Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The design of PINO-like hydrogen-atom-transfer catalysts

Abstract

Phthalimide-N-oxyl (PINO) is a valuable hydrogen-atom-transfer (HAT) catalyst for selective C–H functionalization. To advance and optimize PINO-catalysed HAT reactions, researchers have been focused on modifying the phthalimide core structure. Despite much effort and some notable advances, the modifications to date have centred on optimization of a single parameter of the catalyst, such as reactivity, solubility or stability. Unfortunately, the optimization with respect to one parameter is often associated with a worsening of the others. The derivation of a single catalyst structure with optimal performance across multiple parameters has therefore remained elusive. Here we present an analysis of the structure–activity relationships of PINO and its derivatives as HAT catalysts, which we hope will stimulate further development of PINO-catalysed HAT reactions and, ultimately, lead to much improved catalysts for real-world applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Three strategies of PINO generation from oxidation of NHPI.
Fig. 2: Thermodynamic aspects (BDE analysis) of PINO-type HAT mediators.
Fig. 3: Design of a more reactive PINO-type catalyst through EWG polarization effect.
Fig. 4: Efforts towards developing regio- or enantioselective PINO species.
Fig. 5: Development of more lipophilic PINO catalysts.
Fig. 6: Development of more stable PINO-type species.
Fig. 7: The base effect on PINO-catalysed benzylic alcohol oxidation and revised mechanism of its decomposition.
Fig. 8: Key considerations for optimization of PINO-catalysed oxidations.

Similar content being viewed by others

References

  1. Capaldo, L., Ravelli, D. & Fagnoni, M. Direct photocatalyzed hydrogen atom transfer (HAT) for aliphatic C–H bonds elaboration. Chem. Rev. 122, 1875–1924 (2022). This comprehensive survey summarizes the synthetic applications of photocatalysed HAT mediated by a variety of reagents.

    Article  CAS  PubMed  Google Scholar 

  2. Cao, H., Tang, X., Tang, H., Yuan, Y. & Wu, J. Photoinduced intermolecular hydrogen atom transfer reactions in organic synthesis. Chem. Catal. 1, 523–598 (2021).

    Article  CAS  Google Scholar 

  3. Bosque, I., Magallanes, G., Rigoulet, M., Kärkäs, M. D. & Stephenson, C. R. J. Redox catalysis facilitates lignin depolymerization. ACS Cent. Sci. 3, 621–628 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Horn, E. J. et al. Scalable and sustainable electrochemical allylic C–H oxidation. Nature 533, 77–81 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Recupero, F. & Punta, C. Free radical functionalization of organic compounds catalyzed by N-hydroxyphthalimide. Chem. Rev. 107, 3800–3842 (2007). This Review provides a detailed summary of NHPI/PINO-mediated CH functionalization.

    Article  CAS  PubMed  Google Scholar 

  6. Amorati, R. et al. Hydroxylamines as oxidation catalysts: thermochemical and kinetic studies. J. Org. Chem. 68, 1747–1754 (2003). This high-impact physical organic study describes both thermodynamic and kinetic aspects of different types of nitroxide.

    Article  CAS  PubMed  Google Scholar 

  7. Melone, L. & Punta, C. Metal-free aerobic oxidations mediated by N-hydroxyphthalimide. A concise review. Beilstein J. Org. Chem. 9, 1296–1310 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bera, A., Bera, S. & Banerjee, D. Recent advances in the synthesis of N-heteroarenes via catalytic dehydrogenation of N-heterocycles. Chem. Commun. 57, 13042–13058 (2021).

    Article  CAS  Google Scholar 

  9. Andrade, M. A. & Martins, L. M. D. R. S. Organocatalysis meets hydrocarbon oxyfunctionalization: the role of N-hydroxyimides. Eur. J. Org. Chem. 2021, 4715–4727 (2021).

    Article  CAS  Google Scholar 

  10. Lang, X. & Zhao, J. Integrating TEMPO and its analogues with visible-light photocatalysis. Chem. Asian J. 13, 599–613 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Melone, L. & Punta, C. N-Hydroxyphthalimide (NHPI) organocatalyzed aerobic oxidations: advantages, limits, and industrial perspectives. In Liquid Phase Aerobic Oxidation Catalysis: Industrial Applications And Academic Perspectives (eds Stahl, S. S. & Alsters, P. L.) (Wiley, 2016).

  12. Liang, Y. & Jiao, N. Oxygenation via C–H/C–C bond activation with molecular oxygen. Acc. Chem. Res. 50, 1640–1653 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Melone, L. & Punta, C. Co-oxidation processes promoted by N-hydroxyphthalimide/aldehyde system. In New Developments In Aldehydes Research 121–138 (Nova Publishers, 2013).

  14. Coseri, S. Phthalimide-N-oxyl (PINO) radical, a powerful catalytic agent: its generation and versatility towards various organic substrates. Catal. Rev. 51, 218–292 (2009).

    Article  CAS  Google Scholar 

  15. Coseri, S. N-hydroxyphthalimide (NHPI)/lead tetraacetate, a peculiar system for the phthalimide-N-oxyl (PINO) radical generation. Mini-Rev. Org. Chem. 5, 222–227 (2008).

    Article  CAS  Google Scholar 

  16. Xu, H., Tang, R., Gong, N., Liu, C. & Zhou, Y. Aerobic oxidation reactions catalyzed by N-hydroxyphthalimide and its analogues. Prog. Chem. 19, 1736–1745 (2007).

    CAS  Google Scholar 

  17. Ishii, Y. & Sakaguchi, S. Recent progress in aerobic oxidation of hydrocarbons by N-hydroxyimides. Catal. Today 117, 105–113 (2006).

    Article  CAS  Google Scholar 

  18. Sheldon, R. A. & Arends, I. W. C. E. Catalytic oxidations mediated by metal ions and nitroxyl radicals. J. Mol. Catal. A 251, 200–214 (2006).

    Article  CAS  Google Scholar 

  19. Liang, J., Li, J., Zhou, B. & Qin, S. Recent advance of N-hydroxyphthalimide (NHPI) in organic oxidation reaction. Chem. Res. Appl. 16, 597–600 (2004).

    CAS  Google Scholar 

  20. Tong, J., Li, Z. & Xia, C. Review on environmentally friendly catalytic oxidation system. Prog. Chem. 17, 96–110 (2005).

    CAS  Google Scholar 

  21. Sheldon, R. A. & Arends, I. W. C. E. Organocatalytic oxidations mediated by nitroxyl radicals. Adv. Synth. Catal. 346, 1051–1071 (2004).

    Article  CAS  Google Scholar 

  22. Ishii, Y. & Sakaguchi, S. Development of catalytic carbon radical generation and its application to organic synthesis. J. Syn. Org. Chem. Jpn 61, 1056–1064 (2003).

    Article  CAS  Google Scholar 

  23. Minisci, F., Recupero, F., Pedulli, G. F. & Lucarini, M. Transition metal salts catalysis in the aerobic oxidation of organic compounds. Thermochemical and kinetic aspects and new synthetic developments in the presence of N-hydroxy-derivative catalysts. J. Mol. Catal. A 204–205, 63–90 (2003).

    Article  Google Scholar 

  24. Ishii, Y. Development of catalytic carbon radical generation and its application to organic synthesis. Kagaku Kogyo 53, 37–42 (2002).

    CAS  Google Scholar 

  25. Ishii, Y., Sakaguchi, S. & Iwahama, T. Innovation of hydrocarbon oxidation with molecular oxygen and related reactions. Adv. Synth. Catal. 343, 393–427 (2001).

    Article  CAS  Google Scholar 

  26. Ishii, Y. Development of catalytic carbon radical generation and its application to organic synthesis. J. Syn. Org. Chem. Jpn 59, 2–10 (2001).

    Article  CAS  Google Scholar 

  27. Ishii, Y., Sakaguchi, S. & Iwahama, T. Development of novel aerobic oxidation method using N-hydroxyphthalimide as catalyst. J. Syn. Org. Chem. Jpn 57, 24–34 (1999).

    Article  CAS  Google Scholar 

  28. Chen, K. & Xie, H. Selective aerobic oxidation promoted by highly efficient multi‐nitroxy organocatalysts. Chin. J. Catal. 38, 625–635 (2017).

    Article  CAS  Google Scholar 

  29. Wu, Z., Hu, G. & Luan, Y. Development of N-hydroxy catalysts for C−H functionalization via hydrogen atom transfer: challenges and opportunities. ACS Catal. 12, 11716–11733 (2022).

    Article  CAS  Google Scholar 

  30. Yoshii, T. et al. N-Hydroxybenzimidazole as a structurally modifiable platform for N-oxyl radicals for direct C–H functionalization reactions. Chem. Sci. 11, 5772–5778 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Caruso, M., Petroselli, M. & Cametti, M. Design and synthesis of multipurpose derivatives for N-hydroxyimide and NHPI-based catalysis applications. ChemistrySelect 6, 12975–12980 (2021).

    Article  CAS  Google Scholar 

  32. Zhao, Q., Chen, K., Zhang, W., Yao, J. & Li, H. Efficient metal-free oxidation of ethylbenzene with molecular oxygen utilizing the synergistic combination of NHPI analogues. J. Mol. Catal. A 402, 79–82 (2015).

    Article  CAS  Google Scholar 

  33. Dobras, G., Kasperczyk, K., Jurczyk, S. & Orlińska, B. N-hydroxyphthalimide supported on silica coated with ionic liquids containing CoCl2 (SCILLs) as new catalytic system for solvent-free ethylbenzene oxidation. Catalysts 10, 252 (2020).

    Article  CAS  Google Scholar 

  34. Shi, G. et al. Covalent anchoring of N-hydroxyphthalimide on silica via robust imide bonds as a reusable catalyst for the selective aerobic oxidation of ethylbenzene to acetophenone. N. J. Chem. 45, 13441–13450 (2021).

    Article  CAS  Google Scholar 

  35. Grochowski, E., Boleslawska, T. & Jurczak, J. Reaction of diethyl azodicarboxylate with ethers in the presence of N-hydroxyimides as catalysts. Synthesis 1977, 718–720 (1977).

    Article  Google Scholar 

  36. Melone, L. & Punta, C. Metal-free aerobic oxidations mediated by N-hydroxyphthalimide. A concise review. Beilstein J. Org. Chem. 9, 1296–1310 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yang, G., Ma, Y. & Xu, J. Biomimetic catalytic system driven by electron transfer for selective oxygenation of hydrocarbon. J. Am. Chem. Soc. 126, 10542–10543 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Iwahama, T., Sakaguchi, S., Nishiyama, Y. & Ishii, Y. Aerobic oxidation of alcohols to carbonyl compounds catalyzed by N-hydroxyphthalimide (NHPI) combined with Co(acac)3. Tetrahedron Lett. 36, 6923–6926 (1995).

    Article  CAS  Google Scholar 

  39. Masui, M., Ueshima, T. & Ozaki, S. N-Hydroxyphthalimide as an effective mediator for the oxidation of alcohols by electrolysis. J. Chem. Soc. Chem. Commun. https://doi.org/10.1039/C39830000479 (1983).

    Article  Google Scholar 

  40. Yang, C., Farmar, L. A., Pratt, D. A., Maldonado, S. & Stephenson, C. R. J. Mechanisms of electrochemical generation and decomposition of phthalimide N-oxyl. J. Am. Chem. Soc. 143, 10324–10332 (2021). This mechanistic study elucidates possible PINO decomposition mechanisms through electroanalytical and computational methodologies.

    Article  CAS  PubMed  Google Scholar 

  41. Ueda, C., Noyama, M., Ohmori, H. & Masui, M. Reactivity of phthalimide-N-oxyl: a kinetic study. Chem. Pharm. Bull. 35, 1372–1377 (1987). This pioneering study investigates the decomposition of electrochemically generated PINO.

    Article  CAS  Google Scholar 

  42. Lin, X., Lin, L., Ye, X., Tan, C. & Jiang, Z. Aerobic oxidation of benzylic sp3 C–H bonds through cooperative visible-light photoredox catalysis of N-hydroxyimide and dicyanopyrazine. Asian J. Org. Chem. 6, 422–425 (2017).

    Article  Google Scholar 

  43. Solomon, E. I., Sundaram, U. M. & Machonkin, T. E. Multicopper oxidases and oxygenases. Chem. Rev. 96, 2563–2606 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. Warren, J. J., Tronic, T. A. & Mayer, J. M. Thermochemistry of proton-coupled electron transfer reagents and its implications. Chem. Rev. 110, 6961–7001 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nutting, J. E., Rafiee, M. & Stahl, S. S. Tetramethylpiperidine N-oxyl (TEMPO), phthalimide N-oxyl (PINO), and related N-oxyl species: electrochemical properties and their use in electrocatalytic reactions. Chem. Rev. 118, 4834–4885 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ozaki, S. & Masui, M. Oxidation of hydroxylamine derivatives. I. Anodic oxidation of hydroxamic acids. Chem. Pharm. Bull. 25, 1179–1185 (1977).

    Article  CAS  Google Scholar 

  47. Punta, C., Rector, C. L. & Porter, N. A. Peroxidation of polyunsaturated fatty acid methyl esters catalyzed by N-methyl benzohydroxamic acid: a new and convenient method for selective synthesis of hydroperoxides and alcohols. Chem. Res. Toxicol. 18, 349–356 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Annunziatini, C., Gerini, M. F., Lanzalunga, O. & Lucarini, M. Aerobic oxidation of benzyl alcohols catalyzed by aryl substituted N-hydroxyphthalimides. Possible involvement of a charge-transfer complex. J. Org. Chem. 69, 3431–3438 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Baucherel, X., Arends, I. W. C. E., Ellwood, S. & Sheldon, R. A. A new catalytic system for the selective aerobic oxidation of large ring cycloalkanes to ketones. Org. Process. Res. Dev. 7, 426–428 (2003).

    Article  CAS  Google Scholar 

  50. Baucherel, X., Gonsalvi, L., Arends, I. W. C. E., Ellwood, S. & Sheldon, R. A. Aerobic oxidation of cycloalkanes, alcohols and ethylbenzene catalyzed by the novel carbon radical chain promoter NHS (N-hydroxysaccharin). Adv. Synth. Catal. 346, 286–296 (2004).

    Article  CAS  Google Scholar 

  51. Du, H. et al. Structure–reactivity relationships of N-hydroxysaccharin analogues as organocatalysts for aerobic oxidation. Comput. Theor. Chem. 1115, 223–228 (2017).

    Article  CAS  Google Scholar 

  52. Ishii, Y. et al. A novel catalysis of N-hydroxyphthalimide in the oxidation of organic substrates by molecular oxygen. J. Org. Chem. 60, 3934–3935 (1995).

    Article  CAS  Google Scholar 

  53. Arnaud, R., Milet, A., Adamo, C., Einhorn, C. & Einhorn, J. Hydrogen abstraction from ethylbenzene by imide-N-oxyl radicals with and without O2: a DFT theoretical study. J. Chem. Soc. Perkin Trans. 2, 1967–1972 (2002).

    Article  Google Scholar 

  54. Hermans, I., Jacobs, P. & Peeters, J. Autoxidation catalysis with N-hydroxyimides: more-reactive radicals or just more radicals? Phys. Chem. Chem. Phys. 9, 686–690 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Rafiee, M., Wang, F., Hruszkewycz, D. P. & Stahl, S. S. N-hydroxyphthalimide-mediated electrochemical iodination of methylarenes and comparison to electron-transfer-initiated C–H functionalization. J. Am. Chem. Soc. 140, 22–25 (2008).

    Article  Google Scholar 

  56. Xia, F. et al. Catalytic synthesis of 2,5-furandicarboxylic acid from concentrated 2,5-diformylfuran mediated by N-hydroxyimides under mild conditions. Chem. Asian J. 14, 3329–3334 (2019).

    Article  CAS  PubMed  Google Scholar 

  57. Bietti, M. et al. Evaluation of polar effects in hydrogen atom transfer reactions from activated phenols. J. Org. Chem. 84, 1778–1786 (2019).

    Article  CAS  PubMed  Google Scholar 

  58. Kadoh, Y., Oisaki, K. & Kanai, M. Enhanced structural variety of nonplanar N-oxyl radical catalysts and their application to the aerobic oxidation of benzylic C–H bonds. Chem. Pharm. Bull. 64, 737–753 (2016).

    Article  CAS  Google Scholar 

  59. Ozawa, J., Tashiro, M., Ni, J., Oisaki, K. & Kanai, M. Chemo- and regioselective oxygenation of C(sp3)–H bonds in aliphatic alcohols using a covalently bound directing activator and atmospheric oxygen. Chem. Sci. 7, 1904–1909 (2016).

    Article  CAS  PubMed  Google Scholar 

  60. Zhang, Q. et al. Efficient metal-free aerobic oxidation of aromatic hydrocarbons utilizing aryl-tetrahalogenated N-hydroxyphthalimides and 1,4-diamino-2,3-dichloroanthraquinone. J. Chem. Technol. Biotechnol. 83, 1364–1369 (2008). Landmark article demonstrating a meaningful improvement of PINO’s catalytic performance through electron-withdrawing polarization.

    Article  CAS  Google Scholar 

  61. Mazzonna, M., Bietti, M., DiLabio, G. A., Lanzalunga, O. & Salamone, M. Importance of π-stacking interactions in the hydrogen atom transfer reactions from activated phenols to short-lived N-oxyl radicals. J. Org. Chem. 79, 5209–5218 (2014).

    Article  CAS  PubMed  Google Scholar 

  62. DiLabio, G. A. et al. Hydrogen atom transfer (HAT) processes promoted by the quinolinimide-N-oxyl radical. A kinetic and theoretical study. J. Org. Chem. 82, 6133–6141 (2017).

    Article  CAS  PubMed  Google Scholar 

  63. Zhang, Q. et al. A complexation promoted organic N-hydroxy catalytic system for selective oxidation of toluene. Adv. Synth. Catal. 353, 226–230 (2011).

    Article  CAS  Google Scholar 

  64. Gorgy, K. et al. Electrocatalytic oxidation of alcohols using substituted N-hydroxyphthalimides as catalysts. Electrochim. Acta 44, 385–393 (1998).

    Article  CAS  Google Scholar 

  65. Kato, T. & Maruoka, K. Design of bowl-shaped N-hydroxyimide derivatives as new organoradical catalysts for site-selective C(sp3)–H bond functionalization reactions. Angew. Chem. Int. Edn 59, 14261–14264 (2020).

    Article  CAS  Google Scholar 

  66. Kato, T. & Maruoka, K. Selective functionalization of benzylic C–H bonds of two different benzylic ethers by bowl-shaped N-hydroxyimide derivatives as efficient organoradical catalysts. Chem. Commun. 58, 1021–1024 (2022).

    Article  CAS  Google Scholar 

  67. Einhorn, C., Einhorn, J., Marcadal-Abbadi, C. & Pierre, J. Synthesis of axially chiral N-hydroxyimides, potential new catalysts for asymmetric oxidations. J. Org. Chem. 64, 4542–4546 (1999).

    Article  CAS  Google Scholar 

  68. Nechab, M., Kumar, D. N., Philouze, C., Einhorn, C. & Einhorn, J. Variable C2-symmetric analogues of N-hydroxyphthalimide as enantioselective catalysts for aerobic oxidation: kinetic resolution of oxazolidines. Angew. Chem. 119, 3140–3143 (2007).

    Article  Google Scholar 

  69. Shen, J. & Tan, C. Anthrone-derived NHPI analogues as catalysts in reactions using oxygen as an oxidant. Org. Biomol. Chem. 6, 4096–4098 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Maillard, B., Ingold, K. U. & Scaiano, J. C. Rate constants for the reactions of free radicals with oxygen in solution. J. Am. Chem. Soc. 105, 5095–5099 (1983).

    Article  CAS  Google Scholar 

  71. Sawatari, N., Yokota, T., Sakaguchi, S. & Ishii, Y. Alkane oxidation with air catalyzed by lipophilic N-hydroxyphthalimides without any solvent. J. Org. Chem. 66, 7889–7891 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Guha, S. K. et al. Aerobic oxidation of cyclohexane using N-hydroxyphthalimide bearing fluoroalkyl chains. Adv. Synth. Catal. 350, 1323–1330 (2008).

    Article  CAS  Google Scholar 

  73. Petroselli, M., Melone, L., Cametti, M. & Punta, C. Lipophilic N-hydroxyphthalimide catalysts for the aerobic oxidation of cumene: towards solvent-free conditions and back. Chem. Eur. J. 23, 10616–10625 (2017).

    Article  CAS  PubMed  Google Scholar 

  74. Petroselli, M., Franchi, P., Lucarini, M., Punta, C. & Melone, L. Aerobic oxidation of alkylaromatics using a lipophilic N-hydroxyphthalimide: overcoming the industrial limit of catalyst solubility. ChemSusChem 7, 2695–2703 (2014).

    Article  CAS  PubMed  Google Scholar 

  75. Koshino, N., Saha, B. & Espenson, J. H. Kinetic study of the phthalimide N-oxyl radical in acetic acid. Hydrogen abstraction from substituted toluenes, benzaldehydes, and benzyl alcohols. J. Org. Chem. 68, 9364–9370 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Baciocchi, E., Gerini, M. F. & Lanzalunga, O. Reactivity of phthalimide N-oxyl radical (PINO) toward the phenolic O–H bond. A kinetic study. J. Org. Chem. 69, 8963–8966 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Kishioka, S. Electrode reaction of N-hydroxyphthalimide in sulfuric acid–acetonitrile mixed solution as a catalytic mediator for alcohol oxidation. J. Electroanal. Chem. 911, 116166 (2022).

    Article  CAS  Google Scholar 

  78. Tian, Y. et al. Unlocking high-potential non-persistent radical chemistry for semi-aqueous redox batteries. Chem. Commun. 55, 2154–2157 (2019).

    Article  CAS  Google Scholar 

  79. Kushch, O. et al. Kinetics of N-oxyl radicals’ decay. J. Org. Chem. 85, 7112–7124 (2020).

    Article  CAS  PubMed  Google Scholar 

  80. Nechab, M., Einhorn, C. & Einhorn, J. New aerobic oxidation of benzylic compounds: efficient catalysis by N-hydroxy-3,4,5,6-tetraphenylphthalimide (NHTPPI)/CuCl under mild conditions and low catalyst loading. Chem. Commun. https://doi.org/10.1039/B403004D (2004). This paper demonstrates a landmark attempt to improve PINO stability through steric manipulation.

  81. Michaux, J., Poirot, R., Einhorn, J. & Bessières, B. Co(I) catalyzed yne–ene–yne [2+2+2] cycloaddition: synthesis of highly strained pentacyclic bis-lactones. A new access to tetraaryl N-hydroxyphthalimides. Tetrahedron Lett. 55, 2849–2852 (2014).

    Article  CAS  Google Scholar 

  82. Michaux, J., Bessières, B. & Einhorn, J. Bis-ortho-metalation/silylation of unprotected o-phthalic acids: straightforward access to new silylated N-hydroxyphthalimide (NHPI) analogs. Tetrahedron Lett. 53, 48–50 (2012).

    Article  CAS  Google Scholar 

  83. Rafiee, M., Karimi, B. & Alizadeh, S. Mechanistic study of the electrocatalytic oxidation of alcohols by TEMPO and NHPI. ChemElectroChem 1, 455–462 (2014).

    Article  Google Scholar 

  84. O’Neil, I. A., Cleatora, E. & Tapioca, D. A. A convenient synthesis of secondary hydroxylamines. Tetrahedron Lett. 42, 8247–8249 (2001).

    Article  Google Scholar 

  85. Griesser, M. et al. The catalytic reaction of nitroxides with peroxyl radicals and its relevance to their cytoprotective properties. J. Am. Chem. Soc. 140, 3798–3808 (2018).

    Article  CAS  PubMed  Google Scholar 

  86. Murray, R. W., Singh, M. & Rath, N. Stereochemistry in the oxidation of primary amines to nitro compounds by dimethyldioxirane. Tetrahedron Asymm. 7, 1611–1619 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

C.R.J.S. and S.M. acknowledge the financial support from the National Science Foundation (CBET-2033714), and the University of Michigan. D.A.P. acknowledges the financial support from the Natural Sciences and Engineering Research Council of Canada (RGPIN-2022-05058). C.Y. acknowledges a Rackham pre-doctoral fellowship from the University of Michigan.

Author information

Authors and Affiliations

Authors

Contributions

C.Y., S.M., D.A.P. and C.R.J.S. contemplated the topic and structure of the Review. C.Y. conducted the literature research. All authors contributed to the discussion of the content and wrote or edited the manuscript.

Corresponding authors

Correspondence to Stephen Maldonado, Derek A. Pratt or Corey R. J. Stephenson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks Jie Wu, Osvaldo Lanzalunga, Giorgio Olivio and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Arora, S., Maldonado, S. et al. The design of PINO-like hydrogen-atom-transfer catalysts. Nat Rev Chem 7, 653–666 (2023). https://doi.org/10.1038/s41570-023-00511-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-023-00511-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing