAS  Google Scholar 

  87. Gong, D. et al. An iodine quantum dots based rechargeable sodium–iodine battery. Adv. Energy Mater. 7, 1601885 (2017).

    Article  Google Scholar 

  88. Zhang, Z., Zhu, Y., Yu, M., Jiao, Y. & Huang, Y. Development of long lifespan high-energy aqueous organic||iodine rechargeable batteries. Nat. Commun. 13, 6489 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Li, K. et al. A 3D and stable lithium anode for high-performance lithium–iodine batteries. Adv. Mater. 31, e1902399 (2019).

    Article  PubMed  Google Scholar 

  90. Tian, H. J., Zhang, S. L., Meng, Z., He, W. & Han, W. Q. Rechargeable aluminum/iodine battery redox chemistry in ionic liquid electrolyte. ACS Energy Lett. 2, 1170–1176 (2017).

    Article  CAS  Google Scholar 

  91. Shen, Z. et al. Electrocrystallization regulation enabled stacked hexagonal platelet growth toward highly reversible zinc anodes. Angew. Chem. Int. Ed. 62, e202218452 (2023).

    Article  CAS  Google Scholar 

  92. Zhang, Y. et al. Iodine promoted ultralow Zn nucleation overpotential and Zn-rich cathode for low-cost, fast-production and high-energy density anode-free Zn-iodine batteries. Nano Micro Lett. 14, 208 (2022).

    Article  CAS  Google Scholar 

  93. Wang, Y. et al. Electrolyte design for rechargeable anion shuttle batteries. eScience 2, 573–590 (2022).

    Article  Google Scholar 

  94. Jin, C. B. et al. Rejuvenating dead lithium supply in lithium metal anodes by iodine redox. Nat. Energy 6, 378–387 (2021). This paper reports a lithium restoration method based on a series of iodine redox reactions mainly involving I3/I in lithium metal anodes.

    Article  CAS  Google Scholar 

  95. Liu, M. Z. et al. Deciphering the paradox between the Co-intercalation of sodium-solvent into graphite and its irreversible capacity. Energy Storage Mater. 26, 32–39 (2020).

    Article  Google Scholar 

  96. Goktas, M. et al. Graphite as cointercalation electrode for sodium-ion batteries: electrode dynamics and the missing solid electrolyte interphase (SEI). Adv. Energy Mater. 8, 1702724 (2018).

    Article  Google Scholar 

  97. Zhang, Q. et al. Halogenated Zn2+ solvation structure for reversible Zn metal batteries. J. Am. Chem. Soc. 144, 18435–18443 (2022).

    Article  CAS  PubMed  Google Scholar 

  98. Cao, J. et al. Strategies of regulating Zn2+ solvation structures for dendrite-free and side reaction-suppressed zinc-ion batteries. Energy Environ. Sci. 15, 499–528 (2022).

    Article  CAS  Google Scholar 

  99. Li, C. et al. Tuning the solvation structure in aqueous zinc batteries to maximize Zn-ion intercalation and optimize dendrite-free zinc plating. ACS Energy Lett. 7, 533–540 (2022).

    Article  CAS  Google Scholar 

  100. Wang, X. et al. Electrode material–ionic liquid coupling for electrochemical energy storage. Nat. Rev. Mater. 5, 787–808 (2020).

    Article  CAS  Google Scholar 

  101. Yang, X. et al. Electrolyte design principles for developing quasi-solid-state rechargeable halide-ion batteries. Nat. Commun. 14, 925 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kim, K. I. et al. Reversible insertion of Mg-Cl superhalides in graphite as a cathode for aqueous dual-ion batteries. Angew. Chem. Int. Ed. 59, 19924–19928 (2020).

    Article  CAS  Google Scholar 

  103. Huang, Z. et al. Anion chemistry in energy storage devices. Nat. Rev. Chem. 7, 616–631 (2023).

    Article  PubMed  Google Scholar 

  104. Hou, S. et al. High-energy and low-cost membrane-free chlorine flow battery. Nat. Commun. 13, 1281 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Yang, Y., Liang, S., Lu, B., Zhou, J. J. E. & Science, E. Eutectic electrolyte based on N-methylacetamide for highly reversible zinc–iodine battery. Energy Environ. Sci. 15, 1192–1200 (2022).

    Article  CAS  Google Scholar 

  106. Zhu, G. et al. High-capacity rechargeable Li/Cl2 batteries with graphite positive electrodes. J. Am. Chem. Soc. 144, 22505–22513 (2022).

    Article  CAS  PubMed  Google Scholar 

  107. Dai, C. et al. Fast constructing polarity-switchable zinc-bromine microbatteries with high areal energy density. Sci. Adv. 8, eabo6688 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Sonigara, K. K., Zhao, J., Machhi, H. K., Cui, G. & Soni, S. S. Self‐assembled solid‐state gel catholyte combating iodide diffusion and self‐discharge for a stable flexible aqueous Zn–I2 battery. Adv. Energy Mater. 10, 2001997 (2020).

    Article  CAS  Google Scholar 

  109. Suo, L. et al. “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350, 938–943 (2015).

    Article  CAS  PubMed  Google Scholar 

  110. Xie, J., Liang, Z. & Lu, Y. C. Molecular crowding electrolytes for high-voltage aqueous batteries. Nat. Mater. 19, 1006–1011 (2020).

    Article  CAS  PubMed  Google Scholar 

  111. Chen, F., Wang, X., Armand, M. & Forsyth, M. Cationic polymer-in-salt electrolytes for fast metal ion conduction and solid-state battery applications. Nat. Mater. 21, 1175–1182 (2022).

    Article  CAS  PubMed  Google Scholar 

  112. Wang, F., Sun, Y. & Cheng, J. Switching of redox levels leads to high reductive stability in water-in-salt electrolytes. J. Am. Chem. Soc. 145, 4056–4064 (2023).

    Article  CAS  Google Scholar 

  113. Wu, Z. et al. Deciphering and modulating energetics of solvation structure enables aggressive high-voltage chemistry of Li metal batteries. Chem 9, 650–664 (2023).

    Article  CAS  Google Scholar 

  114. Wang, D. et al. A thermodynamic cycle-based electrochemical windows database of 308 electrolyte solvents for rechargeable batteries. Adv. Funct. Mater. 33, 2212342 (2023).

    Article  CAS  Google Scholar 

  115. Li, M. et al. Design strategies for nonaqueous multivalent-ion and monovalent-ion battery anodes. Nat. Rev. Mater. 5, 276–294 (2020).

    Article  CAS  Google Scholar 

  116. Sun, W. et al. A rechargeable zinc-air battery based on zinc peroxide chemistry. Science 371, 46–51 (2021).

    Article  CAS  PubMed  Google Scholar 

  117. Zhang, S. J. et al. Polyiodide confinement by starch enables shuttle-free Zn–iodine batteries. Adv. Mater. 34, e2201716 (2022).

    Article  PubMed  Google Scholar 

  118. Li, P., Li, C., Guo, X., Li, X. & Zhi, C. Metal-iodine and metal-bromine batteries: a review. Bull. Chem. Soc. Jpn 94, 2036–2042 (2021).

    Article  CAS  Google Scholar 

  119. Yoo, S. J. et al. Fundamentally addressing bromine storage through reversible solid-state confinement in porous carbon electrodes: design of a high-performance dual-redox electrochemical capacitor. J. Am. Chem. Soc. 139, 9985–9993 (2017).

    Article  CAS  PubMed  Google Scholar 

  120. Bai, C. et al. A sustainable aqueous Zn-I2 battery. Nano Res. 11, 3548–3554 (2018).

    Article  CAS  Google Scholar 

  121. Xu, J. et al. Lithium halide cathodes for Li metal batteries. Joule 7, 83–94 (2023). This paper reports the remarkable universality of lithium halide cathodes for Li metal batteries.

    Article  CAS  Google Scholar 

  122. Yang, H. et al. A metal–organic framework as a multifunctional ionic sieve membrane for long-life aqueous zinc–iodide batteries. Adv. Mater. 32, e2004240 (2020).

    Article  PubMed  Google Scholar 

  123. Wu, X. & Ji, X. Aqueous batteries get energetic. Nat. Chem. 11, 680–681 (2019).

    Article  PubMed  Google Scholar 

  124. Wang, A. & Gyenge, E. L. Borohydride electro-oxidation in a molten alkali hydroxide eutectic mixture and a novel borohydride–periodate battery. J. Power Sources 282, 169–173 (2015).

    Article  CAS  Google Scholar 

  125. Zhang, F., Wang, Q. & Tang, Y. B. Extended iodine chemistry: toward high-energy-density aqueous zinc-ion batteries. Matter 4, 2637–2639 (2021).

    Article  CAS  Google Scholar 

  126. Liang, G. et al. Development of rechargeable high-energy hybrid zinc-iodine aqueous batteries exploiting reversible chlorine-based redox reaction. Nat. Commun. 14, 1856 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Cai, S. et al. Water–salt oligomers enable supersoluble electrolytes for high-performance aqueous batteries. Adv. Mater. 33, e2007470 (2021).

    Article  PubMed  Google Scholar 

  128. Zhou, G., Chen, H. & Cui, Y. Formulating energy density for designing practical lithium–sulfur batteries. Nat. Energy 7, 312–319 (2022).

    Article  CAS  Google Scholar 

  129. Lu, Y. & Chen, J. Prospects of organic electrode materials for practical lithium batteries. Nat. Rev. Chem. 4, 127–142 (2020).

    Article  CAS  PubMed  Google Scholar 

  130. Liu, B., Zhang, J. G. & Xu, W. Advancing lithium metal batteries. Joule 2, 833–845 (2018).

    Article  CAS  Google Scholar 

  131. Xu, J., Ma, J., Fan, Q., Guo, S. & Dou, S. Recent progress in the design of advanced cathode materials and battery models for high-performance lithium-X (X = O2, S, Se, Te, I2, Br2) batteries. Adv. Mater. 29, 1606454 (2017).

    Article  Google Scholar 

  132. Zhao, Y. et al. Few-layer bismuth selenide cathode for low-temperature quasi-solid-state aqueous zinc metal batteries. Nat. Commun. 13, 752 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Wang, F. et al. Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 17, 543–549 (2018).

    Article  CAS  PubMed  Google Scholar 

  134. Li, X. et al. Phase transition induced unusual electrochemical performance of V2CTX MXene for aqueous zinc hybrid-ion battery. ACS Nano 14, 541–551 (2020).

    Article  CAS  PubMed  Google Scholar 

  135. Wan, F. & Niu, Z. Design strategies for vanadium-based aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 58, 16358–16367 (2019).

    Article  Google Scholar 

  136. Xie, J. & Lu, Y. C. A retrospective on lithium-ion batteries. Nat. Commun. 11, 2499 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Suo, L. et al. Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries. Proc. Natl Acad. Sci. USA 115, 1156–1161 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Tian, R. et al. Quantifying the factors limiting rate performance in battery electrodes. Nat. Commun. 10, 1933 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Wang, J. et al. Superconcentrated electrolytes for a high-voltage lithium-ion battery. Nat. Commun. 7, 12032 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Tang, X. et al. High-performance quasi-solid-state MXene-based Li–I batteries. ACS Cent. Sci. 5, 365–373 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Liang, G. et al. Regulating inorganic and organic components to build amorphous‐ZnFx enriched solid‐electrolyte interphase for highly reversible Zn metal chemistry. Adv. Mater. 35, 2210051 (2023).

    Article  CAS  Google Scholar 

  142. Xu, J. et al. Electrolyte design for Li-ion batteries under extreme operating conditions. Nature 614, 694–700 (2023).

    Article  CAS  PubMed  Google Scholar 

  143. Jiang, L., Dong, D. & Lu, Y.-C. Design strategies for low temperature aqueous electrolytes. Nano Res. Energy 1, e9120003 (2022).

    Article  Google Scholar 

  144. Wan, H., Xu, J. & Wang, C. Designing electrolytes and interphases for high-energy lithium batteries. Nat. Rev. Chem. 8, 30–44 (2023).

    Article  PubMed  Google Scholar 

  145. Zhao, C., Lu, Y., Chen, L. & Hu, Y. S. Flexible Na batteries. InfoMat 2, 126–138 (2019).

    Article  Google Scholar 

  146. Jin, X. et al. A flexible aqueous zinc–iodine microbattery with unprecedented energy density. Adv. Mater. 34, e2109450 (2022). This paper reports a flexible aqueous zinc–iodine microbattery and its application in mechanical deformation scenarios.

    Article  PubMed  Google Scholar 

  147. Lu, J., Wu, T. & Amine, K. J. N. E. State-of-the-art characterization techniques for advanced lithium-ion batteries. Nat. Energy 2, 1–13 (2017).

    Article  Google Scholar 

  148. Zhou, S. et al. Visualizing interfacial collective reaction behaviour of Li–S batteries. Nature 621, 75–81 (2023).

    Article  CAS  PubMed  Google Scholar 

  149. Pastor, E. et al. Complementary probes for the electrochemical interface. Nat. Rev. Chem. 8, 159–178 (2024).

    Article  PubMed  Google Scholar 

  150. Han, M. et al. Electrochemically modulated interaction of MXenes with microwaves. Nat. Nanotechnol. 18, 373–379 (2023).

    Article  CAS  PubMed  Google Scholar 

  151. Li, X., Li, M., Li, X., Fan, X. & Zhi, C. Low infrared emissivity and strong stealth of Ti-based MXenes. Research 2022, 9892628 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Gao, X. W. et al. Solid-state lithium battery cathodes operating at low pressures. Joule 6, 636–646 (2022).

    Article  CAS  Google Scholar 

  153. Cheng, Z. et al. Achieving long cycle life for all-solid-state rechargeable Li-I2 battery by a confined dissolution strategy. Nat. Commun. 13, 125 (2022). This paper reports an all-solid-state rechargeable Li–I2 battery with a hybrid electrolyte.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Lu, K. et al. Rechargeable potassium-ion batteries enabled by potassium-iodine conversion chemistry. Energy Storage Mater. 16, 1–5 (2019).

    Article  Google Scholar 

  155. Yang, S. et al. High-rate aqueous aluminum-ion batteries enabled by confined iodine conversion chemistry. Small Methods 5, e2100611 (2021).

    Article  PubMed  Google Scholar 

  156. Pan, H. et al. Controlling solid–liquid conversion reactions for a highly reversible aqueous zinc–iodine battery. ACS Energy Lett. 2, 2674–2680 (2017).

    Article  CAS  Google Scholar 

  157. Bai, C., Jin, H., Gong, Z., Liu, X. & Yuan, Z. A high-power aqueous rechargeable Fe-I2 battery. Energy Storage Mater. 28, 247–254 (2020).

    Article  Google Scholar 

  158. Zhang, Y. et al. A high-performance COF-based aqueous zinc-bromine battery. Chem. Eng. J. 451, 138915 (2023).

    Article  CAS  Google Scholar 

  159. Li, P. et al. Development of an energy-dense and high-power Li-Cl2 battery using reversible interhalogen bonds. Chem 10, 352–364 (2024).

    Article  CAS  Google Scholar 

  160. Li, P. et al. Highly thermally/electrochemically stable I/I3 bonded organic salts with high I content for long‐life Li–I2 batteries. Adv. Energy Mater. 12, 2103648 (2022).

    Article  CAS  Google Scholar 

  161. Meng, Z. et al. Ultra-stable binder-free rechargeable Li/I2 batteries enabled by “Betadine” chemical interaction. Chem. Commun. 54, 12337–12340 (2018).

    Article  CAS  Google Scholar 

  162. Peterson, B. B., Andrews, E. M., Hung, F. & Flake, J. C. Carbonized metal-organic framework cathodes for secondary lithium-bromine batteries. J. Power Sources 492, 229658 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

C.Z. discloses support for the research of this work from the National Key R&D Program of China [2019YFA0705104], City University of Hong Kong [9667165], and Research Grants Council [R5019-22]. X.L. discloses support for the research of this work from the State Key Laboratory of Solidification Processing in Northwestern Polytechnical University [SKLSP202312].

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the writing and editing of the article.

Corresponding authors

Correspondence to Xinliang Li or Chunyi Zhi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Active halide chemicals

Chemical substances that contain halogens and in which the halogens perform conversion-type electrochemical reactions.

Electrochemical stability window

(ESW). A quantified potential range in which applicable electrolytes have the ability to resist decomposition.

Host

A conductive substance that carries active halide chemicals and transfers electrons.

Redox intermediates

A term denoting halogen-containing products that form during redox reactions but are not among the initial and final active chemicals.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Xu, W. & Zhi, C. Halogen-powered static conversion chemistry. Nat Rev Chem (2024). https://doi.org/10.1038/s41570-024-00597-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41570-024-00597-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing